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9-1 

Conceptual Questions 

9.1.  The velocities and masses vary from object to object, so there is no choice but to compute  for each 
one and then compare: 

 

So the answer is  

9.2.  Impulse gives a measure of the effect of a force acting over a period of time. During the time a net force acts on 
an object, the object will accelerate and its velocity will change. Impulse gives a measure of the effect of a force without 
specifying the detailed time dependence of the force. 

9.3.  An isolated system is a collection of interacting objects for which all outside forces (i.e., forces from objects 
outside the system) are balanced; that is, in an isolated system, all external forces cancel each other out. 

9.4.  When the question talks about forces, times, and momenta, we immediately think of the impulse-momentum 
theorem, which tells us that, to change the momentum of an object, we must exert a net external force on it over a time 
interval:  Because equal forces are exerted over equal times, the impulses are equal and the changes in 

momentum are equal. Because both carts start from rest, the change in momentum of each is the same as the final 
momentum of each, so their final momenta are equal. Notice that, to answer the question, we do not need to know the 
mass of either cart, or even the specific time interval (as long as it is the same for both carts). 

9.5.  The impulse-momentum theory tells us that the change in momentum of an object is related to the net force on 
the object and the length of time the force was applied. Mathematically,  The same force applied to the 

two carts results in a larger acceleration for the less massive plastic cart (Newton’s second law), enabling it to travel 
the 1-m distance in a shorter time. Therefore, the plastic cart has a smaller change in momentum than the lead cart. 
Because the final momentum of each cart is equal to their change in momentum (zero initial momentum), the final 
momentum of the plastic cart is less than that of the lead cart. 

9.6.  In this story, Carlos is correct. During the short time of the bullet-block collision other forces are negligible 
compared to the force between the bullet and block, so in the impulse approximation momentum is conserved. When 

 
px = mvx

  

p1x = (20 g)(1 m/s) = 20 g m/s

p2x = (20 g)(2 m/s) = 40 g m/s

p3x = (10 g)(2 m/s) = 20 g m/s

p4x = (10 g)(1 m/s) = 10 g m/s

p5x = (200 g)(0.1 m/s) = 20 g m/s

  p2x > p1x = p3x = p5x > p4x .

   
Δ

rp =
r
FavgΔt.

   
Δ

rp =
r
FavgΔt.
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the bullet bounces off of the steel block, the bullet’s final momentum is backward. To balance that, the steel block must 
be moving forward faster than the case in which the bullet embeds itself in the wooden block (in which case the bullet 
has a final momentum in the forward direction). 

9.7.  The impulse-momentum theory states that a change in an object’s momentum results when a net force is applied 
to the object for some time interval;  Stopping a hard ball requires changing its momentum, and this 

change can be accomplished with a small force over a long time interval or a large force over a short time interval. The 
padding in a glove lets the time interval during which the ball is stopped be long, resulting in a smaller force on the 
glove and on your hand. 

9.8.  The impulse-momentum theory states that a change in an object’s momentum results when a net force is applied 
to the object for some time interval;  Stopping an automobile requires changing its momentum from some 

to none. This change can be accomplished with a small force over a long time interval or a large force over a short time 
interval. The crumple zone that collapses during an automobile collision lengthens the time interval during which the 
automobile is stopped, resulting in a smaller force on the passengers as they also come to a stop. 

9.9.  The impulse is equal to the change in momentum, so 
 

The final velocity is thus 

 

Since the velocity is positive, the object is moving to the right. 

9.10.  The impulse is equal to the change in momentum, so 
 

The final velocity is thus 

 

Since the velocity is negative, the object is now moving to the left with a speed of 1 m/s. Note that the impulse was 
negative, which decreases the initially positive velocity. 

9.11.  The club and ball form a system. The interaction force when the club and ball collide is very large compared to 
other forces at the time of collision, such as gravity and the force of the golfer on the club. So, in this impulse 
approximation, momentum is conserved during the collision. After the club hits the ball, it will give the ball some  
of its momentum. The club can continue to move forward as long as the momentum the ball obtains is less than the 
initial momentum of the club. Note that the momentum conservation is only valid if we consider the short time between 
just before and just after the collision. The wider we make the time window, the more time gravity and  
the golfer have to influence the motion of the club and ball, so that momentum conservation would no longer hold for 
the club-ball system. 

9.12.  The impulse one ball receives is equal to the average force on it from the other ball multiplied by the time during 
which the force is applied. But by Newton’s third law the force that the rubber ball exerts on the steel ball is equal to 
the force the steel ball exerts on the rubber ball. So both balls receive the same amount of impulse, although the impulses 
are in opposite directions. 

9.13.  (a) Both particles cannot be at rest immediately after the collision. If they were both at rest, then the sum of the 
momenta after the collision would be zero, and since momentum is conserved in collisions, it would have had to be 
zero before as well (and it wasn’t). 
(b) If the masses are equal and the collision is elastic, the moving particle will stop and give all of its momentum to the 
previously resting particle. A good example of this appears when a billiard ball collides head-on with another billiard 
ball that is at rest. 

   
Δ

rp =
r
FavgΔt.

   
Δ

rp =
r
FavgΔt.

  Δpx = mvfx − mvix = 4 Ns

  
vfx = vix +

4 Ns
m

= 1 m/s + 4 Ns
2 kg

= 3 m/s

  Δpx = mvfx − mvix = −4 Ns

  
vfx = vix −

4 Ns
m

= 1 m/s − 4 Ns
2 kg

= −1 m/s
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We say momentum is conserved in all collisions because we assume that both colliding objects are part of the system 
and we assume the “impulse approximation” prevails, meaning that other forces can be neglected during the short time 
interval of the collision. In part (a), if the system contained a third particle that participated in the collision, then it is 
possible for the first two particles to end up at rest if the momentum were carried off by the third particle. 

9.14.  (a) Let Paula and Ricardo be a system. Initially, their total momentum is zero since they are at rest. After they 
push off each other, the total momentum must still be zero, so Ricardo and Paula must have equal but opposite 
momenta. 
(b) Momentum  Since Paula is less massive than Ricardo, her speed must be higher than Ricardo’s for her to 
have the same momentum as Ricardo. 

Exercises and Problems 

Section 9.1  Momentum and Impulse 

9.1.  Model:  Model the car and the baseball as particles. 
Solve:  (a) The momentum  
(b) The momentum  

9.2.  Model:  Model the bicycle and its rider as a particle. Also model the car as a particle. 
Solve:  From the definition of momentum, 

 

Assess:  This is a very high speed  This problem shows the importance of mass in comparing two 
momenta. 

9.3.  Visualize:  Please refer to Figure EX9.3. 

Solve:  The impulse  is defined in Equation 9.6 as  area under the  curve between  

and  The area under the force-time curve in Figure EX9.3 is 

 

9.4.  Model:  The particle is subjected to an impulsive force. 
Visualize:  Please refer to Figure EX9.4. 
Solve:  Using Equation 9.6, the impulse is the area under the force-time curve. From 0 to 2 ms the impulse is 

 

From 2 to 8 ms the impulse is 
 

From 8 ms to 10 ms the impulse is 
 

Thus, from 0 s to 10 ms the impulse is  

9.5.  Visualize:  Please refer to Figure EX9.5. 

  p = mv.

  p = mv = (3000 kg)(15 m/s) = 4.5× 104  kg m/s.

  p = mv = (0.20 kg)(40 m/s) = 8.0 kg m/s.

  
pcar = pbicycle ⇒ mcarv car = mbicyclevbicycle ⇒ vbicycle =

mcar
mbicycle

"

#
$

%

&
' v car =

1500 kg
100 kg

"

#$
%

&'
(5.0 m/s) = 75 m/s

 (≈ 168 mph).

 
Jx

  
Jx = Fx (t)dt =

ti

tf∫   Fx (t)   ti

  tf .

  
Jx = (2 ms)(1000 N) + 1

2
(6 ms − 2 ms)(1000 N) = 4 Ns.

  
F(t)dt = 1

2
(−500 N)(2 × 10−3  s) = −0.5 Ns∫

  
F(t)dt = 1

2
(+2000 N)(8 ms − 2 ms) = +6.0 Ns∫

  
F(t)dt = 1

2
(−500 N)(10 ms − 8 ms) = −0.5 Ns∫

 (−0.5+ 6.0 − 0.5) Ns = 5 Ns.



9-4	 	 	 Chapter 9 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Solve:  The impulse is defined in Equation 9.6 as area under the  curve between  and  

For the force-time curve shown in Figure EX9.5, the impulse is  
 

9.6.  Model:  Model the object as a particle and the interaction as a collision. 
Visualize:  Please refer to Figure EX9.6. 
Solve:  The momentum bar chart tells us the final momentum  and the impulse  

Using the impulse-momentum theorem  we can find the initial momentum: 

 

Since  we have  The speed is thus 80 m/s and the direction 
is to the left. 

9.7.  Model:  Model the object as a particle and the interaction as a collision. 
Visualize:  Please refer to Figure EX9.7. 
Solve:  The object is initially moving to the right (positive momentum) and ends up moving to the left (negative 
momentum). Using the impulse-momentum theorem  

 

Since  we have 

 

Thus, the force is 800 N to the left. 

Section 9.2  Solving Impulse and Momentum Problems 

9.8.  Model:  Model the object as a particle and the interaction with the force as a collision. 
Visualize:  Please refer to Figure EX9.8. 
Solve:  Using the equations 

 and area under force curve 

(area under the force curve) 

 

Becaue  is positive, the object moves to the right at  
Assess:  For an object with positive velocity, a positive impulse increases the object’s speed. The opposite is true for 
an object with negative velocity. 

9.9.  Model:  Model the object as a particle and the interaction with the force as a collision. 
Visualize:  Please refer to Figure EX9.9. 
Solve:  Using the equations 

 and area under force curve 

(area under the force curve) 

 

Because  is negative, the object is now moving to the left at 1.0 m/s. 

