Single Body Analysis #1

$$m_{2}g - F_{T_{1,2}} = m_{2}a$$

$$F_{T_{1,2}} = m_{1}a$$

$$m_{2}g = m_{1}a + m_{2}a$$

$$m_{2}g = (m_{1} + m_{2})a$$

$$\frac{m_{2}g}{m_{1} + m_{2}} = a$$

$$a = \frac{m_2 g}{m_1 + m_2}$$

= $\frac{(50 \text{ kg}) \left(10 \frac{\text{m}}{\text{s}^2}\right)}{(100 \text{ kg}) + (50 \text{ kg})}$
= $3.33 \frac{\text{m}}{\text{s}^2}$

$$F_{T1,2} = m_1 a$$

=
$$(100 \text{ kg}) \left(3.33 \frac{\text{m}}{\text{s}^2} \right)$$

= 333.N

Page 2

Var	Given value	Units	Description
g	10	$\frac{\mathrm{m}}{\mathrm{s}^2}$	acceleration due to gravity
<i>m</i> 1	100	kg	mass 1
<i>m</i> ₂	50	kg	mass 2
а		$\frac{m}{s^2}$	acceleration of system
<i>F</i> _{T1,2}		Ν	Tension