
Single Body Analysis #2 Friction

Var	Given value	Units	Description
g	10	$\frac{\mathrm{m}}{\mathrm{s}^2}$	acceleration due to gravity
<i>m</i> ₁	10	kg	mass 1
<i>m</i> ₂	25	kg	mass 2
а		$\frac{m}{s^2}$	acceleration of system
T _{1,2}		Ν	Tension
F _{surface,m 1}		Ν	Friction

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

Single Body Analysis #2 Friction (continued)

N		Ν	Normal Force
a _y	0	$\frac{m}{s^2}$	Acceleration of Mass 1 in the Y direction
μ	0.20		Coeffiecient of Friction

$$m_2 g - T_{1,2} = m_2 a$$

 $T_{1,2} - F_{\text{surface},m1} = m_1 a$

$$N = m_1 g$$

= (10kg) $\left(10 \frac{m}{s^2}\right)$
= 100N

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

Single Body Analysis #2 Friction (continued)

$$F_{surface,m1} = \mu N$$

 $F_{surface,m1} = \mu m_1 g$
 $= (0.20) (10 \text{ kg}) (10 \frac{\text{m}}{\text{s}^2})$
 $= 20. \text{N}$

$$T_{1,2} - \mu m_1 g = m_1 a$$

$$m_2 g - T_{1,2} = m_2 a$$

 $m_2 g - \mu m_1 g = m_1 a + m_2 a$

$$m_2 g - \mu m_1 g = (m_2 + m_1) a$$

$$\frac{m_2 g - \mu m_1 g}{m_2 + m_1} = a$$

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

Single Body Analysis #2 Friction (continued)

$$a = \frac{m_2 g - \mu m_1 g}{m_2 + m_1}$$

= $\frac{(25 \text{ kg}) \left(10 \frac{\text{m}}{\text{s}^2}\right) - (0.20) (10 \text{ kg}) \left(10 \frac{\text{m}}{\text{s}^2}\right)}{(25 \text{ kg}) + (10 \text{ kg})}$
= $6.57 \frac{\text{m}}{\text{s}^2}$

$$T_{1,2} - \mu m_1 g = m_1 a$$

$$T_{1,2} = m_1 a + \mu m_1 g$$

= (10kg) $\left(6.57 \frac{m}{s^2}\right) + (0.20) (10 \text{ kg}) \left(10 \frac{m}{s^2}\right)$
= 86. N