UNIT III: Review

Name: \qquad \#: \qquad
Use the graph below to answer questions \#1-4 that follow:

1. Give a written description to describe the motion of this object. $X(m){ }^{\boldsymbol{4}}$

2. Explain how you could determine the instantaneous velocity of the object at $\mathbf{t}=2 \mathrm{~s}$.
3. Draw the motion map for the object. Include velocity and acceleration vectors
answer: \qquad
4. A Pontiac Trans-Am, initially at rest, accelerates at a constant rate of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ for 6 s . How fast will the car be traveling at $\mathbf{t}=6 \mathrm{~s}$?
Initial Formula work (w/ units)
Information
answer: \qquad
5. A tailback initially running at a velocity of $5.0 \mathrm{~m} / \mathrm{s}$ becomes very tired and slows down at a uniform rate of $0.25 \mathrm{~m} / \mathrm{s}^{2}$. How fast will he be running after going an additional 10 meters?

Initial
 Formula Information

 work (w/ units)\qquad
7. For each of the position vs time graphs shown below, draw the corresponding v vs \mathbf{t}, a vs \mathbf{t}, and motion

map.

8. Using the graph below, compare the kinematic behavior of the two objects.

is $A>B, A<B$, or $A=B$,
How do you know?
a. Displacement at 3 s
b. Average velocity from 0-3 s
c. Instantaneous velocity at 3 s

2	Unit III Review v3.0	

