Centripetal Net Force Particle Model: Circular Motion Problem Solving Tips

When we did Newton's 2^{m} law, we established: sum of forces $=$ net force $=\mathrm{ma}$

$$
\Sigma F=m * a
$$

Now, for circular motion: sum of radial forces $=$ centripetal force $=\frac{m v^{2}}{r} \Sigma F_{C}=m * a_{c}$
Note that "Centripetal force" is just a fancy name for the net force. It is not a kind of interaction (like gravity or normal forces) and is NOT drawn on force diagrams.

EXAMPLES:

1. What frictional force is needed to keep a penny from sliding off a record rotating at $33^{1 / 3}$ revolutions per minute when it is placed 10 cm from the center of the record. (mass of penny $=2.5$ grams)

$$
\begin{gathered}
33 \frac{1}{3} \frac{r e v}{\min } * \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=0.555 \frac{r e v}{s} \quad\left(0.555 \frac{r e v}{s}\right)^{-1}=1.8 \mathrm{~s} / \mathrm{rev} \\
\Sigma F_{C}=F_{\text {fric }}=m * a_{c} \quad a_{c}=\frac{v^{2}}{r} \\
F_{\text {fric }}=m * \frac{\left(\frac{2 \pi r}{T}\right)^{2}}{r}=0.0025 \mathrm{~kg} * \frac{\left(\frac{2 \pi 0.1 m}{1.8 \mathrm{~s}}\right)^{2}}{0.1 \mathrm{~m}}=
\end{gathered}
$$

2. A ferris wheel with a 20 m radius and tangential speed of $4 \mathrm{~m} / \mathrm{s}$ has all 70 kg of you riding it. How big is the normal force exerted on you at \mathbf{a}) the top \mathbf{b}) the bottom?
a) Top

b) Bottom $\mathrm{F}_{\text {normal, you, seat }}$
$\mathrm{F}_{\text {grav, you, Earth }}$

Towards the center is positive

$$
\begin{aligned}
& \Sigma F_{C T O p}=m * a_{c} \\
& F_{g}-F_{N}=m * \frac{v^{2}}{r} \\
& F_{N}=F_{g}-m * \frac{v^{2}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma F_{\text {C Bottom }}=m * a_{c} \\
& F_{N}-F_{g}=m * \frac{v^{2}}{r} \\
& F_{N}=F_{g}+m * \frac{v^{2}}{r}
\end{aligned}
$$