Assess:  The direction of the velocity has reversed. 

  
Jx = Fx (t)dt =

ti

tf∫   Fx (t)   ti   tf .

  
6.0 Ns = 1

2
(Fmax )(8.0 ms) ⇒ Fmax = 1.5× 103  N.

  ( pfx = 2 kg m/s)   (Jx = 6 kg m/s).

  pfx = pix + Jx ,

  pix = pfx − Jx = 2 kg m/s − 6 kg m/s = −4 kg m/s

  pix = mvix   vix = pix /m = (−4 kg m/s)/(0.05 kg) = −80 m/s.

  pfx = pix + Jx ,

  −2 kg m/s = +6 kg m/s + Jx ⇒ Jx = −8 kg m/s = −8 Ns

  
Jx = FavgΔt,

  
FavgΔt = −8 Ns ⇒ Favg =

−8 Ns
10 ms

= −8 × 102  N

  pfx = pix + Jx
  
Jx = Fx (t)dt =

ti

tf∫

  (2.0 kg)vfx = (2.0 kg)(1.0 m/s) +

  
vfx = (1.0 m/s) + 1

2.0 kg
(1.0 s)(2.0 N) = 2.0 m/s

  vfx  2.0 m/s.

  pfx = pix + Jx
  
Jx = Fx (t)dt =

ti

tf∫

  (2.0 kg)vfx = (2.0 kg)(1.0 m/s) +

  
vfx = (1.0 m/s) + 1

2.0 kg
(−8.0 N)(0.50 s) = −1.0 m/s

  vfx
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9.10.  Model:  Use the particle model for the sled, the model of kinetic friction, and the impulse-momentum theorem. 
 

Visualize: 
 

 
 

Note that the force of kinetic friction  imparts a negative impulse to the sled. 

Solve:  Using  we have 

 

We have used the model of kinetic friction  where  is the coefficient of kinetic friction and n is the normal 
(contact) force by the surface. The force of kinetic friction is independent of time and was therefore taken out of the 
impulse integral. Thus, 

 

9.11.  Model:  Model the rocket as a particle, and use the impulse-momentum theorem. The only force acting on the 
rocket is due to its own thrust. 
Visualize:  Please refer to Figure EX9.11. 
Solve:  (a) The impulse is 

area of the graph of  between  and  

(b) From the impulse-momentum theorem,  so the momentum or velocity increases as long as  is 

positive. If  becomes negative, the speed will stop increasing and start decreasing, so this point will be the 
maximum. For the current problem, the impluse is always positive, so the speed increases continuously. The maximum 
is therefore at the end of the impluse  The speed at this point is 

 

9.12.  Model:  Model the ball as a particle, and its interaction with the wall as a collision in the impulse approximation. 
Visualize:  Please refer to Figure EX9.12. 
Solve:  Using the equations 

 and area under force curve 

 

Assess:  The ball’s final velocity is positive, indicating it has turned around. 

9.13.  Model:  Model the glider cart as a particle, and its interaction with the spring as a collision. Assume a 
frictionless track. 
S 

Visualize: 
 

  fk

  Δpx = Jx ,

   
pfx − pix = ti

tfÑFx (t)dt = − fk ti

tfÑdt = − fkΔt ⇒ mvfx − mvix = −µknΔt = −µkmgΔt

  fk = µkn,  µk

  
Δt =

1
µkg

(vix − vfx ) = (8.0 m/s − 5.0 m/s)
(0.25)(9.8 m/s2 )

= 1.2 s

  
Jx = Fx (t)dt =∫   Fx (t)   t = 0 s

  
t = 30 s = 1

2
(1000 N)(30 s) = 1.5× 104  Ns

  pfx = pix + Jx (t),
 
Jx

 
Jx

  (t = 30 s).

  mvfx = mvix + 1.5× 104  Ns ⇒ (425 kg)vfx = (425 kg)(75 m/s) + 1.5× 104  Ns ⇒ vfx = 110 m/s

  pfx = pix + Jx
   
Jx = ti

tfÑFx (t)dt =

  

(0.250 kg)vfx = (0.250 kg)(−10 m/s) + (500 N)(8.0 ms)

vfx = (−10 m/s) + 4.0 N
0.250 kg
"

#$
%

&'
= 6.0 m/s
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Solve:  Using the impulse-momentum theorem  

 

Section 9.3  Conservation of Momentum 

9.14.  Model:  Choose car + gravel to be the system. Ignore friction in the impulse approximation. 
Visualize: 
 

 
 

Solve:  There are no external horizontal forces on the car + gravel system, so the horizontal momentum is conserved. 
This means  Hence, 

 

9.15.  Model:  Choose car + rainwater to be the system. 
Visualize: 
 

 
 

There are no external horizontal forces on the car + water system, so the horizontal momentum is conserved. 
 

Solve:  Conservation of momentum gives  Hence, 

 

  
pfx − pix = F(t)dt,∫

  
(0.60 kg)(3 m/s) − (0.60 kg)(−3 m/s) = area under force curve = 1

2
(36 N)(Δt) ⇒ Δt = 0.2 s

  pfx = pix .

  (10,000 kg + 4000 kg)vfx = (10,000 kg)(2.0 m/s) + (4000 kg)(0.0 m/s) ⇒ vfx = 1.4 m/s

  pfx = pix .

  (mcar + mwater )(20 m/s) = (mcar )(22 m/s) + (mwater )(0 m/s)
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9.16.  Model:  Choose skydiver + glider to be the system in the impulse approximation. Ignore air resistance. 
Visualize: 
 

 
 

Note that there are no external forces in the x-direction (ignoring friction in the impulse approximation), implying 
conservation of momentum along the x-direction. 
Solve:  The momentum conservation equation  gives 

 

Immediately after release, the skydiver’s horizontal velocity is still  because he experiences no net 
horizontal force. Thus 

 

Assess:  The skydiver’s motion in the vertical direction has no influence on the glider’s horizontal motion. Notice that 
we did not need to invoke conservation of momentum to solve this problem. Because there are no external horizontal 
forces acting on either the skydiver or the glider, neither will change their horizontal speed when the skydiver lets go! 

Section 9.4  Inelastic Collisions 

9.17.  Model:  We will define our system to be bird + bug. This is the case of an inelastic collision because the bird 
and bug move together after the collision. Horizontal momentum is conserved because there are no external forces 
acting on the system during the collision in the impulse approximation. 
Visualize: 
 

 
 

Solve:  The conservation of momentum equation  gives 

 

Assess:  We left masses in grams, rather than convert to kilograms, because the mass units cancel out from both sides 
of the equation. Note that  is negative because the bug is flying to the left. 

  (5000 kg + mwater )(20 m/s) = (5000 kg)(22 m/s) ⇒ mwater = 5.0 × 102  kg

  pfx = pix

  (680 kg − 60 kg)(vG )x + (60 kg)(vD )x = (680 kg)(30 m/s)

  (vD )x = 30 m/s

  (620 kg)(vG )x + (60 kg)(30 m/s) = (680 kg)(30 m/s) ⇒ (vG )x = 30 m/s

  pfx = pix

  (m1 + m2 )vfx = m1(vix )1 + m2 (vix )2 ⇒ (300 g + 10 g)vfx = (300 g)(6.0 m/s) + (10 g)(−30 m/s) ⇒ vfx = 4.8 m/s

  (vix )2
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9.18.  Model:  The two cars are not an isolated system because of external frictional forces. But during the collision 
friction is not going to be significant. Within the impulse approximation, the momentum of the Cadillac  Volkswagen 
system will be conserved in the collision. 
Visualize: 
 

 
 

Solve:  The momentum conservation equation  gives 

 

 

so you need a speed of 2.0 mph. 

9.19.  Model:  Because of external friction and drag forces, the car and the blob of sticky clay are not exactly an 
isolated system. But during the collision, friction and drag are not going to be significant. The momentum of the system 
will be conserved in the collision, within the impulse approximation. 
Visualize: 
 

 
 

Solve:  The conservation of momentum equation  gives 

 

 

Assess:  This speed of the blob is around 600 mph, which is very large. However, a very large speed is expected in 
order to stop a car with only 10 kg of clay. 

Section 9.5  Explosions 

9.20.  Model:  We will define our system to be archer + arrow. The force of the archer (A) on the arrow (a) is equal 
to the force of the arrow on the archer. These are internal forces within the system. The archer is standing on frictionless 
ice, and the normal force by ice on the system balances the weight force. Thus  on the system, and momentum 
is conserved. 
 

Visualize: 
 

+

  pfx = pix

  (mC + mVW )vfx = mC (vix )C + mVW (vix )VW

  0 kg mph = (2000 kg)(1.0 mph) + (1000 kg)(vix )VW ⇒ (vix )VW = −2.0 mph

  pfx = pix

  (mC + mB )(vf )x = mB(vix )B + mC (vix )C

  0 kg m/s = (10 kg)(vix )B + (1500 kg)(−2.0 m/s) ⇒ (vix )B = 3.0 × 102  m/s

   
r
Fext =

r
0
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The initial momentum  of the system is zero, because the archer and the arrow are at rest. The final moment  
must also be zero. 
Solve:  We have  Therefore, 

 

The archer’s recoil speed is 0.20 m/s. 
Assess:  It is the total final momentum that is zero, although the individual momenta are nonzero. Since the arrow has 
forward momentum, the archer will have backward momentum. 

9.21.  Model:  We will define our system to be  and their interaction as an explosion. While friction 
is present between the skateboard and the ground, it is negligible in the impulse approximation. 
Visualize: 
 

 
 

The system has nonzero initial momentum  As Dan (D) jumps backward off the gliding skateboard (S), the 

skateboard will move forward so that the final total momentum of the system  is equal to  

Solve:  We have  Thus, 

 
Assess:  Although Dan jumps backward from the skateboard, he still winds up going forward relative to the 
ground. 

