\qquad KEY \#: \qquad
Determine the x and y components of each of the force vectors below. Show work. Pay attention to when something should be negative. Make sure your calculator is in degrees. USE PENCIL!!!!! Draw in the vectors for Fx and Fy on the diagram.

Here is an example of what should be written for the equations.
Finding Opposite side of triangle - Sine: Opposite Side = Hypotenuese * Sin (Angle)
$\mathbf{F}_{\text {Tension } \mathrm{Y}}=\mathbf{F}_{\text {Tension }} * \operatorname{Sin} \theta \quad \mathbf{F}_{\text {Tension } \mathrm{Y}}=75 \mathrm{~N} * \operatorname{Sin}\left(\mathbf{3 2}{ }^{\circ}\right) \quad \mathbf{F}_{\text {Tension } \mathrm{Y}}=\mathbf{3 9 . 7} \mathbf{N}$
Finding Adjacent side of triangle - Cosine: Adjacent = Hypotenuese * Cos (Angle)

$$
\mathbf{F}_{\text {Tension } \mathrm{X}}=\mathbf{F}_{\text {Tension }} * \operatorname{Cos} \theta \quad \mathbf{F}_{\text {Tension } \mathrm{X}}=75 \mathrm{~N} * \operatorname{Cos}\left(32^{\circ}\right) \quad \mathbf{F}_{\text {Tension } \mathrm{X}}=63.6 \mathrm{~N}
$$

1.	$\begin{aligned} & \mathbf{F}_{\text {Tension } Y}=\mathbf{F}_{\text {Tension }} * \operatorname{Sin} \theta \quad F_{\text {Tension } Y}=12 \mathrm{~N} * \operatorname{Sin}\left(60^{\circ}\right) \\ & \hline \mathrm{F}_{\text {Tension } \mathrm{Y}}=10.4 \mathrm{~N} \\ & \mathbf{F}_{\text {Tension } \mathrm{X}}=\mathrm{F}_{\text {Tension }} * \operatorname{Cos} \theta \quad \mathrm{~F}_{\text {Tension } \mathrm{X}}=12 \mathrm{~N} * \operatorname{Cos}\left(60^{\circ}\right) \\ & \mathbf{F}_{\text {Tension } \mathrm{X}}=\mathbf{6 . 0 \mathrm { N }} \\ & \hline \end{aligned}$
2.	$\begin{array}{ll} \mathbf{F}_{\text {Tension } Y}=\mathbf{F}_{\text {Tension }} * \operatorname{Sin} \theta & \mathbf{F}_{\text {Tension } Y}=15 \mathrm{~N} * \operatorname{Sin}\left(20^{\circ}\right) \\ \mathbf{F}_{\text {Tension } Y}=5.13 \mathrm{~N} \\ \mathbf{F}_{\text {Tension } X}=\mathbf{F}_{\text {Tension }} * \operatorname{Cos} \theta & \mathbf{F}_{\text {Tension } X}=15 \mathrm{~N} * \operatorname{Cos}\left(20^{\circ}\right) \\ \mathbf{F}_{\text {Tension } X}=-14.1 \mathrm{~N} \\ \hline \end{array}$
3.	
	$\mathbf{F}_{\text {App Person } \mathrm{Y}}=\mathbf{F}_{\text {App Person }} * \operatorname{Sin} \theta \quad \mathbf{F}_{\text {App Person } \mathrm{Y}}=\mathbf{1 0} \mathrm{N} * \operatorname{Sin}\left(\mathbf{1 5}^{\circ}\right)$ $F_{\text {App Person } Y}=\mathbf{- 2 . 5 9 ~ N}$ $\begin{aligned} & \mathbf{F}_{\text {App Person } \mathrm{X}}=\mathbf{F}_{\text {A Person, Cart }} * \operatorname{Cos} \theta \quad \mathbf{F}_{\text {App Person } \mathrm{X}}=12 \mathrm{~N} * \operatorname{Cos}\left(\mathbf{1 5}^{\circ}\right) \\ & \mathrm{F}_{\text {App Person } \mathrm{X}}=-\mathbf{9 . 6 6} \mathrm{N} \end{aligned}$

App Person, Y
5. Example of a Newton's $2^{\text {nd }} \operatorname{Law}\left(\mathbf{F}_{\text {rope, box } \mathbf{X}-\mathbf{F}}^{\text {surface, box } \|} \|=\mathbf{m} * \mathbf{a}_{\mathrm{x}}\right)$

A person pulls on a $50 . \mathrm{kg}$ desk with a $200 . \mathrm{N}$ force acting at 30.0° angle above the horizontal. The desk does not budge. Draw a force diagram for the desk.

a. Write the equation $\left(\mathbf{F}_{\mathbf{n e t} \mathbf{X}}=\mathbf{m a}_{\mathbf{x}}\right)$ that describes the forces that act in the x -direction. (Hint: Write all the forces in the x-direction on the left-side of equation equal to $m * a_{x}$)

$$
\Sigma F_{\mathrm{x}}=\mathbf{m} * \mathbf{a}_{\mathrm{x}} \quad+\mathbf{F}_{\mathrm{App} \text { Person } \mathrm{x}}-\mathrm{F}_{f}=\mathbf{m * / \mathbf { a } _ { \mathrm { x } } ^ { \prime 0 }}
$$

