\qquad \#: \qquad

Use $\mathbf{T}_{\mathbf{1}, \mathbf{2}}$ for the force between box 1 and box 2 instead of \qquad or \qquad .

Step 1 - \qquad .

Step 3 - \qquad for mass 1
Step 2 - Define direction of \qquad for \qquad . Notice how it changes when it hits the \qquad .

Step 4 - Force equation for box 1 in X -direction

Step 5 - Force diagram for mass 2
Step 6 - Force equation for box 2
\qquad $-$ \qquad $=\mathbf{m}_{2} \mathbf{a}$

Step 7-Combine both \qquad so you can find the \qquad of the system.
$\square=\mathbf{m}_{1} \mathrm{a}$
$+\mathbf{m}_{2} \mathrm{~g}-\square$
$\mathbf{m}_{\mathbf{2}} \mathrm{g}=$
$\mathbf{m}_{2} \mathbf{a}$

$=\mathbf{a}$

Pull out the \qquad
Divide both sides by \qquad
Now plug the numbers in for the \qquad and \qquad .

Step 8 - Plug thy numbers in to find acceleration.
$\mathbf{m}_{2} g /\left(m_{1}+m_{2}\right)=\mathbf{a} \quad \mathbf{a}=($ \qquad)/(\qquad
\square
Step 9- Now plug the value you found for acceleration into one of the $F=$ ma equations and solve for $\mathrm{T}_{1,2}$.
$\mathrm{T}_{1,2}=$ \qquad $\mathrm{T}_{1,2}=$ \qquad $=$ \qquad
2. Friction is present. $(\boldsymbol{\mu}=\mathbf{0 . 1 5})$

Force equation for box 1 in Y-direction
— $-L=m^{a_{y}^{0}}$
$\ldots=m_{1} g$

SO if \qquad Force equals \qquad then
\qquad $=\mu^{*}$ \qquad

Force equation for box 1 in \mathbf{X}-direction
\qquad - \qquad $=m_{1} a_{x}$

Substitute what friction is equal to in to the \qquad equation.

$$
\mathbf{T}_{1,2}-工=m_{1} a_{x}
$$

Now repeat steps 5 thru 9 from the front of the page.

