Unit 6 Worksheet 1 Key

1. A body falls freely from rest on Earth. Find:

A. its displacement at $\mathbf{t}=\mathbf{3 s}$
$\Delta y=V y_{\circ} t+1 / 2 g t^{2} \quad \Delta y=(0 \mathrm{~m} / \mathrm{s})(3 \mathrm{~s})+1 / 2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~s})^{2} \quad \Delta y=45 \mathrm{~m}$
B. the time for it to reach a speed of $25 \mathrm{~m} / \mathrm{s}$
$V y=y^{8}+g t$
$V y=g t$
$t=V y / g$
$t=25 \mathrm{~m} / \mathrm{s} / 10 \mathrm{~m} / \mathrm{s}^{2}$
$t=2.50 \mathrm{~s}$
C. the time required for it to fall 300 m
$\Delta y=300 . m$
$V_{\text {yo }}=0.0 \mathrm{~m} / \mathrm{s}$
$g=10 . \mathrm{m} / \mathrm{s}^{2}$
$\Delta t=?$
$\Delta y=y / y_{0}^{0} t+1 / 2 g \Delta t^{2}$
$\Delta y=1 / 2 g \Delta t^{2}$
$2 \Delta y=g \Delta t^{2}$
$\Delta t^{2}=2 \Delta y / g$
$\Delta t=\sqrt{2 \Delta y / g}$

$$
\Delta t=\sqrt{\left(2^{*} 300 \mathrm{~m} /\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)\right)} \quad t=7.75 \mathrm{~s}
$$

D. its speed after falling 70 m
$V_{y}{ }^{2}=X_{y 0}^{0}{ }^{0}+2 g \Delta y \quad V y=\sqrt{2 g \Delta y}$
$V_{y}=\sqrt{2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(70 \mathrm{~m})}$

$$
V y=37.4 \mathrm{~m} / \mathrm{s}
$$

2. A stone is thrown horizontally at $22 \mathrm{~m} / \mathrm{s}$ from the top of a $150-\mathrm{m}$ cliff.

b. How high is the stone after 1.5 s ? (Give the distance from the foot of the cliff.)
c. What is the range?
a. How long is it in the air?
$\Delta y=y_{y 0}^{0} t+1 / 2 g t^{2}$
$\Delta y=1 / 2\left(1.70 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~s})^{2}$
$\Delta y=7.65 \mathrm{~m}$
B. the time for it to reach a speed of $\mathbf{2 5} \mathbf{~ m} / \mathrm{s}$

$$
\begin{aligned}
& V_{y}=V_{/ 80}^{0}+g t \\
& t=25 \mathrm{~m} / \mathrm{s} / 1.70 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
V_{y}=g t
$$

$$
t=V_{y} / g
$$

$$
t=14.7 \mathrm{~s}
$$

C. the time required for it to fall $\mathbf{3 0 0} \mathbf{m}$
$\Delta y=V_{60} t+1 / 2 g t^{2}$

$$
\Delta y=1 / 2 g t^{2}
$$

$$
2^{*} \Delta y=g t^{2}
$$

$t^{2}=\left(2^{*} \Delta y\right) / g$
$t=\sqrt{\left(2^{*} \Delta y_{2} / g\right)}$
$t=\sqrt{\left(2^{\star} 300 \mathrm{~m} / 1.70 \mathrm{~m} / \mathrm{s}^{2}\right)}$
D. its speed after falling 70 m
$V_{y}{ }^{2}=V / / 0^{2^{0}}+2 g \Delta y \quad V_{y}=\sqrt{2 g \Delta y}$

$$
V y_{f}=\sqrt{\left(2^{*} 1.70 \mathrm{~m} / \mathrm{s}^{2 *} 70 \mathrm{~m}\right)}
$$

$$
V y_{f}=15.4 \mathrm{~m} / \mathrm{s}
$$

3. A ball is dropped from rest at a height of 80 m above the ground.

A. What is its speed just as it hits the ground?

$$
V y_{f}=\sqrt{\left(2^{*} 10 \mathrm{~m} / \mathrm{s}^{2} * 80 \mathrm{~m}\right)}
$$

B. How long does it take for it to reach the ground?

$$
V_{y}=40 \mathrm{~m} / \mathrm{s}
$$

$V_{y}=V / 50+g t$

$$
V_{y}=g t
$$

$$
t=V_{y} / g
$$

$$
t=40 \mathrm{~m} / \mathrm{s} / 10 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
t=4.0 \mathrm{~s}
$$

