Single Body Analysis #3

$$m_1 g - I_{1,2} = m_1 a$$

Question 3

$$T_{1,2} - T_{2,3} = m_2 a$$

$$T_{2,3} = m_3 a$$

$$m_1 g = m_1 a + m_2 a + m_3 a$$

$$m_1 g = (m_1 + m_2 + m_3) a$$

$$\frac{m_1 g}{m_1 + m_2 + m_3} = a$$

$$a = \frac{m_1 g}{m_1 + m_2 + m_3}$$

$$= \frac{(15 \text{ kg}) \left(10 \frac{\text{m}}{\text{s}^2}\right)}{(15 \text{ kg}) + (20 \text{ kg}) + (30 \text{ kg})}$$

$$= 2.307692308 \frac{m}{s^2}$$

Single Body Analysis #3 (continued)

$$T_{2,3} = m_3 a$$

$$= (30 \text{kg}) \left(2.307692308 \frac{\text{m}}{\text{s}^2}\right)$$

$$= \boxed{69.23076924 \text{N}}$$

$$T_{1,2} - T_{2,3} = m_2 a$$

$$T_{1,2} = m_2 a + T_{2,3}$$

$$= (20 \text{kg}) \left(2.307692308 \frac{\text{m}}{\text{s}^2}\right) + (69.23076924 \text{N})$$

$$= \boxed{115.3846154 \text{N}}$$

Var	Given value	Units	Description
g	10	$\frac{\mathrm{m}}{\mathrm{s}^2}$	Acceleration due to gravity
<i>m</i> ₁	15	kg	Mass 1
m ₂	20	kg	Mass 2
m ₃	30	kg	Masss 3
а		$\frac{\mathrm{m}}{\mathrm{s}^2}$	Acceleration

Single Body Analysis #3 (continued)

T _{1,2}	N	Tension 1
T 2,3	N	Tension 2