9.22.  Model:  We will define our system to be the football player (P) and the football (B). Their interaction is an 
explosion because the force involved is internal to the P + B system. There are no external horizontal forces present on 
either of the two, so horizontal momentum is conserved. 
 

Visualize: 

  pix   pfx

  MAvA + mava = 0 kg m/s.

  
vA =

−mava
mA

=
−(0.100 kg)(100 m/s)

50 kg
= −0.20 m/s

 Dan + skateboard,

  pix .

  pfx   pix .

  mS(vfx )S + mD (vfx )D = (mS + mD )vix .

  (5.0 kg)(8.0 m/s) + (50 kg)(vfx )D = (5.0 kg + 50 kg)(4.0 m/s) ⇒ (vfx )D = 3.6 m/s
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The system has nonzero initial momentum  which must be conserved. 

Solve:  (a) The final velocity of the ball is 15.0 m/s. Equating the initial and final momentum gives 

 Solving for  gives 

 

(b) The final velocity of the ball is  Inserting this into the equation for conservation of 

momentum and solving for  gives 

 

Assess:  In part (b), the final velocity of the ball is greater than in part (a), so the player’s final velocity is slightly less 
so that momentum is conserved. 

Section 9.6  Momentum in Two Dimensions 

9.23.  Model:  Assume that the momentum is conserved in the collision. 
Visualize:  Please refer to Figure EX9.23. 
Solve:  Applying conservation of momentum in the x- and y-directions yields 

 

Thus, the final momentum of particle 1 is  

Assess:  As a check, the vector sum of the initial momenta should equal the vector sum of the final momenta. 

9.24.  Model:  Assume that the momentum is conserved in the explosion. Since the object is initially at rest, its total 
initial momentum is zero. After it explodes the total momentum of the fragments must also be zero. 
Solve:  With  and  the requirement that  means that 

 

Assess:  Do a vector sum of the momenta to see if they add to zero. 

9.25.  Model:  This problem deals with the conservation of momentum in two dimensions in an inelastic collision. 
 

Visualize: 

  pix ,

  (vfx )B =

  mP (vfx )P + mB(vfx )B = (mB + mP )vix .   (vfx )P

  
(vfx )P =

(mB + mP )vix − mB(vfx )B
mP

=
(0.450 kg + 70.0 kg)(2.00 m/s) − (0.450 kg)(15.0 m/s)

70.0 kg
= 1.92 m/s

  (vfx )B = (vfx )P + 15.0 m / s.

  (vfx )B

  

mP (vfx )P + mB (vfx )P + 15.0 m/s!" #$ = (mB + mP )vix .

(vfx )P =
(mB + mP )vix − mB(15.0 m/s)

mP + mB
=

(0.450 kg + 70.0 kg)(2.00 m/s) − (0.450 kg)(15.0 m/s)
70.0 kg + 0.450 kg

= 1.90 m/s

  

( pfx )1 + ( pfx )2 = ( pix )1 + ( pix )2 ⇒ ( pfx )1 + 0 kg m/s = −2 kg m/s + 4 kg m/s ⇒ ( pfx )1 = 2 kg m/s

( pfy )1 + ( pfy )2 = ( piy )1 + ( piy )2 ⇒ ( pfy )1 − 1 kg m/s = 2 kg m/s + 1 kg m/s ⇒ ( pfy )1 = 4 kg m/s

   (
rpf )1 = (2î + 4 ĵ) kg m/s.

   
rp1 = (−2, 2) kg m/s    

rp2 = (3,  0) kg m/s,    
rp1 +

rp2 +
rp3 = 0

   
rp3 = (−1,  − 2) kg m/s.
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Solve:  The conservation of momentum equation  gives 

 

Substituting in the given values, we find 

 

The ball of clay moves 45° north of east at 1.7 m/s. 

9.26.  Model:  Model the tennis ball as a particle, and its interaction with the wall as a collision. 
Visualize: 
 

 
 

The force increases to  during the first two ms, stays at  for two ms, and then decreases to zero during the 

last two ms. The graph shows that  is positive, so the force acts to the right. 

Solve:  Using the impulse-momentum theorem  we find 

 

The impulse is 

   
rpbefore =

rpafter

  
m1(vix )1 + m2 (vix )2 = (m1 + m2 )vfx ,  m1(viy )1 + m2 (viy )2 = (m1 + m2 )vfy

  

(0.020 kg)(3.0 m/s) + 0.0 kg m/s = (0.020 kg + 0.030 kg)vf cosθ

0.0 kg m/s + (0.030 kg)(2.0 m/s) = (0.020 kg + 0.030 kg)vf sinθ

vf cosθ = 1.2 m/s,  vf sinθ = 1.2 m/s

vf = (1.2 m/s)2 + (1.2 m/s)2 = 1.7 m/s, θ = tan−1 vy

vx
= tan−1(1) = 45°

  Fmax   Fmax

 
Fx

  pfx = pix + Jx ,

   (0.06 kg)(32 m/s) = (0.06 kg)(−32 m/s) +
0

6 msÑ Fx (t)dt
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9.27.  Model:  Let the system be ball racket. During the collision of the ball and racket, momentum is conserved 
because all external interactions are insignificantly small. 
Visualize: 
 

 
 

Solve:  (a) The conservation of momentum equation  gives 

 

 

(b) The impulse on the ball is calculated from  as follows: 

 

 

Let us now compare this force with the gravitational force on the ball  

We find  

Assess:  This is a significant force and is reasonable because the impulse due to this force not only changes the direction 
of the ball also but changes the speed of the ball from approximately 45 mph to 90 mph. 

9.28.  Model:  Model the ball as a particle that is subjected to an impulse when it is in contact with the floor. We shall 
also use constant-acceleration kinematic equations. During the collision, ignore any forces other than the interaction 
between the floor and the ball in the impulse approximation. 
Visualize: 
 

 

   

Jx = 0
6 msÑ Fx (t)dx = area under force curve =

1
2

Fmax (0.0020 s) + Fmax (0.0020 s) +
1
2

Fmax (0.0020 s) = (0.0040 s)Fmax

Fmax =
(0.060 kg)(32 m/s) + (0.060 kg)(32 m/s)

0.0040 s
= 9.6 × 102  N

+

  pfx = pix

  mR (vfx )R + mB(vfx )B = mR (vix )R + mB(vix )B

  (1.000 kg)(vfx )R + (0.060 kg)(40 m/s) = (1.000 kg)(10 m/s) + (0.060 kg)(−20 m/s) ⇒ (vfx )R = 6.4 m/s

  ( pfx )B = ( pix )B + Jx

  
(0.060 kg)(40 m/s) = (0.060 kg)(−20 m/s) + Jx ⇒ Jx = 3.6 N s = F dt = FavgΔt∫

  
Favg =

3.6 Ns
10 ms

= 3.6 × 102  N

  (FG )B = mBg = (0.060 kg)(9.8 m/s2 ) = 0.588 N.

  
Favg = 612(FG )B.
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Solve:  To find the ball’s velocity just before and after it hits the floor: 

 

The force exerted by the floor on the ball can be found from the impulse-momentum theorem: 

 

 

Assess:  A maximum force of  exerted by the floor is reasonable. This force is the same order of magnitude 
as the force of the racket on the tennis ball in the previous problem. 

9.29.  Model:  Model the cart as a particle sliding down a frictionless ramp. The cart is subjected to an impulsive force 
when it comes in contact with a rubber block at the bottom of the ramp. We shall use the impulse-momentum theorem 
and the constant-acceleration kinematic equations. 
Visualize: 
 

 
 

Solve:  From the free-body diagram on the cart, Newton’s second law applied to the system before the collision gives 

 

Using this acceleration, we can find the cart’s speed just before its contact with the rubber block: 

 

Now we can use the impulse-momentum theorem to obtain the velocity just after the collision: 

 

 

Note that the given force graph is positive, but in this coordinate system the impulse of the force is to the left (i.e., up 
the slope). That is the reason to put a minus sign while evaluating the  integral. 

We can once again use a kinematic equation to find how far the cart will roll back up the ramp: 

  

v1y
2 = v0 y

2 + 2ay ( y1 − y0 ) = 0 m2 /s2 + 2(−9.8 m/s2 )(0 − 2.0 m) ⇒ v1y = −6.261 m/s

v3y
2 = v2 y

2 + 2ay ( y3 − y2 ) ⇒ 0 m2 /s2 = v2 y
2 + 2(−9.8 m/s2 )(1.5 m − 0 m) ⇒ v2 y = 5.422 m/s

  
mv2 y = mv1y + F dt = mv1y + area under the force curve∫

  

(0.200 kg)(5.422 m/s) = −(0.200 kg)(6.261 m/s) + 1
2

Fmax (5.0 × 10−3  s)

Fmax = 9.3× 102  N

 9.3× 102  N

  
∑(F )x = FG sinθ = max ⇒ ax =

mg sinθ
m

= g sin30.0° = 9.81 m/s2

2
= 4.905 m/s2

  v1x
2 = v0x

2 + 2ax (x1 − x0 ) = 0 m2 /s2 + 2(4.905 m / s2 )(1.00 m − 0 m) ⇒ v1x = 3.132 m/s

  
mv2x = mv1x + Fx dt = mv1x + area under the force graph∫

   
(0.500 kg)v2x = (0.500 kg)(3.13 m/s) − 1

2
(200 N)(26.7 × 102 3  s) ⇒ v2x = −2.208 m/s

 
Fx dt∫
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9.30.  Model:  Model the balls as particles and ignore air resistance and friction on the table. Apply the impulse-
momentum theorem and the constant-acceleration kinematic Equations 4.12. 
Visualize: 
 

 
 

Solve:  (a) Once the ball leaves the table, the time it takes for it to hit the ground is 

 

The spring imparts an impulse J to a stationary ball, so the final momentum the ball is equal to the impulse J. The 
horizontal velocity of the ball as it leaves the table is then 

 
This velocity remains constant during the free fall, so the range is given by 

 

(b) To obtain a linear slope, you should graph the range R as a function of 1/m. The slope of the line will be . 

