Particle Models in Two Dimensions Worksheet 1: Free-Fall Kinematics

Note: For questions in which the object only moves downward, some teachers may elect to make downward $(+)$ to reduce the number of $(-)$ signs students have to deal with. For question 1, parallel solutions are provided. For \#5 and \#6 down is (+).

1. A ball is thrown downward with an initial speed of $20 \mathrm{~m} / \mathrm{s}$ on Earth. a. Make a labeled diagram (specify the $(+)$ direction), then make a motion map of the situation.
b. What is the acceleration of the ball? Ignoring air friction, the ball accelerates at g which is $-10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
or, if

$$
\begin{gathered}
\Delta y=\frac{1}{2} a t^{2}+v_{i} \Delta t \\
\Delta y=5 \frac{m}{s^{2}}(4.0 s)^{2}+\left(20 \frac{m}{s}\right) 4.0 \mathrm{~s}=160 m \\
\Delta y=-5 \frac{m}{s^{2}}(4.0 s)^{2}+-20 \frac{m}{s}(4.0 s)=-160 m
\end{gathered}
$$

c. Calculate the displacement during the first 4.0 s .
$\mathrm{v}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=\mathrm{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

d. Calculate the time required to reach a speed of $50 \mathrm{~m} / \mathrm{s}$.
$\begin{aligned} & \mathrm{v}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s} \\ & \mathrm{a}=\mathrm{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}}\end{aligned} \quad v_{f}-v_{i}=a \Delta t \Rightarrow t=\frac{v_{f}-v_{i}}{a}$
$\mathrm{a}=\mathrm{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$\mathrm{v}_{\mathrm{f}}=50 \mathrm{~m} / \mathrm{s}$

$$
t=\frac{50 \frac{\mathrm{~m}}{\mathrm{~s}}-\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=3.0 \mathrm{~s} \quad \text { or } \quad t=\frac{-50 \frac{\mathrm{~m}}{\mathrm{~s}}-\left(-20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=3.0 \mathrm{~s}
$$

e. Calculate the time required to fall 300 m (Hint: factor the quadratic or use the quadratic formula).
$\mathrm{v}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s}$
$\Delta y=\frac{1}{2} a t^{2}+v_{i} \Delta t \Rightarrow \frac{1}{2} a t^{2}+v_{i} \Delta t-\Delta y=0$
$\mathrm{a}=\mathrm{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \frac{1}{2}\left(10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}+20 \frac{\mathrm{~m}}{\mathrm{~s}} \Delta t-300 \mathrm{~m}=0 \Rightarrow(t-6)(t+10)=0$
$\Delta \mathrm{y}=300 \mathrm{~m} \quad t=6.0 \mathrm{~s}$
if down is $(-)$, students can still factor the quadratic by multiplying by -1 to make the leading term (+)

$$
\begin{aligned}
& -1\left(\frac{1}{2}\left(-10 \frac{m}{s^{2}}\right) t^{2}-20 \frac{m}{s} \Delta t+300 m=0\right) \\
& (t-6)(t+10)=0 \\
& t=6.0 s
\end{aligned}
$$

f. Calculate the speed after falling 100 m .

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s} \\
\mathrm{a}=\mathrm{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} & v_{f}^{2}=v_{i}^{2}+2 a \Delta y \\
\Delta \mathrm{y}=100 \mathrm{~m} & v_{f}^{2}=\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2\left(10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(100 \mathrm{~m}) \\
& v_{f}^{2}=2400 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \Rightarrow v_{f}= \pm \sqrt{2400 \frac{\mathrm{~m}^{2}}{s^{2}}}=49 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array} \quad \text { or } \begin{aligned}
& v_{f}^{2}=\left(-20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2\left(-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(-100 \mathrm{~m}) \\
& v_{f}^{2}=2400 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \Rightarrow v_{f}=-49 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

2. A rock is thrown upward with an initial speed of $15 \mathrm{~m} / \mathrm{s}$ on Earth.
a. Make a well-labeled diagram of the situation.

b. Make a list of given quantities and quantities to find, labeled with units and appropriate algebraic signs (,+-).

