Newton's 2nd Law of Motion

 $\Sigma F = m^*a$

 $(\Sigma \mathbf{F} = F_{net} \text{ means the sum of all the forces acting on an object.})$

 $\Sigma F = F_{net} = All$ the force acting in the same plane (X, Y, $||, \perp$) = m*a

- Step 1 \rightarrow Write $\Sigma F_X = m^* a_X$ or $\Sigma F_{\parallel} = m^* a_{\parallel}$
- Step 2 → Replace ΣF with the names of the forces from the force diagram that are on the X-axis or the parallel axis
- Step 3 \rightarrow Repeat for the Y-direction. Write $\Sigma F_Y = m^* a_Y$ or $\Sigma F_{\perp} = m^* a_{\perp}$
- Step 4 \rightarrow Replace ΣF with the names of the forces from the force diagram that are on the Y-axis or the \perp axis.

Worksheet 1B

1. Static (Not on hillside) (a = 0)

4. Static (Not on hillside) (a = 0)

5. *Static* (Hillside No) (a = 0)

7. *Static* (Hillside yes) (a = 0)

8. *Static* (Hillside yes) (a = 0)

9. (Hillside yes) (a 🔪)

$\mathbf{F}_{\mathbf{net} \parallel} = \mathbf{m}^* \mathbf{a}_{\parallel}$	
$\mathbf{F}_{\mathbf{net}\perp} = \mathbf{m}^* \mathbf{a}_\perp$	

10. (Hillside yes) (a = 0)

19. (Hillside No) $(a_x = 2g)$

22. (Hillside No) (a =
$$+$$
)
 $F_{T Rp, Rk Y}$
 $F_{T Rp, Rk X}$
 $F_{T Rp, Rk X}$
 $F_{g E, Rk}$
 $F_{g E, Rk}$
 $F_{ret Y} = m * a_Y$

23. (Hillside No) (a = 🔨)

27. **(Hillside Yes) (a = ←)**

$$\mathbf{F}_{\mathbf{net} \parallel} = \mathbf{m}^* \mathbf{a}_{\parallel}$$
$$\mathbf{F}_{\mathbf{net} \perp} = \mathbf{m}^* \mathbf{a}_{\perp}$$

$$F_{net} = m^* a_X$$

$$F_{net} = m^* a_\perp$$

SOH CAH TOASine is Opposite / HypotenuseSin θ = Opp/HypCosine is Adjacent / HypotenuseCos θ = Adj/HypTangent is Opposite / AdjacentTan θ = Opp/Adj

Finding Opposite side of triangle –Sine: Sin (Angle θ)= Opposite Side / HypotenueseUse this form:Opp Side = Hyp * Sin (Angle)

$$F_{T \text{ Rope, Box } Y} = F_{T \text{ Rope, Box}} * \text{Sin } \theta$$

$$F_{T \text{ Rope, Box } Y} = 75 \text{ N} * \text{Sin } (32^{\circ})$$

$$F_{T \text{ Rope, Box } Y} = 39.7 \text{ N}$$

Finding Adjacent side of triangle – Cosine: Cos (Angle θ) = Adjacent / Hypotenuese Use this form: Adj = Hyp * Cos (θ)

 $F_{T \text{ Rope, Box } X} = F_{T \text{ Rope, Box}} * \text{ Cos } \theta$ $F_{T \text{ Rope, Box } X} = 75 \text{ N} * \text{ Cos } (32^{\circ})$ $F_{T \text{ Rope, Box } X} = 63.6 \text{ N}$