(c) The data are plotted in the figure below. From the best-fit line, we find a slope of s = 0.245 kg m. This gives an 
impluse of  

 
Assess:  Experimentally it would be important to keep h large enough so the values of R are great enough to be 
measured accurately. 
9.31.  Model:  Apply Equation 9.7 and Newton’s second law. Assume that the force from the flower, while it acts, is 
much greater than all the other forces acting, so they can be neglected. 
Solve:  Newton’s second law tells us that the average force used to expel the grains is 

 

Inserting this into Equation 9.7 gives 
 

Assess:  The impulse seems very small, but remember that the pollen grains have very little mass. 
9.32.  Solve:  Using Newton’s second law for the x-direction,  Therefore, 

  v3x
2 = v2x

2 + 2ax (x3 − x2 ) ⇒ (0 m/s)2 = (−2.208 m/s)2 + 2(−4.905 m / s2 )(x3 − x2 ) ⇒ (x3 − x2 ) = 0.497 m

  
h = yf − yi = −

1
2

gΔt2 ⇒ Δt = 2h
g

  mvix = J ⇒ vix = J /m

  
R = vixΔt = J

m( ) 2h
g

  
J 2h

g

  
J = s g

2h
= 0.44 Ns.

  
Favg = ma = (1.0 × 10−10 kg)(2.5× 104 m/s2 ) = 2.5× 10−6 N

  
J = FavgΔt = (2.5× 10−6 N)(3.0 × 104 s) = 7.5× 10−10 kg m/s

  Fx = dpx /dt.
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Assess:  The x-component of the net force on an object is equal to the time rate of change of the x-component of the 
object’s momentum. 
 

9.33.  Visualize: 
 

 
 

Solve:  Using Newton’s second law for the y-direction and the chain rule, 

 

Assess:  Since the rocket is losing mass,  The time derivative of the velocity is the acceleration. 

9.34.  Model:  Model the train cars as particles. Since the train cars stick together, we are dealing with perfectly 
inelastic collisions. Momentum is conserved in the collisions of this problem in the impulse approximation, in which 
we ignore external forces during the time of the collision. 
Visualize: 
 

 
 

Solve:  The initial momentum is  before any collisions occur. Since momentum is conserved, the final 
momentum must be the same, so 

 

Assess:  Think of the fourth car colliding with the stationary fifth car. The final speed would be v0, which is the 
same as that of the three-car train, so our result is reasonable. 

9.35.  Model:  The two blobs of clay will be modeled as particles. Their collision is completely inelastic and conserves 
momentum. Newton’s second law and the equations for constant-acceleration kinematics will apply. 
Visualize: 
 

  
Fx =

d
dt

(6t2  kg m/s) = 12t  N

  

(Fnet )y =
dpy

dt
=

d
dt

(mvy ) = dm
dt

(vy ) + m
dvy

dt

!

"
#

$

%
&

= (−0.50 kg/s)(120 m/s) + (48 kg)(18 m/s2 )

= 8.0 × 102  N

  dm/dt < 0.

  5mv0

  5mv0 = 5mv5x ⇒ v5x = v0
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Solve:  Newton’s second law tells us that the accelearation of the first blob is  Therefore, after covering a 
distance d, the speed of blob 1 is 

 

Momentum is conserved in the collision with blob 2, so 

 

Assess:  We find that vf increases as F and d increase, but decreases as m2 increases, which is physically 
reasonable. 

9.36.  Model:  Model the gliders as particles and apply conservation of momentum. The 200 g glider will be labeled 
1, the 300 g glider will be labeled 2, and the 400 g glider will be labeled 3. 
Visualize:  See Figure P9.36. 
Solve:  To apply conservation of momentum, we need to calculate the speed of two gliders from the figure. 
Differentiating the position-versus-time curves gives: 

 

The intial momentum is zero because the three gliders are stationary. Therefore, conservation of momentum gives 

 

Thus, the 400 g glider flies of the right (because  at a speed of 0.043 m/s. 

9.37.  Model:  Model the earth (E) and the asteroid (A) as particles. Earth + asteroid is our system. Since the two stick 
together during the collision, this is a case of a perfectly inelastic collision. Momentum is conserved in the collision 
since no significant external force acts on the system. 
Visualize: 
 

 
 

Solve:  (a) The conservation of momentum equation  gives 

  a = F /m1.

  
v1x

2 = 2ad ⇒ v1x = 2ad = 2Fd /m1

  
m1v1x = vf (m1 + m2 ) ⇒ vf =

m1v1x
(m1 + m2 )

=
m1

(m1 + m2 )
2Fd
m1

  
v1x =

dy
dt

= 0.53 m/s,  v2x =
dy
dt

= −0.41 m/s

  

m1v1x + m2v2x + m3v3x = 0

v3x =
−1
m3

(m1v1x + m2v2x ) = −1
0.40 kg

[(0.20 kg)(0.53 m/s) + (0.30 kg)( − 0.41 m/s)] = 0.043 m/s

  v3x > 0)

  pfx = pix
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(b) The speed of the earth going around the sun is 

 
 

Thus,  

Assess:  The earth’s recoil speed is insignificant compared to its orbital speed because of its large mass. 

9.38.  Model:  Model the skaters as particles. The two skaters, one traveling north (N) and the other traveling west 
(W), are the system. Since the two skaters hold together after the “collision,” this is a case of a perfectly inelastic 
collision in two dimensions. Momentum is conserved since no significant external force in the x-y plane acts on the 
system during the “collision.” 
Visualize: 
 

 
 

Solve:  (a) Applying conservation of momentum in the x-direction gives 

 

Applying conservation of momentum in the y-direction gives 

 

The final speed is therefore 

 

The time to glide to the edge of the rink is 

 

(b) The location is  north of west. 

Assess:  A time of 12 s in covering a distance of 25 m at a speed of  is reasonable. 

  

mA (vix )A + mE (vix )E = (mA + mE )vfx

(1.0 × 1013  kg)(4.0 × 104 m/s) + 0 kg m/s = (1.0 × 1013  kg + 5.98 × 1024  kg)vfx ⇒ vfx = 6.7 × 10−8  m/s

  
vE =

2πr
T

=
2π (1.50 × 1011 m)

3.15× 107  s
= 3.0 × 104  m/s

   vfx /vE = 2.2 × 10−12 = 2.2 × 10−10, .

  

(mN + mW )vfx = mN (vix )N + mW (vix )W ⇒ (75 kg + 60 kg)vfx = 0 kg m/s + (60 kg)(−3.5 m/s)

vfx = −1.556 m/s

  

(mN + mW )vfy = mN (viy )N + mW (viy )W ⇒ (75 kg + 60 kg)vfy = (75 kg)(2.5 m/s) + 0 kg m/s

vfy = 1.389 m/s

  
vf = (vfx )2 + (vfy )2 = 2.085 m/s

  

radius of the rink
vf

=
25 m

2.085 m/s
= 12 s

  
θ = tan−1(vfy /vfx ) = 42°

 ≈ 2 m/s
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9.39.  Model:  Model the squid and the water ejected as particles and ignore drag forces during the short time interval 
over which the water is expelled (the impulse approximation). Because the external forces are negligible, momentum 
will be conserved. 
Visualize: 
 

 
Solve:  Applying conservation of momentum gives 

 

This water is ejected in the direction opposite the squid’s initial velocity, so the speed with which the water is ejected 
relative to the squid is 

 

or 32 m/s to two significant figures. 
Assess:  The ejected water must move much faster than the squid because its mass is much less than that of the 
squid, so our result is reasonable. 

9.40.  Model:  This problem deals with a case that is the opposite of a collision. The two ice skaters, heavier and 
lighter, will be modeled as particles. The skaters (or particles) move apart after pushing off against each other. During 
the “explosion,” the total momentum of the system is conserved. 
Visualize: 
 

 
 

Solve:  The initial momentum is zero. Thus the conservation of momentum equation  gives 

 

Using the observation that the heavier skater takes 20 s to cover a distance of 30 m, we find  
 Thus, 

 

Thus, the time for the lighter skater to reach the edge is 

  

mTv1x = mW (vfx )W + mS(vfx )S

(vfx )W = 1
mW

[mTv1x − mS(vfx )S] = 1
0.10 kg

[(1.6 kg)(0.4 m/s) − (1.5 kg)(2.5 m/s)] = −31.1 m/s

  vrel = (vfx )W − (vfx )S = −31.1 m / s − 0.4 m / s = −31.5 m / s

  pfx = pix

  mH (vfx )H + mL (vfx )L = 0 kg m/s ⇒ (75 kg)(vfx )H + (50 kg)(vfx )L = 0 kg m/s

  (vfx )H = (30 m)/(20 s) =

 1.5 m/s.

  (75 kg)(1.5 m/s) + (50 kg)(vfx )L = 0 kg m/s ⇒ (vfx )L = −2.25 m/s
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Assess:  Conservation of momentum leads to a higher speed for the lighter skater, and hence a shorter time to reach 
the edge of the ice rink. 

9.41.  Model:  This problem deals with a case that is the opposite of a collision. Our system is comprised of three 
coconut pieces that are modeled as particles. During the explosion, the total momentum of the system is conserved in 
the x- and y-directions. 
 

Visualize: 
 

 
 

Solve:  The initial momentum is zero. From  we get 

 

From  we get 

 

 

The speed to the third piece is  at 45° east of north. 

