Newton's $2^{\text {nd }}$ Law of Motion
$\Sigma \mathbf{F}=\mathbf{m} * \mathbf{a}$
$\left(\Sigma \mathrm{F}=F_{\text {net }}\right.$ means the sum of all the forces acting on an object.)
$\Sigma F=F_{\text {net }}=$ All the force acting in the same plane $(X, Y, \|, \perp)=\mathbf{m}$ *a
Step $1 \rightarrow$ Write $\Sigma F_{X}=m * a_{x}$ or $\Sigma F_{\|}=m * a_{\|}$
Step $2 \rightarrow$ Replace ΣF with the names of the forces from the force diagram that are on the X -axis or the parallel axis
Step $3 \rightarrow$ Repeat for the Y-direction. Write $\Sigma F_{Y}=\mathbf{m *} \mathbf{a}_{\mathbf{Y}}$ or $\Sigma F \perp=m * a \perp$
Step $4 \rightarrow$ Replace ΣF with the names of the forces from the force diagram that are on the Y-axis or the \perp axis.

Worksheet 1B

1. Static (Not on hillside) ($\mathbf{a}=0$)

$$
\begin{aligned}
& \boldsymbol{\Sigma} \mathbf{F}_{\mathbf{X}}=\mathbf{m} * \mathbf{a}_{\mathbf{X}} \\
& F_{T R p 2, R k}-F_{T R p 1, R k X}=m * \boldsymbol{a}_{X}^{0} \\
& \boldsymbol{\Sigma} \mathrm{~F}_{\mathbf{Y}}=\mathbf{m} * \mathbf{a}_{\mathbf{Y}} \\
& F_{T R p 1, R k Y}-F_{g E, R k}=m * \mathbf{q}^{\mathbf{y}}
\end{aligned}
$$

4. Static (Not on hillside) $(\mathbf{a}=0)$

$$
\begin{aligned}
& \Sigma F_{X}=m^{*} \mathbf{a}_{\mathbf{X}} \\
& \mathbf{F}_{\mathrm{TRp} 2, \text { REX }}-\mathrm{F}_{\mathrm{TRp1}, \mathrm{Rk} X}=\mathrm{m}^{*} \boldsymbol{a}_{\mathbf{X}}^{\mathbf{0}^{0}}
\end{aligned}
$$

$$
\Sigma F_{Y}=m * a_{\mathbf{y}}
$$

$$
F_{T R p 2, R k Y}+F_{T R p 1, R k Y}-F_{g E, R k}=m_{*}^{*} \mathbf{a}_{\mathbf{y}}^{\mathbf{0}}
$$

5. Static (Hillside No) (as)

7. Static (Hillside yes) ($\mathbf{a}=\mathbf{0}$)

8. Static (Hillside yes) (a=0)

9. (Hillside yes) (aaa)

$$
\mathbf{F}_{\mathbf{n e t} \|}=\mathbf{m} * \mathbf{a}_{\|}
$$

$$
\mathbf{F}_{\text {net } \perp}=\mathbf{m} * \mathbf{a}_{\perp}
$$

10. $\mathbf{(H i l l s i d e ~ y e s) ~}(\mathbf{a}=\mathbf{0})$

$$
\mathbf{F}_{\text {net } \perp}=\mathbf{m} * \mathbf{a}_{\perp}
$$

18. (Hillside No) ($\mathbf{a}=\mathbf{0}$)

19. (Hillside No) $\left(\mathbf{a}_{\mathbf{x}}=\mathbf{2 g}\right)$

22. (Hillside No) $(a=\longleftarrow)$

| $\mathbf{F}_{\text {net }} \mathbf{X}=\mathbf{m} * \mathbf{a}_{\mathbf{X}}$ |
| :--- | :--- |

23. (Hillside No) $(a=r)$

24. (Hillside Yes) $(\mathbf{a}=\longleftarrow)$
(

$$
\begin{aligned}
& \mathbf{F}_{\text {net }}=\mathbf{m} * \mathbf{a}_{\mathbf{x}} \\
& \mathbf{F}_{\text {net }}=\mathbf{m} * \mathbf{a}_{\perp}
\end{aligned}
$$

\qquad

Opposite side from angle

SOH CAH TOA

Sine is Opposite / Hypotenuse
Cosine is Adjacent / Hypotenuse
Tangent is Opposite / Adjacent
$\operatorname{Sin} \theta=$ Opp/Нур
$\operatorname{Cos} \boldsymbol{\theta}=\mathbf{A d j} / \mathbf{H y p}$
Tan $\theta=\mathbf{O p p} / A d j$

Finding Opposite side of triangle Sine: Sin (Angle θ)= Opposite Side / Hypotenuese Use this form: Opp Side = Hyp * Sin (Angle)

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{T} \text { Rope, Box } Y}=\mathbf{F}_{\mathrm{T} \text { Rope, Box }} * \operatorname{Sin} \theta \\
& \mathbf{F}_{\mathrm{T} \text { Rope, Box } Y}=75 \mathrm{~N} * \operatorname{Sin}\left(32^{\circ}\right) \\
& \mathbf{F}_{\mathrm{T} \text { Rope, Box } Y}=39.7 \mathbf{N}
\end{aligned}
$$

Finding Adjacent side of triangle -
Cosine: Cos (Angle $\boldsymbol{\theta}$) = Adjacent / Hypotenuese
Use this form: $\quad \mathbf{A d j}=\mathbf{H y p} * \operatorname{Cos}(\theta)$

$$
\begin{aligned}
& F_{\text {T Rope, Box } X}=F_{\text {T Rope }, \text { Box }} * \operatorname{Cos} \theta \\
& F_{\text {T Rope, Box } X}=75 \mathrm{~N} * \operatorname{Cos}\left(32^{\circ}\right) \\
& F_{\text {T Rope, Box } X}=63.6 \mathrm{~N}
\end{aligned}
$$