b. Write the equation $\left(\mathbf{F}_{\text {net }} \mathbf{Y}=\mathbf{m a}_{\mathbf{y}}\right)$, that describes the forces, which act in the y -direction. (Hint: Write all the forces in the y-direction on the left-side of equation equal to $m^{*} a_{x}$)
$\boldsymbol{\Sigma} \mathbf{F}_{Y}=\mathbf{m}^{*} \mathbf{a}_{\mathbf{Y}}+\mathbf{F}_{\mathrm{N}}+\mathbf{F}_{\text {App Person } Y}-\mathbf{F}_{\mathrm{g}}=\mathbf{m}^{*} \boldsymbol{q}_{\mathbf{Y}}^{0}$
c. Determine the x and y components of the force of person on the desk. (Hint: Sine \& Cosine will be used.)
$\mathbf{F}_{\text {App Person } \mathrm{X}}=\mathrm{F}_{\text {App Person }} * \cos (\theta)$
$\mathbf{F}_{\text {App Person } X}=200 . N^{*} \cos \left(30.0^{\circ}\right)$
$\mathrm{F}_{\text {App Person } \mathrm{X}}=173.2 \mathrm{~N}$
$\mathbf{F}_{\text {App Person } Y}=\mathbf{F}_{\text {Person, Desk }} * \sin (\theta) \quad \mathbf{F}_{\text {App Person } Y}=\mathbf{2 0 0 .} \mathbf{N} * \sin \left(\mathbf{3 0 . 0}{ }^{\boldsymbol{0}}\right)$
$\mathrm{F}_{\text {App Person } \mathrm{Y}}=100$. N
d. Determine the value of the frictional force. Do the same for the normal force. (Hint: Part $A, B, \& C$ are used here.)
$\mathrm{F}_{\text {App Person } \mathrm{X}}-\mathrm{F}_{f}=\mathbf{m} * \boldsymbol{1}_{\mathrm{x}}^{0} \quad \mathrm{~F}_{\text {App Person } \mathrm{X}}=\mathrm{F}_{f} \quad \mathrm{~F}_{f}=\mathbf{1 7 3 . 2} \mathrm{N} \quad$ Friction Force
$\mathrm{F}_{\mathrm{N}}+\mathrm{F}_{\text {App Person } \mathrm{Y}}-\mathrm{F}_{\mathrm{g}}=\mathrm{m} * \mathbf{Y}^{0}$
Force of Earth $F_{g}=\mathbf{m} * g \quad g=10 \mathrm{~N} / \mathrm{kg}=10 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}_{\mathrm{N}}(\leftarrow$ Normal Force $)=\mathbf{m * g}-\mathrm{F}_{\text {App Person }} \mathrm{Y}$
$\mathrm{F}_{\mathrm{N}}=50.0 \mathrm{~kg} * 10 . \mathrm{N} / \mathrm{kg}-100 . \mathrm{N}$
$F_{N}=500 \mathrm{~N}-100 . \mathrm{N}$
$F_{\mathrm{N}}=400 . \mathrm{N}$
©Modeling Workshop Project 2010
6. Suppose in the diagram above, the person were pushing down at a 30° angle with 200 N of force. The desk still does not move. Draw a force diagram for the desk. (Hint: This is the same as problem \#5

a. Write the equation $\left(\mathbf{F}_{\mathbf{n e t}}=\mathbf{m a}_{\mathbf{x}}\right)$ that describes the forces that act in the x-direction.
$\boldsymbol{\Sigma} \boldsymbol{F}_{\mathrm{x}}=\mathbf{m} \mathbf{a}_{\mathrm{x}}$
$\mathbf{F}_{\text {App Person }} \mathbf{x}-\mathbf{F}_{f}=\mathbf{m} * \mathbf{a}_{\mathbf{x}}$
b. Write the equation $\left(\mathbf{F}_{\text {net }}=\mathbf{m a} \mathbf{a}_{\mathbf{y}}\right)$ that describes the forces that act in the y-direction.
$\boldsymbol{\Sigma} \mathbf{F}_{\mathbf{Y}}=\mathbf{m *} \mathbf{a}_{\mathbf{Y}} \quad \mathbf{F}_{\mathbf{N}}-\mathbf{F}_{\text {App Person } \mathbf{Y}}-\mathbf{F}_{\mathrm{g}}=\mathbf{m} * \mathbf{a}_{\mathbf{Y}}$
c. Determine the value of the frictional force. Do the same for the normal force.

$$
\mathbf{F}_{\text {App Person } \mathrm{X}}-\mathbf{F}_{f}=\mathbf{m} * \mathbf{a}_{\mathbf{x}} \quad \mathbf{F}_{\text {App Person } \mathrm{X}}=\mathbf{F}_{f}
$$

$\mathrm{F}_{f}=173.2 \mathrm{~N}$
$\mathbf{F}_{\mathrm{N}}-\mathbf{F}_{\text {App Person } \mathrm{Y}}-\mathbf{F}_{\mathrm{g}}=\mathbf{m}^{*} \mathbf{a}_{\mathbf{Y}}$
$\mathbf{F}_{\mathbf{N}}=\mathbf{m} * \mathbf{g}+\mathbf{F}_{\text {App Person } \mathbf{Y}}$
$\mathrm{F}_{\mathrm{N}}=50.0 \mathrm{~kg} * 10 . \mathrm{N} / \mathrm{kg}+100 . \mathrm{N}$
$F_{\mathrm{N}}=\mathbf{5 0 0} \mathrm{N}+\mathbf{1 0 0} . \mathrm{N}$
$\mathrm{F}_{\mathrm{N}}=\mathbf{6 0 0} . \mathrm{N}$

