Single Body Analysis #6 Friction

$$T_{1,2} - m_1 g = m_1 a$$

$$T_{2,3} - F_{\text{surface},m2} - T_{1,2} = m_2 a$$

$$T_{3,4} - F_{\text{surface,m3}} - T_{2,3} = m_3 a$$

$$m_4 g - T_{3,4} = m_4 a$$

$$N_2 - m_2 g = m_2 a_y$$

$$a_y = 0 \frac{m}{s^2}$$

$$N_2 = m_2 g$$

$$F_{\text{surface,m2}} = \mu N_2$$

$$F_{\text{surface,m2}} = \mu m_2 g$$

$$N_3 - m_3 g = m_3 a_y$$

$$a_y = 0 \frac{m}{s^2}$$

$$N_3 = m_3 g$$

$$F_{\text{surface,m3}} = \mu N_3$$

$$F_{\text{surface,m3}} = \mu m_3 g$$

$$T_{1,2} - m_1 g = m_1 a$$

$$T_{2,3} - \mu m_2 g - T_{1,2} = m_2 a$$

$$T_{3,4} - \mu \, m_3 \, g - T_{2,3} = m_3 \, a$$

$$m_4 g - T_{3,4} = m_4 a$$

$$m_4 g - \mu m_2 g - \mu m_3 g - m_1 g = m_1 a + m_2 a + m_3 a + m_4 a$$

$$m_4 g - \mu m_2 g - \mu m_3 g - m_1 g = (m_1 + m_2 + m_3 + m_4) a$$

$$a = \frac{m_4 g - \mu m_2 g - \mu m_3 g - m_1 g}{m_1 + m_2 + m_3 + m_4}$$

Var	Given value	Units	Description
g	10	$\frac{\mathrm{m}}{\mathrm{s}^2}$	Acceleration due to gravity
<i>m</i> ₁	30	kg	Mass 1
<i>m</i> ₂	20	kg	Mass 2
<i>m</i> ₃	35	kg	Masss 3
m ₄	55	kg	Mass 4
а		$\frac{\mathrm{m}}{\mathrm{s}^2}$	Acceleration
T _{1,2}		N	Tension 1
T 2,3		N	Tension 2
T 3,4		N	Tension 3
F _{surface,m 2}		N	Friction Force for Mass 2
F _{surface,m 3}		N	Friction Force for Mass 3
μ	0.20		Coefficient of Friction
<i>N</i> ₃		N	Normal Force of Mass 3

N_2		N	Normal Force of Mass 2
a _y	0	s	Acceleration in Y direction for boxes on the table top

$$T_{1,2} - m_1 g = m_1 a$$

 $T_{1,2} = m_1 a + m_1 g$

$$T_{2,3} - \mu m_2 g - T_{1,2} = m_2 a$$

$$T_{2,3} = m_2 a + \mu m_2 g + T_{1,2}$$

$$T_{3,4} - \mu \, m_3 \, g - T_{2,3} = m_3 \, a$$

$$T_{3,4} = m_3 \, a + \mu \, m_3 \, g + T_{2,3}$$

$$a = \frac{m_4 g - \mu m_2 g - \mu m_3 g - m_1 g}{m_1 + m_2 + m_3 + m_4}$$

$$=\frac{(55kg)\Big(10^{\frac{m}{s^2}}\Big)-(0.20)(20kg)\Big(10^{\frac{m}{s^2}}\Big)-(0.20)(35kg)\Big(10^{\frac{m}{s^2}}\Big)-(30kg)\Big(10^{\frac{m}{s^2}}\Big)}{(30kg)+(20kg)+(35kg)+(55kg)}$$

$$= 1.00 \frac{m}{s^2}$$

$$T_{1,2} = m_1 a + m_1 g$$

= $(30 \text{kg}) \left(1.00 \frac{\text{m}}{\text{s}^2}\right) + (30 \text{kg}) \left(10 \frac{\text{m}}{\text{s}^2}\right)$
= 330.0N

$$T_{2,3} = m_2 a + \mu m_2 g + T_{1,2}$$

$$= (20 \text{ kg}) \left(1.00 \frac{\text{m}}{\text{s}^2}\right) + (0.20) (20 \text{ kg}) \left(10 \frac{\text{m}}{\text{s}^2}\right) + (330.0 \text{ N})$$

$$= 390. \text{ N}$$

$$T_{3,4} = m_3 a + \mu m_3 g + T_{2,3}$$

= $(35 \text{kg}) \left(1.00 \frac{\text{m}}{\text{s}^2}\right) + (0.20) (35 \text{kg}) \left(10 \frac{\text{m}}{\text{s}^2}\right) + (390. \text{ N})$
= $495. \text{ N}$