Oi ~1 ~	D ~ J	A 1-		1117	114	TT ~1
Single	BOUV	Anaiy	vsis-	W OF	ksneet.	Hein

Name:_____#:____

Use T_{1,2} for the force between box 1 and box 2 instead of _____ or _____.

Step 1 – ______.

Step 3 - _____ for mass 1

Step 2 – Define direction of _____

for _____. Notice how it changes when it hits the _____.

Step 4 - Force equation for box 1 in X-direction

Step 5 - Force diagram for mass 2

Step 6 - Force equation for box 2

 $_{-}$ - $_{-}$ = $m_2 \epsilon$

0

Step 7 - Combine both ______ so you can find the ______ of the system.

 $_{---} = m_1 a$

 $+ m_2 g - \underline{\hspace{1cm}} = m_2 a$

 $m_2g =$

Pull out the _____

 $m_2g = \underline{\hspace{1cm}}$

Divide both sides by _____

____ = a

Now plug the numbers in for the _____ and ____.

Step 8 – Plug thy numbers in to find acceleration.

 $m_2g / (m_1 + m_2) = a \quad a = (_____) / (____)$

a =

Step 9 - Now plug the value you found for acceleration into one of the F = ma equations and solve for

 $T_{1,2}$. $T_{1,2} =$ ______

 $T_{1,2} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

2. Friction is present. ($\mu = 0.15$)

Force equation for box 1 in Y-direction

$$\underline{ } = m_1 \mathbf{g}^0$$

= μ*

SO if _____ Force equals _____ then

____= μ*____

Force equation for box 1 in X-direction

Substitute what friction is equal to in to the ______ equation.

 $T_{1,2} - \underline{\hspace{1cm}} = m_1 a_x$

Now repeat steps 5 thru 9 from the front of the page.