9.42.  Model:  The billiard balls will be modeled as particles. The two balls,  (moving east) and  (moving west), 
together are our system. This is an isolated system because any frictional force during the brief collision period is going 
to be insignificant. Within the impulse approximation, the momentum of our system will be conserved in the collision. 
 

  

30 m
(vfx )L

=
30 m

2.25 m/s
= 13 s

  pfx = pix ,

  
+m1(vf )1 + m3(vf )3 cosθ = 0 kg m/s ⇒ (vf )3 cosθ =

−m1(vf )1
m3

=
−m(−v0 )

2m
=

v0
2
= (vfx )3

  
pfy = piy ,

  
+m2 (vf )2 + m3(vf )3 sinθ = 0 kg m/s ⇒ (vf )3 sinθ =

−m2 (vf )2
m3

=
−m(−v0 )

2m
=

v0
2
= (vfy )3

  
(vf )3 =

v0
2

!

"
#

$

%
&

2

+
v0
2

!

"
#

$

%
&

2

=
v0

2
, θ = tan−1(1) = 45°

  

v0

2

  m1   m2
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Visualize: 
 

 
 

Note that  

Solve:  The equation  yields: 

 

The equation  yields: 

 

The angle is below +x axis, or south of east. 

9.43.  Model:  Model the bullet and block as particles. This is an isolated system because any frictional force during 
the brief collision period is going to be insignificant. Within the impulse approximation, the momentum of our system 
will be conserved in the collision. After the collision, we will consider the frictional force and apply Newton’s second 
law and kinematic equations to find the distance traveled by the block + bullet. 
Visualize: 
 

  m1 = m2 = m.

  pfx = pix

  

m1(vfx )1 + m2 (vfx )2 = m1(vix )1 + m2 (vix )2 ⇒ m1(vf )1 cosθ + 0 kg m/s = m1(vix )1 + m2 (vix )2

(vf )1 cosθ = (vix )1 + (vix )2 = 2.0 m/s − 1.0 m/s = 1.0 m/s

  
pfy = piy

  

+m1(vfy )1 sinθ + m2 (vfy )2 = 0 kg m/s ⇒ (vf )1 sinθ = −(vfy )2 = −1.41 m/s

(vf )1 = (1.0 m/s)2 + (−1.41 m/s)2 = 1.7 m/s, θ = tan−1 1.41 m/s
1.0 m/s

$

%&
'

()
= 55°
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Solve:  (a) Applying conservation of momentum to the collision gives 

 

The speed  can be found from the kinematics equation 

 

The acceleration in the x-direction may be found using Newton’s second law and the friction model. Because the block 
does not accelerate in the y-direction, the normal force must be the same magnitude as the force due to gravity 
(Newton’s second law). Thus, the frictional force is  where the negative sign indicates 
that the force acts in the negative x-direction. Newton’s second law then gives the acceleration of the block as 

 

Inserting this into the expression for  gives 

 

Finally, we insert this expression for  into the expression for the bullet’s velocity to find 

 

(b) Inserting the given quantities and using  for wood on wood from Table 6.1 gives 

 

Assess:  If we let the bullet’s mass go to zero, we see that the bullet’s speed goes to infinity, which is reasonable 
because a zero-mass bullet would need an infinite speed to make the block move. If the bullet’s mass goes to infinity, 
the bullet’s speed would go to  which is just the result for the initial speed of an object that decelerates to a 

stop at a constant rate  over a distance d. In other words, the block becomes insignificant compared to the 
infinite-mass bullet. 

9.44.  Model:  This is a two-part problem. First, we have an inelastic collision between Fred (F) and Brutus (B). Fred 
and Brutus are an isolated system. The momentum of the system during collision is conserved since no significant 
external force acts on the system. The second part involves the dynamics of the Fred + Brutus system sliding on the 
ground. 
Visualize: 
 

  
mvbullet + MvW = (m + M )vfx ⇒ vbullet =

m + M
m

vfx

  vfx

  v1x
2 = v0x

2 + 2ad = vfx
2 + 2ad ⇒ vfx = −2ad

  fk = −µkn = −µk (m + M )g,

  a = Fnet /(m + M ) = −µk (m + M )g /(m + M ) = −µkg

  vfx

  
vfx = −2ad = 2µkgd

  vfx

  
vbullet =

m + M
m

2µkgd

 µk = 0.20

  
vbullet =

0.010 kg+ 10 kg
0.010 kg

2(0.20)(9.8 m/s2 )(0.050 m) = 4.4 × 102 m/s

  
2µkgd ,

  (µkg)
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Note that the collision is head-on and therefore one-dimensional. 
Solve:  The equation  gives 

 

The positive value indicates that the motion is in the direction of Brutus. 
The model of kinetic friction yields: 

 

Using the kinematic equation  we get 

 

They slide 7.6 cm in the direction Brutus was running. 
Assess:  After the collision, Fred and Brutus slide with a small speed but with a good amount of kinetic friction. A 
stopping distance of 7.6 cm is reasonable. 

9.45.  Model:  Model the package and the rocket as particles. This is a two-part problem. First we have an inelastic 
collision between the rocket (R) and the package (P). During the collision, momentum is conserved since no significant 
external force acts on the rocket and the package. However, as soon as the package + rocket system leaves the cliff 
they become a projectile motion problem. 
Visualize: 
 

 
 

Solve:  The minimum velocity after collision that the package + rocket must have to reach the explorer is  which 
can be found as follows: 

  pfx = pix

  

(mF + mB )vfx = mF (vix )F + mB(vix )B ⇒ (60 kg + 120 kg)vfx = (60 kg)(−6.0 m/s) + (120 kg)(4.0 m/s)

vfx = 0.667 m/s

  fk = −µkn = −µk (mF + mB )g = (mF + mB )ax ⇒ ax = −µkg

  v1x
2 = v0x

2 + 2ax (x1 − x0 ),

  

v1x
2 = v0x

2 − 2µkg x1 ⇒ 0 m2 /s2 = vfx
2 − 2(0.30)(9.8 m/s2 )x1

0 m2 /s2 = (0.667 m/s)2 − (5.9 m/s2 )x1 ⇒ x1 = 7.6 cm

  v0x ,
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With this time, we can now find  using  We obtain 

 

We now use the momentum conservation equation  which can be written 

 

9.46.  Model:  This is a two-part problem. First, we have an explosion that creates two particles. The momentum of 
the system, comprised of two fragments, is conserved in the explosion. Second, we will use kinematic equations and 
the model of kinetic friction to find the displacement of the lighter fragment. 
Visualize: 
 

 
 

Solve:  The initial momentum is zero. Using momentum conservation  during the explosion, 

 

Because  slides to  before stopping, we have 

 

Using kinematics, 

 

How far does  slide? Using the information obtained above in the following kinematic equation, 

 

  
y1 = y0 + v0 y (t1 − t0 ) + 1

2
ay (t1 − t0 )2 ⇒ − 200 m = 0 m + 0 m + 1

2
(−9.8 m/s2 )t1

2 ⇒ t1 = 6.389 s

  v0x   
x1 = x0 + v0x (t1 − t0 ) + 1

2
ax (t1 − t0 )2.

  30 m = 0 m + v0x (6.389 s) + 0 m ⇒ v0x = 4.696 m/s = vfx

  pfx = pix

  

(mR + mP )vfx = mR (vix )R + mP (vix )P

(1.0 kg + 5.0 kg)(4.696 m/s) = (1.0 kg)(vix )R + (5.0 kg)(0 m/s) ⇒ (vix )R = 28 m/s

  pfx = pix

  
mH (v1x )H + mL (v1x )L = mH (v0x )H + mL (v0x )L ⇒ 7m(v1x )H + m(v1x )L = 0 kg m/s ⇒ (v1x )H = − 1

7( )(v1x )L

  mH   x2H = −8.2 m

  fk = µknH = µkwH = µkmH g = mH aH ⇒ aH = µkg

  

(v2x )H
2 = (v1x )H

2 + 2aH (x2H − x1H ) ⇒ 0 m2 /s2 = 1
7( )2

(v1x )L
2 + 2µkg(−8.2 m − 0 m)

(v1x )L = −88.74 µk  m/s

  mL

  (v2x )L
2 = (v1x )L

2 + 2aL (x2L − x1L ) ⇒ 0 m2 /s2 = µk (88.74)2 − 2µkgx2L ⇒ x2L = 4.0 × 102  m
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Assess:  Note that  is positive, but  is negative, and both are equal in magnitude to  Also,  is negative 

but  is positive. 

9.47.  Model:  We will model the two fragments of the rocket after the explosion as particles. We assume the explosion 
separates the two parts in a vertical manner. This is a three-part problem. In the first part, we will use kinematic 
equations to find the vertical position where the rocket breaks into two pieces. In the second part, we will apply 
conservation of momentum to the system (that is, the two fragments) in the explosion. In the third part, we  
will again use kinematic equations to find the velocity of the heavier fragment just after the explosion. 
 

Visualize: 
 

 
 

Solve:  The rocket accelerates for 2.0 s from rest, so 

 

At the explosion the equation  is 

 

To find  we must first find  the velocity after the explosion of the upper section. Using kinematics, 

 

Now, going back to the momentum conservation equation we get 

 

The negative sign indicates downward motion. 