4. A marble dropped from a bridge strikes the water in 6.0 s . Calculate:

A. the speed with which it strikes the water

$$
V y_{f}=y_{y_{i}}^{S_{i}^{0}}+g t
$$

$$
V y_{f}=\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~s})
$$

$$
V_{f}=60.0 \mathrm{~m} / \mathrm{s}
$$

B. the height of the bridge

$$
\begin{array}{lrl}
V y_{f}^{2}= & V s_{i}^{2}+2 g \Delta y & V y_{f}^{2}=2 g \Delta y \\
\Delta y=(60 . \mathrm{m} / \mathrm{s})^{2} /\left(2^{*} 10 \mathrm{~m} / \mathrm{s}^{2}\right) & \Delta y=V y_{f}^{2} / 2 g \\
\Delta y=180 \mathrm{~m}
\end{array}
$$

Free Fall with $\mathrm{Vy}_{\boldsymbol{i}} \mathrm{not}^{\mathbf{n}} \mathbf{0} \mathbf{m} / \mathrm{s}$

5. A body is thrown downward with an initial speed of $20 \mathrm{~m} / \mathrm{s}$ on Earth. What is the:

A. acceleration of the object

Only force acting on object is the Force of Earth on Ball. $F(n e t)=m a=F e=m g$. Mass does not change so $a=g$.

$$
a=g=10 \mathrm{~m} / \mathrm{s}^{2}
$$

B. displacement after 4 s

$\Delta y=?$
$V_{y i}=20.0 \mathrm{~m} / \mathrm{s}$
$g=10 . \mathrm{m} / \mathrm{s}^{2}$
$\Delta t=4.0 \mathrm{~s}$
$\Delta y=V y_{i} t+1 / 2 g \Delta t^{2} \quad \Delta y=(20 \mathrm{~m} / \mathrm{s})(4 \mathrm{~s})+1 / 2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(4 \mathrm{~s})^{2} \quad \Delta y=160 \mathrm{~m}$
C. time required to reach a speed of $50 \mathrm{~m} / \mathrm{s}$

Using Quadratic Formula you can solve the formula above for time. I prefer to stay far away from the quadratic formula if I can so here is my solution.

VERSION 1 SOLUTION - Factoring it

$$
\begin{aligned}
& \Delta y=V y_{i} t+1 / 2 g t^{2} \\
& 0=1 / 2 g t^{2}+V y_{i} t-\Delta y \\
& 0=1 / 2 * 10 \mathrm{~m} / \mathrm{s}^{2} * t^{2}+20 \mathrm{~m} / \mathrm{s} t-300 \mathrm{~m} \longrightarrow 0=5 \mathrm{~m} / \mathrm{s}^{2} * t^{2}+20 \mathrm{~m} / \mathrm{s} t-300 \mathrm{~m} \\
& 0=5\left(1 \mathrm{~m} / \mathrm{s}^{2}{ }^{*} t^{2}+4 \mathrm{~m} / \mathrm{s} t-60 \mathrm{~m}\right) \\
& 0=5(t-6) *(t+10) \\
& 0=(t-6) \\
& 0=(t+10) \\
& t=6.00 \mathrm{~s} \text { or }-10.0 \mathrm{~s}
\end{aligned}
$$

ALTERNATE SOLUTION

$V y_{f}{ }^{2}=V y_{i}{ }^{2}+2 g \Delta y \quad V y_{f}=\sqrt{V y_{i}{ }^{2}+2 g \Delta y} \quad V y_{f}=\sqrt{\left.\left((20 \mathrm{~m} / \mathrm{s})^{2}+2^{*} 10 \mathrm{~m} / \mathrm{s}^{2} * 300 \mathrm{~m}\right)\right)}$ $\overline{\mathrm{V}} \overline{\mathrm{y}}_{f}=\overline{8} \overline{0} . \overline{\mathrm{m}} \overline{\mathrm{m}} \overline{\mathrm{s}}$

$$
\begin{aligned}
& V y_{f}=V y_{i}+g t \quad V y_{f}-V y_{i}=g t \quad t=\left(V y_{f}-V y_{i}\right) / g \quad t=(80 \mathrm{~m} / \mathrm{s}-20 \mathrm{~m} / \mathrm{s}) / 10 \mathrm{~m} / \mathrm{s}^{2} . \\
& t=6.00 \mathrm{~s}
\end{aligned}
$$

