Circular Motion

AP Physics C

Speed/Velocity in a Circle

Consider an object moving in a circle
 around a specific origin. The DISTANCE the object covers in ONE REVOLUTION is called the CIRCUMFERENCE. The TIME that it takes to cover this distance is called the PERIOD.

$$
\bar{S}_{\text {circle }}=\frac{d}{T}=\frac{2 \pi r}{T}
$$

Speed is the MAGNITUDE of the velocity. And while the speed may be constant, the VELOCITY is NOT. Since velocity is a vector with BOTH magnitude AND direction, we see that the direction o the velocity is ALWAYS changing.

We call this velocity, TANGENTIAL velocity as its direction is draw TANGENT to the circle.

Centripetal Acceleration

Suppose we had a circle with angle, θ, between 2
 radaii. You may recall:

$$
\begin{array}{ll}
\theta=\frac{s}{r} & \theta=\frac{s}{r}=\frac{\Delta v}{v} \\
s=\operatorname{arc} \text { length in meters } & S=\Delta v t
\end{array}
$$

$\frac{v^{2}}{r}=\frac{\Delta v}{t}=a_{c}$
$a_{c}=$ centripetal acceleration
Centripetal means "center seeking" so that means that the acceleration points towards the CENTER of the circle

Drawing the Directions correctly

So for an object traveling in a counter-clockwise path. The
 velocity would be drawn TANGENT to the circle and the acceleration would be drawn TOWARDS the CENTER.

To find the MAGNITUDES of each we have:

$$
v_{c}=\frac{2 \pi r}{T} \quad a_{c}=\frac{v^{2}}{r}
$$

Circular Motion and N.S.L

Recall that according to Newton's Second Law, the acceleration is directly proportional to the Force. If this is true:

$$
\begin{aligned}
& F_{N E T}=m a \quad a_{c}=\frac{v^{2}}{r} \\
& F_{N E T}=F_{c}=\frac{m v^{2}}{r} \\
& F_{c}=\text { Centripetal Force }
\end{aligned}
$$

Since the acceleration and the force are directly related, the force must ALSO point towards the center. This is called CENTRIPETAL FORCE.

NOTE: The centripetal force is a NET FORCE. It could be represented by one or more forces. So NEVER draw it in an F.B.D.

Examples

The blade of a windshield wiper moves through an angle of 90 degrees in 0.28 seconds. The tip of the blade moves on the arc of a circle that has a radius of 0.76 m . What is the magnitude of the centripetal acceleration of the tip of the blade?

$$
\begin{aligned}
v_{c}=\frac{2 \pi r}{T} & v_{c}=\frac{2 \pi(.76)}{(.28 * 4)}=4.26 \mathrm{~m} / \mathrm{s} \\
a_{c} & =\frac{v^{2}}{r}=\frac{(4.26)^{2}}{0.76}=23.92 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Examples

What is the minimum coefficient of static friction necessary to allow a penny to rotate along a 33 $1 / 3 \mathrm{rpm}$ record (diameter= 0.300 m), when the penny is placed at the outer edge of the record?

$$
F_{f}=F_{c}
$$

$$
\xrightarrow[\mathrm{mg}]{\stackrel{F_{\mathrm{N}}}{\mathrm{~F}_{\mathrm{f}}}}
$$

$$
\mu F_{N}=\frac{m v^{2}}{r}
$$

$\mu m g=\frac{m v^{2}}{r}$

$$
\begin{aligned}
& 33.3 \frac{r e v}{\min } * \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=0.555 \mathrm{rev} / \mathrm{sec} \\
& \frac{1 \mathrm{sec}}{0.555 \mathrm{rev}}=1.80 \mathrm{sec} / \mathrm{rev}=T \\
& v_{c}=\frac{2 \pi r}{T}=\frac{2 \pi(0.15)}{1.80}=0.524 \mathrm{~m} / \mathrm{s} \\
& \mu=\frac{v^{2}}{r g}=\frac{(0.524)^{2}}{(0.15)(9.8)}=0.187
\end{aligned}
$$

Examples

The maximum tension that a 0.50 m string can tolerate is 14 N . A $0.25-\mathrm{kg}$ ball attached to this string is being whirled in a vertical circle. What is the maximum speed the ball can have (a) the top of the circle,
 (b)at the bottom of the circle?

$$
\begin{aligned}
& F_{N E T}=F_{c}=m a_{c}=\frac{m v^{2}}{r} \\
& T+m g=\frac{m v^{2}}{r} \rightarrow r(T+m g)=m v^{2} \\
& v=\sqrt{\frac{r(T+m g)}{m}}=\sqrt{\frac{0.5(14+(0.25)(9.8))}{0.25}} \\
& v=5.74 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Examples

At the bottom?

$$
\begin{aligned}
& F_{N E T}=F_{c}=m a_{c}=\frac{m v^{2}}{r} \\
& T-m g=\frac{m v^{2}}{r} \rightarrow r(T-m g)=m v^{2} \\
& v=\sqrt{\frac{r(T-m g)}{m}}=\sqrt{\frac{0.5(14-(0.25)(9.8))}{0.25}} \\
& v=4.81 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

