	 D	
UNIT	 ncv	ICVV

Name:

Use the graph below to answer questions #1-4 that follow:

1. Give a written description to describe the motion of this object. X (m)

- 2. Explain how you could determine the instantaneous velocity of the object at t = 2 s.
- 3. Draw the motion map for the object. Include velocity and acceleration vectors 10 t (s)

4. Assume the initial velocity was 50 m/s; determine the acceleration of the object.

Initial

work (w/ units)

Information

5. A Pontiac Trans-Am, initially at rest, accelerates at a constant rate of 4.0 m/s² for 6 s. How fast will the car be traveling at t = 6 s?

Initial

Formula

Formula

work (w/ units)

Information

answer:____

6. A tailback initially running at a velocity of 5.0 m/s becomes very tired and slows down at a uniform rate of 0.25 m/s². How fast will he be running after going an additional 10 meters?

Initial

Formula

work (w/ units)

Information

answer:

7. For each of the position vs time graphs shown below, draw the corresponding \mathbf{v} vs \mathbf{t} , \mathbf{a} vs \mathbf{t} , and \mathbf{motion}

Œ

8. Using the graph below, compare the kinematic behavior of the two objects.

Comparison:

is A > B, A < B, or A = B,

How do you know?

- a. Displacement at 3 s
- b. **Average** velocity from 0 3 s
- c. **Instantaneous** velocity at 3 s

