Single Body Analysis #1

Var	Given value	Units	Description
\mathcal{G}	10	m s ²	acceleration due to gravity
m_1	6	kg	mass 1
m_2	4	kg	mass 2
а		m s	acceleration of system
T		N	Tension

$$m_2 g - T = m_2 a$$

$$T = m_1 a$$

$$m_2 g = (m_1 + m_2) a$$

Single Body Analysis #1 (continued)

$$m_2 g = (m_1 + m_2) a$$

$$\frac{m_2 g}{m_1 + m_2} = a$$

$$a = \frac{m_2 g}{m_1 + m_2}$$

$$= \frac{(6 \text{ kg}) \left(10 \frac{\text{m}}{\text{s}^2}\right)}{(4 \text{ kg}) + (6 \text{ kg})}$$

$$= \boxed{6 \frac{m}{s^2}}$$

$$T = m_1 a$$

$$= (4 \text{ kg}) \left(6 \frac{\text{m}}{\text{s}^2}\right)$$