ALTERNATE ALTERNATE SOLUTION

D. time required to fall $\mathbf{3 0 0} \mathrm{m}$

$$
\begin{aligned}
& \Delta y=V y_{i} t+1 / 2 g t^{2} \quad 0=1 / 2 g t^{2}+V y_{i} t-\Delta y \\
& t=\frac{-V y_{i} \pm \sqrt{V y_{i}{ }^{2}-4^{*} 1 / 2 g(-\Delta y)}}{2^{*} 1 / 2 g} \\
& t=\frac{-(20 \mathrm{~m} / \mathrm{s}) \pm \sqrt{(20 \mathrm{~m} / \mathrm{s})^{2}-\left(4^{*} 1 / 2^{*} 10 \mathrm{~m} / \mathrm{s}^{2}(-300 \mathrm{~m})\right)}}{2^{*}\left(1 / 2^{*} 10 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& t=6.00 \mathrm{~s} \text { or }-10.0 \mathrm{~s}
\end{aligned}
$$

E. speed after falling 100 m

$$
\begin{aligned}
& V y_{f}^{2}=V y_{i}^{2}+2 g \Delta y \quad V y_{f}=\sqrt{V y_{i}^{2}+2 g \Delta y} \\
& V y_{f}=\sqrt{\left((20 \mathrm{~m} / \mathrm{s})^{2}+2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(100 \mathrm{~m})\right.} \\
& V y_{f}=49.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6. A student throws his worthless lab partner off a 120 m high bridge with an initial downward speed of $10 \mathrm{~m} / \mathrm{s}$
A. How long does it take the deadbeat to hit the ground below?

VERSION 1 SOLUTION - Factoring it

$\Delta y=V y_{i} t+1 / 2 g t^{2}$

$$
0=1 / 2 g t^{2}+V y_{i} t-\Delta y
$$

$0=1 / 2 * 10 \mathrm{~m} / \mathrm{s}^{2} * t^{2}+10 \mathrm{~m} / \mathrm{s} t-120 \mathrm{~m} \quad 0=5 \mathrm{~m} / \mathrm{s}^{2 *} t^{2}+10 \mathrm{~m} / \mathrm{s} t-120 \mathrm{~m}$
$0=5\left(1 \mathrm{~m} / \mathrm{s}^{2} t^{*}+2 \mathrm{~m} / \mathrm{s} t-24 \mathrm{~m}\right)$
$0=5(t+6) *(t-4)$
$0=(t+6)$
$0=(t-4)$
$t=4.00 \mathrm{~s}$ or -6.00 s

ALTERNATE SOLUTION - Using zee Quadratic Formula

$\Delta y=V_{i y} t+1 / 2 g t^{2}$
$0=1 / 2 g t^{2}+V_{i y} t-\Delta y$

$$
t=\frac{-V_{i} \pm \sqrt{V_{i y}{ }^{2}-4^{*} 1 / 2 g(-\Delta y)}}{2^{*} 1 / 2 g}
$$

$t=\frac{-(10 \mathrm{~m} / \mathrm{s}) \pm \sqrt{(10 \mathrm{~m} / \mathrm{s})^{2}-4^{*} 1 / 2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(-(120 \mathrm{~m}))}}{2^{*} 1 / 2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)}$
$t=4.00 \mathrm{~s}$ or -6.00 s
B. How fast is he going at the moment of impact?
$V y_{f}=V y_{i}+g t$

$$
V y_{f}=(10 \mathrm{~m} / \mathrm{s})+\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(4 \mathrm{~s})
$$

$$
V y_{f}=50.0 \mathrm{~m} / \mathrm{s}
$$

Free Fall with V_{i} not $=0 \mathrm{~m} / \mathrm{s}$

ALTERNATE ${ }^{2}$ SOLUTION

6. A student throws his worthless lab partner off a 120 m high bridge with an initial downward speed of $10 \mathrm{~m} / \mathrm{s}$
A. How long does it take the deadbeat to hit the ground below?

Using Quadratic Formula you can solve the formula above for time. I prefer to stay far away from the quadratic formula if I can so here is my solution.

B. How fast is he going at the moment of impact?

See above solution for a way to find the Final Velocity.
7. When a kid drops a rock off the edge of a cliff, it takes 4.0 s to reach the ground below. When he throws the rock down, it strikes the ground in 3.0 s . What initial speed did he give the rock?

How long does it take the deadbeat to hit the ground below?

Distance to ground:

$$
\Delta y=V y_{o} t+1 / 2 g t^{2}
$$

$$
\Delta y-1 / 2 g t^{2}=V y_{0} t
$$

$$
V y_{o}=\left(\Delta y-1 / 2 g t^{2}\right) / t
$$

$$
V y_{o}=\left((80 . \mathrm{m})-1 / 2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~s})^{2}\right) / 3.0 \mathrm{~s}
$$