9.48.  Model:  Let the system be bullet + target. No external horizontal forces act on this system, so the horizontal 
momentum is conserved. Model the bullet and the target as particles. Since the target is much more massive than the 
bullet, it is reasonable to assume that the target undergoes no significant motion during the brief interval in which the 
bullet passes through it. 
Visualize: 
 

  aH   aL   µkg.   x2H

  x2L

  

v1y = v0 y + ay (t1 − t0 ) = 0 m/s + (10 m/s2 )(2.0 s − 0 s) = 20 m/s

y1 = y0 + v0 y (t1 − t0 ) + 1
2

ay (t1 − t0 )2 = 0 m + 0 m + 1
2

(10 m/s2 )(2.0 s)2 = 20 m

  
pfy = piy

  
mL (v2 y )L + mH (v2 y )H = (mL + mH )v1y ⇒ (500 kg)(v2 y )L + (1000 kg)(v2 y )H = (1500 kg)(20 m/s)

  
(v2 y )H   

(v2 y )L ,

  
(v3y )L

2 = (v2 y )L
2 + 2(−9.8 m/s2 )( y3L − y2L ) ⇒ (v2 y )L = 2(9.8 m/s2 )(530 m − 20 m) = 99.98 m/s

  
(500 kg)(99.98 m/s) + (1000 kg)(v2 y )H = (1500 kg)(20 m/s) ⇒ (v2 y )H = −20 m/s
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Solve:  Use the conservation of momentum equation  to find 

 

9.49.  Model:  Model the two blocks (A and B) and the bullet (L) as particles. This is a two-part problem. First, we 
have a collision between the bullet and the first block (A). Momentum is conserved since no external force acts on the 
system (bullet + block A). The second part of the problem involves a perfectly inelastic collision between the bullet 
and block B. Momentum is again conserved for this system (bullet + block B). 
Visualize: 
 

 
 

Solve:  For the first collision the equation  is 

 

 

The bullet emerges from the first block at 100 m/s. For the second collision the equation  is 

 

9.50.  Model:  Model Brian (B) along with his wooden skis as a particle. The “collision” between Brian and Ashley 
lasts for a short time, and during this time no significant external forces act on the Brian  + Ashley system. Within the 
impulse approximation, we can then assume momentum conservation for our system. After finding the velocity of the 
system immediately after the collision, we will apply constant-acceleration kinematic equations and the model of 
kinetic friction to find the final speed at the bottom of the slope. 

  p1x = p0x

  

mT (v1x )T + mB(v1x )B = mT (v0x )T + mB(v0x )B = 0 + mB(v0x )B

(v1x )T =
mB(v0x )B − mB(v1x )B

mT
=

0.025 kg
350 kg

[(1200 m/s) − (900 m/s)] = 0.021 m/s

  pfx = pix

  mL (v1x )L + mA (v1x )A = mL (v0x )L + mA (v0x )A

  (0.010 kg)(v1x )L + (0.500 kg)(6.0 m/s) = (0.010 kg)(400 m/s) + 0 kg m/s ⇒ (v1x )L = 100 m/s

  pfx = pix

  (mL + mB )v2x = mL (v1x )L ⇒ (0.010 kg + 0.500 kg)v2x = (0.010 kg)(100 m/s) ⇒ v2x = 2.0 m/s
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Visualize: 
 

 
 

Solve:  Brian skiing down for 100 m: 
 

To obtain  we apply Newton’s second law to Brian in the x and y directions as follows: 

 

From the model of kinetic friction,  The x-equation thus becomes 

 

 

Using this value of  In the collision with Ashley the conservation of 

momentum equation  is 

 

Brian + Ashley skiing down the slope: 
 

That is, Brian + Ashley arrive at the bottom of the slope with a speed of 28 m/s. Note that we have used the same value 
of  in the first and the last parts of this problem. This is because  is independent of mass. 

Assess:  A speed of approximately 60 mph on a ski slope of 200 m length and 20° slope is reasonable. 

9.51.  Model:  This is an inelastic collision. The total momentum of the Volkswagen + Cadillac system is conserved. 
Visualize: 
 

  
(v1x )B

2 = (v0x )B
2 + 2ax (x1B − x0B ) = 0 m2 /s2 + 2ax (100 m − 0 m) ⇒ (v1x )B = (200 m)ax

  ax ,

  
∑(Fon B )x = wB sinθ − fk = mBax ∑(Fon B )y = n − wB cosθ = 0 N ⇒ n = wcosθ

  fk = µkn = µkwB cosθ.

  
wB sinθ − µkwB cosθ = mBax

  
ax = g(sinθ − µk cosθ ) = (9.8 m/s2 )[sin20° − (0.060)cos20°] = 2.80 m/s2

  ax , (v1x )B = (200 m)(2.80 m/s2 ) = 23.7 m/s.

  pfx = pix

  
(mB + mA )v2x = mB(v1x )B ⇒ v2x =

mB
mB + mA

(v1x )B =
80 kg

80 kg + 50 kg
(23.66 m/s) = 14.56 m/s

  v3x
2 = v2x

2 + 2ax (x3 − x2 ) = (14.56 m/s)2 + 2(2.80 m/s2 )(100 m) ⇒ v3x = 28 m/s

 
ax  

ax
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Solve:  Apply conservation of momentum in the x- and y-directions. 
 

 

From the y-equation, we find 

 

Inserting this value into the x-equation gives 

 

Assess:  The speed of the VW was nearly three times that of the Cadillac, which is reasonable since the much 
heavier Cadillac was deflected 55° from its original direction of travel. 
9.52.  Model:  Model Ann and cart as particles. The initial momentum is  in a coordinate system 
attached to the ground. As Ann begins running to the right, the cart will have to recoil to the left to conserve momentum. 
Visualize: 
 

 
 

Solve:  The difficulty with this problem is that we are given Ann’s velocity of 5.0 m/s relative to the cart. If the cart is 
also moving with velocity  then Ann’s velocity relative to the ground is not 5.0 m/s. Using the Galilean 
transformation equation for velocity, Ann’s velocity relative to the ground is 

 

  
(mC + mVW )v1x = (mC + mVW )v1 cosθ = mVW (v0x )VW

  
(mC + mVW )v1y = (mC + mVW )v1 sinθ = mC (v0 y )C

  
v1 =

mC (v0y )C

(mC + mVW )sinθ
=

(2000 kg)(3.0 m/s)
(3000 kg)sin 35°

= 3.49 m/s

  
(v0x )VW =

(mC + mVW )v1 cosθ
mVW

=
(3000 kg)(3.49 m/s)cos 35°

1000 kg
= 8.6 m/s

  pi = 0 kg m/s

  vcart

  (vfx )Ann = (vfx )cart + 5.0 m/s
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Now, the momentum conservation equation  is 

 

 

Using the recoil velocity  relative to the ground, we find Ann’s velocity relative to the ground to be 

 

The distance Ann runs relative to the ground is  where  is the time it takes to reach the end of the 
cart. Relative to the cart, which is 15 m long, Ann’s velocity is 5 m/s. Thus,  Her distance 
over the ground during this interval is 

 

9.53.  Model:  Assume that the tube is frictionless and horizontal, and ignore air resistance. Model the two balls as 
particles. 
Visualize: 
 

 
 

Solve:  The initial momentum of the system is zero because both balls are stationary. Therefore, conservation of 
momentum tells us that the final momentum of the system must be zero: 

 

Thus, the speed of the lighter ball is  

Assess:  The negative sign indicates that the lighter ball moves in the direction opposite the larger ball. The result is 
reasonable because the lighter ball is 1/3 the mass of the heavier one. 
 

9.54.  Model:  Change in momentum is given by the impulse-momentum theorem (Equation 9.8). 

Solve:  Using  with  the velocity after the force has been applied is 

 

Assess:  The force is applied for half the period of 4.0 s. During that time,  is positive, so an object initially 

at rest acquires a positive velocity. 

9.55.  Model:  Apply the impulse-momentum theorem (Equation 9.8) to find the initial velocity. 

  pix = pfx

  0 kg m/s = mAnn (vfx )Ann + mcart (vfx )cart ⇒ 0 kg m/s = (50 kg)[(vfx )cart + 5.0 m/s]+ (500 kg)(vfx )cart

  (vfx )cart = −0.45 m/s

  (vfx )cart

  (vfx )Ann = 5.00 m/s − 0.45 m/s = 4.55 m/s

  Δx = (vfx )AnnΔt,  Δt

  Δt = (15 m)/(5.0 m/s) = 3.0 s.

  Δx = (vfx )AnnΔt = (4.55 m/s)(3.0 s) = 14 m

  mvm + 3mv0 = 0 ⇒ vm = −3v0

  3v0.

  
Δp = mvfx − mvix = Jx = Fx (t)dx

ti

tf∫   vix = 0,

  

vfx =
1
m

Fx (t)dx
ti

tf∫ =
10 N

0.25 kg
sin(2π t /4.0 s)dt

0.0 s

2.0 s

∫

= (40 N/kg) −
4.0 s
2π

cos
2π t
4.0 s

$

%&
'

()
0.0 s

2.0 s*

+

,
,

-

.

/
/

= −(25.5 m/s)[cos(π ) − cos(0)]
= −(25.5 m/s)( − 1− 1)
= 51 m/s

  
sin 2π t

4.0 s( )
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Assess:  The impulse is large enough to reverse the direction of motion of the particle. 

9.56.  Model:  The two railcars make up a system. The impulse approximation is used while the spring is expanding, 
so friction can be ignored. 
Visualize: 
 

 
 

Solve:  Since the cars are at rest initially, the total momentum of the system is zero. Conservation of momentum gives 
 

We are only told that the relative velocity of the two cars after the spring expands is 4.0 m/s, so 
 

Substitute  into the conservation of momentum equation, then solve for  

 

so the speed of the 30 ton car relative to the ground is 3.0 m/s. 
Assess:  The other more massive railcar has a velocity  A slower speed for the more 
massive car makes sense. 