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{i}}=15 \mathrm{~m} / \mathrm{s} & \text { At this time only two } \\
\mathrm{a}=\mathrm{g}=-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} & \text { values are known. When } \\
\Delta \mathrm{y}=? & \text { parts } \mathrm{c}-\mathrm{f} \text { are done, the } \\
\Delta \mathrm{t}=? & \text { other knowns can be } \\
\mathrm{v}_{\mathrm{f}}=0 & \text { listed for the problem. }
\end{array}
$$

c. What is the acceleration of the rock?

Ignoring air friction, the ball accelerates at g which is $-10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
d. Calculate the rock's height after 1.0 sec .

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{i}}=15 \mathrm{~m} / \mathrm{s} \quad \Delta y=\frac{1}{2} a t^{2}+v_{i} \Delta t \Rightarrow \Delta y=\frac{1}{2}\left(-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(1.0 \mathrm{~s})^{2}+\left(15 \frac{\mathrm{~m}}{\mathrm{~s}}\right) 1.0 \mathrm{~s}=5.0 \mathrm{~m} \\
& \mathrm{a}=\mathrm{g}=-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \Delta \mathrm{t}=1.0 \mathrm{~s} \\
& \Delta \mathrm{y}=?
\end{aligned}
$$

e. Calculate the time required to reach an upward speed of $3.0 \mathrm{~m} / \mathrm{s}$.
$\begin{aligned} & \mathrm{v}_{\mathrm{i}}=15 \mathrm{~m} / \mathrm{s} \\ & \mathrm{a}=\mathrm{g}=-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\end{aligned} \quad v_{f}=v_{i}+a \Delta t \Rightarrow \Delta t=\frac{v_{f}=v_{i}}{a} \Rightarrow \Delta t=\frac{3.0 \frac{\mathrm{~m}}{\mathrm{~s}}-15 \frac{\mathrm{~m}}{\mathrm{~s}}}{-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=1.2 \mathrm{~s}$
$\mathrm{v}_{\mathrm{f}}=3.0 \mathrm{~m} / \mathrm{s}$
$\Delta t=$?
f. Calculate the time required to reach a downward speed of $5.0 \mathrm{~m} / \mathrm{s}$.
$\mathrm{v}_{\mathrm{i}}=15 \mathrm{~m} / \mathrm{s}$
$\begin{aligned} & \mathrm{a}=\mathrm{g}=-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\ & \mathrm{v}_{\mathrm{f}}=-5.0 \mathrm{~m} / \mathrm{s}\end{aligned} \quad v_{f}=v_{i}+\mathrm{a} \Delta t \Rightarrow \Delta t=\frac{v_{f}=v_{i}}{a} \Rightarrow \Delta t=\frac{-5.0 \frac{\mathrm{~m}}{\mathrm{~s}}-15 \frac{\mathrm{~m}}{\mathrm{~s}}}{-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=2.0 \mathrm{~s}$ $\Delta t=$?
3. A ball punted vertically has a hang time of 3.8 seconds. What was its initial velocity? Make a well-labeled diagram of the situation. Make a list of given quantities and quantities to find, labeled with units and appropriate algebraic signs (+, -).


```
\[
\begin{aligned}
& \Delta y=\frac{1}{2} a t^{2}+v_{i} \Delta t \Rightarrow 0=\frac{1}{2}\left(-10 \frac{m}{s^{2}}\right)(3.8 s)^{2}+v_{i}(3.8 s) \\
& v_{i}=5 \frac{m}{s^{2}}(3.8 s)=19 \frac{m}{s}
\end{aligned}
\]
```

