Constants AP[®] PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27}$ kg	Electron charge magnitude,	$e = 1.60 \times 10^{-19} \text{ C}$
Neutron mass, $m_n = 1.67 \times 10^{-27}$ kg	Coulomb's law constant,	$k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Universal gravitational constant,	$G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg}\cdot\text{s}^2$
Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$	Acceleration due to gravity at Earth's surface,	$g = 9.8 \text{ m/s}^2$

	meter,	m	kelvin,	Κ	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	С	A	
SYMBOLS	second,	S	newton,	Ν	volt,	V	Units	
	ampere,	А	joule,	J	ohm,	Ω		

PREFIXES						
Factor	Prefix	Symbol				
10 ¹²	tera	Т				
10 ⁹	giga	G				
10 ⁶	mega	М				
10 ³	kilo	k				
10 ⁻²	centi	с				
10^{-3}	milli	m				
10 ⁻⁶	micro	μ				
10 ⁻⁹	nano	n				
10 ⁻¹²	pico	р				

Metric Units Stuff

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
sin $ heta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done <u>on</u> a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

AP[®] PHYSICS 1 EQUATIONS

	ME	CHANICS	ELECTRICITY		
	$v_x = v_{x0} + a_x t \mathbf{A}$ $x = x_0 + v_{x0}t + \frac{1}{2}a_x t^2$	d - distance		$\left \vec{F}_{E}\right = k \left \frac{q_{1}q_{2}}{r^{2}}\right \qquad \mathbf{N}$ $I = \frac{\Delta q}{\Delta t} \qquad \mathbf{O}$	A = area F = force I = current $\ell = \text{length}$
3)	$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	F = force	32)	$R = \frac{\rho \ell}{A}$	P = power q = charge
4)	$\vec{a} = \frac{\sum F}{m} = \frac{F_{net}}{m}$	K = kinetic energy k = spring constant	33)	$I = \frac{\Delta V}{R}$	R = resistance r = separation t = time
5)	$\left \vec{F}_{f}\right \leq \mu \left \vec{F}_{n}\right $ B			$P = I \Delta V$ $P = \sum P$	V = electric potential $\rho =$ resistivity!
-		$\ell = \text{length}$ $m = \text{mass}$	35)	$R_s = \sum_i R_i$ P	p = resistivity
	$a_c = \frac{v^2}{r} \qquad \mathbf{C}$	P	36)	$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$	
7)	$\vec{p} = m\vec{v}$	r = radius or separation T = period			
8)	$\Delta \vec{p} = \vec{F} \Delta t$	T = period $t = time$ $U = potential energy$		V	AVES fraguency
9)	$K = \frac{1}{2}mv^2$		37)	$\lambda = \frac{v}{f}$ $v =$	frequency speed wavelength
10)	$\Delta E = W = F_{\parallel}d = Fd\cos\theta$	W = work done on a system	n	GEOMETRY AND	TRIGONOMETRY
11)	$P = \frac{\Delta E}{\Delta t}$	x = position y = height $\alpha = \text{angular acceleration}$		Rectangle $A = bh$	A = area C = circumference V = volume
12)	$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$			Triangle $A = \frac{1}{2}bh$	S = surface area b = base
13)	$\omega = \omega_0 + \alpha t \qquad \mathbf{F}$	τ = torque		_	h = height $\ell = \text{length}$
14)	. (* * * *	ω = angular speed		Circle R	w = width
Í	$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	23) $\Delta U_g = mg \Delta y$ K		$A = \pi r^2$ $C = 2\pi r$	r = radius
	$\frac{I}{\tau = r_{\perp}F = rF\sin\theta} \mathbf{G}$	$T = \frac{2\pi}{\omega} = \frac{1}{f}$	-	Rectangular solid $V = \ell w h$	Right triangle $c^2 = a^2 + b^2$
17)	$L = I\omega$	25) $T_s = 2\pi \sqrt{\frac{m}{k}}$ L		Cylinder	$\sin\theta = \frac{a}{a}$
18)	$\Delta L = \tau \Delta t \qquad \qquad __$	$23) r_s = 2\pi \sqrt{k}$		$V = \pi r^2 \ell$	С
19)	\mathbf{H} $K = \frac{1}{2}I\omega^2$	$\mathbf{26)} T_p = 2\pi \sqrt{\frac{\ell}{g}}$		$S = 2\pi r\ell + 2\pi r^2$	$\cos\theta = \frac{b}{c}$ $\tan\theta = \frac{a}{b}$
20)	$\left \vec{F}_{s}\right = k\left \vec{x}\right $	27) $\left \vec{F}_{g}\right = G \frac{m_{1}m_{2}}{r^{2}}$		Sphere $V = \frac{4}{3}\pi r^3$	
21)	$U_s = \frac{1}{2}kx^2$	28) $\vec{g} = \frac{\vec{F}_g}{m}$ M		$S = 4\pi r^2$	θ 90° b
22)	$ \rho = \frac{m}{V} \qquad \mathbf{J} $	$29) U_G = -\frac{Gm_1m_2}{r}$			

- A = Kinematic Equations (Accelerated Motion)
- **B** = Newton's 2nd Law & Friction
- **C** = **Centripetal Acceleration**
- **D** = Momentum & Impulse (Pi = Pf)
- **E** = Kinetic Energy, Work, & Power
- **F** = Circular Accelerated Motion / Simple Harmonic Motion
- **G** = Angular Acceleration / Torque
- H = Angular Momentum / Kinetic Rotational Motion
- I = Force of a Spring / Potential Energy of Spring
- **J** = **Density**
- **K** = Gravitational Potential Energy (Version 1)
- L = Period (Time for 1 cycle) / Frequency, Period of Spring, Period of Pendulum
- M = Newton's Universal Gravity Law, Fg, Gravitational Potential Energy (Version 2)
- N = Coulomb's Law (Force between 2 charged objects)
- **O** = Electrical Current / Resistance of an Object
- P = Circuits (Current Ohm's Law, Power, Resistance Series, Resistance Parallel)
- **Q** = Wavelength vs Frequency Relationship
- **R** = Fundemental Math Relationships in AP Physics 1