9.57.  Model:  This is a three-part problem. In the first part, the shell, treated as a particle, is launched as a projectile 
and reaches its highest point. We will use constant-acceleration kinematic equations for this part. The shell, which is 
our system, then explodes at the highest point. During this brief explosion time, momentum is conserved. In the third 
part, we will again use the kinematic equations to find the horizontal distance between the landing of the lighter 
fragment and the origin. 
Visualize: 

  

Δp = F dt∫
vfx = vix +

1
m

F dt∫

= −5.0 m/s + 1
0.500 kg

(4 − t2 )dt
−2

2

∫

= −5.0 m/s + 1
0.500 kg

4t −
1
3

t3$

%&
'

() −2

2

= −5.0 m/s + 1
0.500 kg

8 − 8
3
− −8 + 8

3
$

%&
'

()
*

+
,

-

.
/

= 16 m/s

  0 = m1(vfx )1 + m2 (vfx )2

  (vfx )2 − (vfx )1 = 4.0 m/s

  (vfx )2 = (vfx )1 + 4.0 m/s   (vfx )1:

  

0 = m1(vfx )1 + m2[(vfx )1 + 4.0 m/s]

(vfx )1 = −
m2 (4.0 m/s)
(m1 + m2 )

= −
(90 tons)(4.0 m/s)
(30 tons + 90 tons)

= −3.0 m/s

  (vfx )2 = (vfx )1 + 4.0 m/s = 1.0 m/s.
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Solve:  The initial velocity is 
 

 

At the highest point,  m/s and  The conservation of momentum equation  gives 

 

The heavier particle falls straight down, so  Thus, 

 
That is, the velocity of the smaller fragment immediately after the explosion is 358 m/s and this velocity is in the 
horizontal x-direction. Note that  To find we will first find the displacement  and then 

 For  

 

 

For  

 

 

Assess:  Note that the time of ascent to the highest point is equal to the time of descent to the ground, that is, 
 

9.58.  Model:  Model the proton (P) and the gold atom (G) as particles. The two constitute our system, and momentum 
is conserved in the collision between the proton and the gold atom. 
Visualize: 
 

 
 

Solve:  The conservation of momentum equation  gives 

 

  
v0x = vcosθ = (125 m/s)cos55° = 71.7 m/s

  
v0 y = vsinθ = (125 m/s)sin55° = 102.4 m/s

  
v1y = 0   v1x = 71.7 m/s.   pfx = pix

  mL (v1x )L + mH (v1x )H = (mL + mH )v1x

  (v1x )H = 0 m/s.

  (15 kg)(v1x )L + 0 kg m/s = (15 kg + 60 kg)(71.7 m/s) ⇒ (v1x )L = 358 m/s

  
(v1y )L = 0 m/s.   x2 ,   x1 − x0

  x2 − x1.   x1 − x0 ,

  
v1y = v0 y + ay (t1 − t0 ) ⇒ 0 m/s = (102.4 m/s) + (−9.8 m/s2 )(t1 − 0 s) ⇒ t1 = 10.45 s

  
x1 = x0 + v0x (t1 − t0 ) + 1

2
ax (t1 − t0 )2 ⇒ x1 − x0 = (71.7 m/s)(10.45 s) + 0 m = 749 m

  x2 − x1:

  
x2 = x1 + (v1x )L (t2 − t1) + 1

2
ax (t2 − t1)2 ⇒ x2 − x1 = (358 m/s)(10.45 s) + 0 m = 3741 m

  x2 = (x2 − x1) + (x1 − x0 ) = 3741 m + 749 m = 4490 m = 4.5 km

  t1 − t0 = t2 − t1.

  pfx = pix

  mG (vfx )G + mP (vfx )P = mP (vix )P + mG (vix )G
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9.59.  Model:  Model the proton (P) and the target nucleus (T) as particles. The proton and the target nucleus make 
our system and in the collision between them momentum is conserved. This is due to the impulse approximation 
because the collision lasts a very short time and the external forces acting on the system during this time are not 
significant. 
Visualize: 
 

 
 

Solve:  The conservation of momentum equation  gives 

 

 

 

Assess:  This is the mass of the nucleus of a nitrogen atom. 

9.60.  Model:  This problem deals with an “explosion” in which a  nucleus (P) decays into an alpha-particle 
(A) and a daughter nucleus (N). During the “explosion” or decay, the total momentum of the system is conserved. 
Visualize: 
 

 
Solve:  Conservation of mass requires the daughter nucleus to have mass  = 214 u - 4 u = 210 u. The conservation 

of momentum equation  gives 

 

 

9.61.  Model:  The neutron’s decay is an “explosion” of the neutron into several pieces. The neutron is an isolated 
system, so its momentum should be conserved. The observed decay products, the electron and proton, move in opposite 
directions. 
Visualize: 
 

  (197 u)(vfx )G + (1 u)(−0.90 × 5.0 × 107  m/s) = (1 u)(5.0 × 107  m/s) + 0 u m/s

  (vfx )G = 4.8 × 105  m/s

  pfx = pix

  
mT (vfx )T + mP (v fx )P = mT (vix )T + mP (vix )P

  mT (3.12 × 105  m/s) + (1 u)(−0.750 × 2.50 × 106  m/s) = 0 u m/s + (1 u)(2.50 × 106  m/s)

  mT = 14.0 u

 
214 Po

  mN

  pfx = pix

  mN (vfx )N + mA (vfx )A = (mN + mA )vP ⇒ (210 u)(vfx )N + (4 u)(−1.92 × 107 m/s) = 0 u m/s

  (vfx )N = 3.66 × 105  m/s
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Solve:  (a) The initial momentum is  The final momentum  is 

 
No, momentum does not seem to be conserved. 
(b) and (c) If the neutrino is needed to conserve momentum, then  This requires 

 

The neutrino must “carry away”  of momentum in the same direction as the electron. 

9.62.  Model:  Model the two balls of clay as particles. Our system comprises these two balls. Momentum is conserved 
in the perfectly inelastic collision. 
Visualize: 
 

 
 

Solve:  Applying conservation of momentum in the x-direction gives 

 

The y-component of the final momentum is 

 

Since  the final speed is 

 

and the direction is 

  pix = 0 kg m/s.
  
pfx = meve + mpvp

  pfx = 2.73× 10−23  kg m/s − 1.67 × 10−22  kg m/s = −1.4 × 10−22  kg m/s

  pe + pP + pneutrino = 0 kg m/s.

  pneutrino = −( pe + pP ) = +1.4 × 10−22  kg m/s

 1.4 × 10−22  kg m/s

  

pfx = pix = m1(vix )1 + m2 (vix )2

= (0.020 kg)(2.0 m/s) − (0.030 kg)(1.0 m/s)cos30° = 0.0140 kg m/s

  

pfy = piy = m1(viy )1 + m2 (viy )2

= (0.02 kg)(0 m/s) − (0.03 kg)(1.0 m/s)sin30° = −0.0150 kg m/s

pf = (0.014 kg m/s)2 + (−0.015 kg m/s)2 = 0.0205 kg m/s

  pf = (m1 + m2 )vf = 0.0205 kg m/s,

  
vf =

0.0205 kg m/s
(0.02 + 0.03) kg

= 0.41 m/s
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 south of east 

9.63.  Model:  Model the three balls of clay as particle 1 (moving north), particle 2 (moving west), and particle 3 
(moving southeast). The three stick together during their collision, which is perfectly inelastic. The momentum of the 
system is conserved. 
Visualize: 
 

 
 

Solve:  The three initial momenta are 

 

 

 

Since  we have 

 

 

 below the x-axis. 

9.64.  Model:  Model the truck (T) and the two cars (C and  as particles. The three forming our system stick 
together during their collision, which is perfectly inelastic. Since no significant external forces act on the system during 
the brief collision time, the momentum of the system is conserved. 
 

Visualize: 
 

  
θ = tan−1

pfy

pfx
= tan−1 0.015

0.014
= 47°

   
rpi1 = m1

rvi1 = (0.020 kg)(2.0 m/s) ĵ = 0.040 ĵ  kg m/s

   
rpi2 = m2

rvi2 = (0.030 kg)(−3.0 m/s î ) = −0.090î  kg m/s

   
rpi3 = m3

rvi3 = (0.040 kg)[(4.0 m/s)cos45°î − (4.0 m/s)sin45° ĵ] = (0.113î − 0.113 ĵ) kg m/s

   
rpf =

rpi = pi1 +
rpi2 +

rpi3,

   (m1 + m2 + m3)rvf = (0.023î − 0.073 ĵ) kg m/s ⇒
rvf = (0.256î − 0.811 ĵ) m/s

  vf = (0.256 m/s)2 + (−0.811 m/s)2 = 0.85 m/s

  
θ = tan−1

vfy

vfx
= tan−1 0.811

0.256
= 72°

 !C )
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Solve:  The three momenta are 
 

 

 

 

 

 above the  

Assess:  A speed of 4.2 m/s for the entangled three vehicles is reasonable since the individual speeds of the cars and 
the truck before entanglement were of the same order of magnitude. 

