Single Body Analysis \#1

Var	Given value	Units	Description
g	10	$\frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	acceleration due to gravity
m_{1}	6	kg	mass 1
m_{2}	4	kg	mass 2
\boldsymbol{a}		$\frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	acceleration of system
\boldsymbol{T}		N	Tension

$$
\begin{aligned}
m_{2} g-T & =m_{2} a \\
T & =m_{1} a \\
m_{2} g & =\left(m_{1}+m_{2}\right) a
\end{aligned}
$$

Single Body Analysis \#1 (continued)

$$
\begin{aligned}
m_{2} g & =\left(m_{1}+m_{2}\right) a \\
\frac{m_{2} g}{m_{1}+m_{2}} & =a \\
a & =\frac{m_{2} g}{m_{1}+m_{2}} \\
& =\frac{(6 \mathrm{~kg})\left(10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{(4 \mathrm{~kg})+(6 \mathrm{~kg})} \\
& =6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
T & =m_{1} a \\
& =(4 \mathrm{~kg})\left(6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& =24 \mathrm{~N}
\end{aligned}
$$