4. A rock is thrown straight up with an initial speed of $22 \mathrm{~m} / \mathrm{s}$. How long will it be in the air before it returns to the thrower? Graph the vertical position, velocity, and acceleration of the rock on the axes provided. Make a well-labeled diagram of the situation. Make a list of given quantities and quantities to find, labeled with units and appropriate algebraic signs $(+,-)$.

$$
\begin{aligned}
& + \\
& \underbrace{}_{i} \\
& \Delta y=\frac{1}{2} a t^{2}+v_{i} \Delta t \Rightarrow 0=\frac{1}{2}\left(-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}+\left(22 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \mathrm{t} \\
& \mathrm{v}_{\mathrm{f}}=-\mathrm{y}_{\mathrm{i}} \quad \begin{array}{l}
\mathrm{m}=0 \\
\mathrm{v}_{\mathrm{i}}=22 \mathrm{~m} / \mathrm{s} \\
\Delta \mathrm{t}=?
\end{array} \\
& \left(5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \mathrm{t}=22 \frac{\mathrm{~m}}{\mathrm{~s}} \Rightarrow t=4.4 \mathrm{~s}
\end{aligned}
$$

b. Draw a velocity and an acceleration motion map for the trip.

> The motion is actually up and down but the top 3 are so close, the top dot was centered.
5. A student throws a baseball off a 120 m high bridge with an initial downward speed of $10 \mathrm{~m} / \mathrm{s}$. a. How long does it take the ball to hit the ground below?

$$
\begin{array}{ll}
\bullet & \begin{array}{l}
\mathrm{a}=\mathrm{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\boldsymbol{V}_{\mathbf{i}} \\
\mathbf{v}_{\mathbf{i}} \\
+
\end{array} \\
\begin{array}{l}
\Delta \mathrm{y}=120 \mathrm{~m} \\
\mathrm{v}_{\mathrm{i}}=10 \mathrm{~m} / \mathrm{s} \\
\Delta \mathrm{t}=?
\end{array}
\end{array}
$$

$$
\begin{aligned}
& v_{f}^{2}=v_{i}^{2}+2 a \Delta y \\
& v_{f}^{2}=\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2\left(10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(120 \mathrm{~m}) \\
& v_{f}^{2}=2500 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \Rightarrow v_{f}= \pm \sqrt{2500 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}=50 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{f}=v_{i}+a \Delta t \Rightarrow \Delta t=\frac{v_{f}=v_{i}}{a} \Rightarrow \Delta t=\frac{50 \frac{\mathrm{~m}}{\mathrm{~s}}-10 \frac{\mathrm{~m}}{\mathrm{~s}}}{10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=4.0 \mathrm{~s}
\end{aligned}
$$

b. How fast is the ball going at the moment of impact? $50 \mathrm{~m} / \mathrm{s}$ (see $1^{\text {st }}$ part of a.)
6. When a kid drops a rock off the edge of a cliff, it takes 4.0 s to reach the ground below. When she throws the rock down, it strikes the ground in 3.0 s . What initial speed did she give the rock?

$$
\begin{aligned}
& \Delta y=\frac{1}{2} a t^{2}+v_{i} \Delta t
\end{aligned}
$$

$$
\begin{aligned}
& \Delta y=\frac{1}{2} a t^{2}+v_{i} \Delta t \Rightarrow v_{i}=\frac{\Delta y-\frac{1}{2} a t^{2}}{\Delta t} \\
& \Delta y=\frac{1}{2}\left(-10 \frac{m}{s^{2}}\right)(4.0 s)^{2}+0 \\
& \Delta y=80 m \\
& v_{i}=\frac{80 m-\frac{1}{2}\left(10 \frac{m}{s^{2}}\right)(3.0 s)^{2}}{3.0 s}=\frac{80 m-45 m}{3.0 s} \\
& v_{i}=11.7 \frac{\mathrm{~m}}{\mathrm{~s}} \Rightarrow 12 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