9.65.  Model:  The  atom undergoes an “explosion” and decays into a nucleus, an electron, and a neutrino. 
Momentum is conserved in the process of “explosion” or decay. 
Visualize: 
 

 
 

Solve:  The conservation of momentum equation  gives 

 

 

 

 

   
rpiT = mT

rviT = (2100 kg)(2.0 m/s)î = 4200î  kg m/s

   
rpiC = mC

rviC = (1200 kg)(5.0 m/s) ĵ = 6000 ĵ kg m/s

   
rpi !C = m !C

rvi !C = (1500 kg)(10 m/s)î = 15,000î  kg m/s

   
rpf =

rpi =
rpiT +

rpiC +
rpi !C = (19,200î + 6000 ĵ) kg m/s

  pf = (mT + mC + m !C )vf = (19,200 kg m/s)2 + (6000 kg m/s)2

  
vf = 4.2 m/s, θ = tan−1 py

px
= tan−1 6000

19,200
= 17°   +x-axis

 
14 C

   
rpf =

rpi = 0 kg m/s

   
rpe +

rpn +
rpN = 0 N ⇒

rpN = −( rpe +
rpn ) = −me

rve − mn
rvn

  = −(9.11× 10−31 kg)(5.0 × 107  m/s)î − (8.0 × 10−24  kg m/s) ĵ = −(45.55× 10−24 î + 8.0 × 10−24 ĵ) kg m/s

  pN = mNvN = (45.55× 10−24 )2 + (8.0 × 10−24 )2  kg m/s

  (2.34 × 10−26  kg)vN = 4.62 × 10−23  kg m/s ⇒ vN = 2.0 × 103  m/s
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9.66.  (a) A 100 g ball traveling to the left at 30 m/s is batted back to the right at 40 m/s. The force curve for the force 
of the bat on the ball can be modeled as a triangle with a maximum force of 1400 N. How long is the ball in contact 
with the bat? 
(b) 
 

 
 

(c) The solution is  
9.67.  (a) A 200 g ball of clay traveling to the right overtakes and collides with a 400 g ball of clay traveling to the 
right at 3.0 m/s. The balls stick and move forward at 4.0 m/s. What was the speed of the 200 g ball of clay? 
(b) 
 

 
 

(c) The solution is  

9.68.  (a) A 2000 kg auto traveling east at 5.0 m/s suffers a head-on collision with a small 1000 kg auto traveling west 
at 4.0 m/s. They lock bumpers and stick together after the collision. What will be the speed and direction of the 
combined wreckage after the collision? 
(b) 
 

 
 

(c) The solution is  along the direction. 

9.69.  (a) A 150 g spring-loaded toy is sliding across a frictionless floor at 1.0 m/s. It suddenly explodes into two pieces. 
One piece, which has twice the mass of the second piece, continues to slide in the forward direction at 7.5 m/s. What is 
the speed and direction of the second piece? 
(b) 
 

 
 

(c) The solution is  The minus sign tells us that the second piece moves backward at 12 m/s. 

  Δt = 0.100 s = 10 ms.

  (vix )2 = 6.0 m/s.

  vfx = 2.0 m/s  +x

  (vfx )1 = −12 m/s.
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9.70.  Model:  The cart man (C M) is our system. It is an isolated system, and momentum is conserved. 
Visualize: 
 

 
 

Solve:  The conservation of momentum equation  gives 

 

Note that  and  are the final velocities of the man and the cart relative to the ground. What is given in 
this problem is the velocity of the man relative to the moving cart. The man’s velocity relative to the ground is 

 

With this form for we rewrite the momentum conservation equation as 

 

 

 

9.71.  Model:  This is an isolated system, so momentum is conserved in the explosion. Momentum is a vector quantity, 
so the direction of the initial velocity vector  establishes the direction of the momentum vector. The final momentum 
vector, after the explosion, must still point in the +x-direction. The two known pieces continue to move along this line 
and have no y-components of momentum. The missing third piece cannot have a y-component of momentum if 
momentum is to be conserved, so it must move along the x-axis—either straight forward or straight backward. We can 
use conservation laws to find out. 
Visualize: 
 

 
 

Solve:  From the conservation of mass, the mass of piece 3 is 

 

To conserve momentum along the x-axis, we require 

 

+ +

  pfx = pix

  mM (vfx )M + mC (vfx )C = mM (vix )M + mC (vix )C

  (vfx )M   (vfx )C

  (vfx )M = (vfx )C − 10 m/s

  (vfx )M ,

  mM[(vfx )C − 10 m/s]+ mC (vfx )C = mM (5.0 m/s) + mC (5.0 m/s)

  (70 kg)[(vfx )C − 10 m/s]+ (1000 kg)(vfx )C = (1000 kg + 70 kg)(5.0 m/s)

  (vfx )C[1000 kg + 70 kg] = (1070 kg)(5.0 m/s) + (70 kg)(10 m/s) ⇒ (vfx )C = 5.7 m/s

   
rv1

  m3 = mtotal − m1 − m2 = 7.0 × 105  kg

  pi = mtotalvi = pf = p1f + p2f + p3f = m1v1f + m2v2f + p3f
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Because  the third piece moves in the that is, straight forward. Because we know the mass  
we can find the velocity of the third piece as follows: 

 

The third piece moves to the right with a speed of  

9.72.  Model:  The projectile wood ball are our system. In the collision, momentum is conserved. 
Visualize: 
 

 
 

Solve:  The momentum conservation equation  is 

 

 

We therefore need to determine  Newton’s second law for circular motion is 

 

Using  this equation gives 

 

Going back to the momentum conservation equation, 

 

That is, the largest speed this projectile can have without causing the cable to break is 90 m/s. 

9.73.  Model:  This is an “explosion” problem and momentum is conserved. The two-stage rocket is our system. 
Visualize: 
 

  p3f = mtotalvi − m1v1f − m2v2f = +1.02 × 1013  kg m/s

  p3f > 0,   +x-direction,   m3,

  
v3f =

p3f
m3

=
1.02 × 1013  kg m/s

7.0 × 105  kg
= 1.5× 107  m/s

 1.5× 107  m/s.

+

  pfx = pix

  (mP + mB )vfx = mP (vix )P + mB(vix )B ⇒ (1.0 kg + 20 kg)vfx = (1.0 kg)(vix )P + 0 kg m/s

  (vix )P = 21vfx

  vfx .

  
T − FG = T − (mP + mB )g =

(mP + mB )vfx
2

r

  Tmax = 400 N,

  
400 N − (1.0 kg + 20 kg)(9.8 m/s) =

(1.0 kg + 20 kg)vfx
2

2.0 m
⇒ (vfx )max = 4.3 m/s

  (vix )P = 21vfx = (21)(4.3 m/s) = 90 m/s
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Solve:  Relative to the ground, the conservation of momentum equation  gives 

 

 

The fact that the first stage is pushed backward at 35 m/s relative to the second can be written 
 

Substituting this form of  in the conservation of momentum equation, 

 

9.74.  Model:  Let the system be rocket + bullet. This is an isolated system, so momentum is conserved. 
Visualize:  The fact that the bullet’s velocity relative to the rocket is 139,000 can be written 139,000 m/s. 
 

 
 

Solve:  Consider the firing of one bullet when the rocket has mass M and velocity  The conservation of momentum 

equation gives 

 

The rocket starts with mass  which is much larger than 5 kg. If only a few bullets are needed, M will not 
change significantly as the rocket slows. If we assume that M remains constant at 2000 kg, the loss of speed per bullet is 

 Thus exactly 8 bullets will reduce the speed by 10,000 km/h, from 25,000 km/h to 
15,000 km/h. If you’re not sure that treating M as a constant is valid, you can calculate  for each bullet and reduce M 
by 5 kg after each shot. The loss of mass causes  to increase slightly for each bullet. An eight-step calculation then 
finds that 8 bullets will slow the rocket to 14,900 km/h. Seven bullets wouldn’t be enough, and 9 would slow the rocket 
far too much. 

9.75.  Visualize: 
 

 
 

  pfx = pix

  m1(vfx )1 + m2 (vfx )2 = (m1 + m2 )v1x

  3 m2 (vfx )1 + m2 (vfx )2 = (4 m2 )(1200 m/s) ⇒ 3(vfx )1 + (vfx )2 = 4800 kg m/s

  (vfx )1 = −35 m/s + (vfx )2

  (vfx )1

  3[−35 m/s + (vfx )2 ]+ (vfx )2 = 4800 kg m/s ⇒ (vfx )2 = 1.2 km/s

  (vf )B = (vf )R +

  vi.

  pf = pi

  

( M − 5kg)vf + (5 kg)(vf + 139,000 m/s) = Mvi

Δv = vf − vi = −
5 kg
M

(139,000 m/s)

  M = 2000 kg,

  Δv = −347.5 m/s = −1250 km/h.
 Δv

 Δv
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Solve:  Ladies and gentlemen of the jury, how far would the chair slide if it was struck with a bullet from my client’s 
gun? We know the bullet’s velocity as it leaves the gun is 450 m/s. The bullet travels only a small distance to the chair, 
so we will neglect any speed loss due to air resistance. The bullet and chair can be considered an isolated system during 
the brief interval of the collision. The bullet embedded itself in the chair, so this was a perfectly inelastic collision. 
Momentum conservation allows us to calculate the velocity of the chair immediately after the collision as follows: 

 

This is the velocity immediately after the collision when the chair starts to slide but before it covers any distance. For 
the purpose of the problem in dynamics, call this the initial velocity  The free-body diagram of the chair shows 
three forces. Newton’s second law applied to the chair (with the embedded bullet) is 

 

where we’ve used the friction model in the x-equation. The y-equation yields  and the x-equation yields 

 We know the coefficient of kinetic friction because it is a wood chair sliding on a wood floor. 

Finally, we have to determine the stopping distance of the chair. The motion of the chair ends with  after 
sliding a distance  so 

 

If the bullet lost any speed in the air before hitting the chair, the sliding distance would be even less. So you can see 
that the most the chair could slide if it had been struck by a bullet from my client’s gun would be 1.3 cm. But in 
actuality, the chair slid 3 cm, more than twice as far. The murder weapon, ladies and gentlemen, was a much more 
powerful gun than the one possessed by my client. I rest my case. 

  
pix = pfx ⇒ mB(vi )B = (mB + mC )vf ⇒ vf =

mB(vi )B
mB + mC

=
(450 m/s)(0.010 kg)

20.01 kg
= 0.225 m/s

  v0.

  
ax = a =

(Fnet )x
mtot

=
− fk
mtot

= −
µkn
mtot

, ay = 0 m/s2 =
(Fnet )y

mtot
=

n − mtot g
mtot

  n = mtot g,

  a = −µkg = −1.96 m/s2.

  v1 = 0 m/s

  Δx,

  
v1

2 = 0 m2 /s2 = v0
2 + 2aΔx ⇒ Δx = −

v0
2

2a
= −

(0.225 m/s)2

2(−1.96 m/s2 )
= 0.013 m = 1.3 cm


