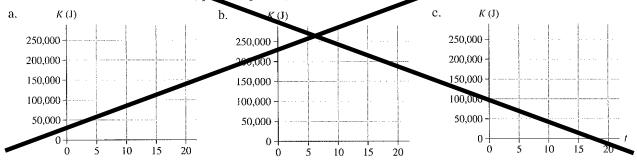
10 Energy

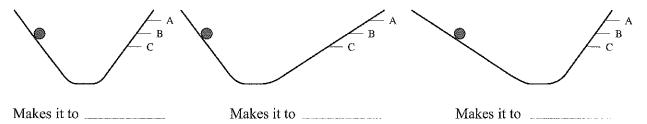

Name:			

10.2 Kinetic Energy and Gravitational Potential Energy

10.3 A Closer Look at Gravitational Potential Energy

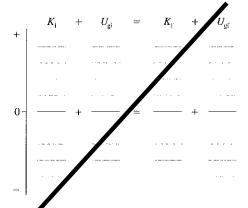
- 1. On the axes below, draw graphs of the kinetic energy of
 - a. A 1000 kg car that uniformly accelerates from 0 to 20 m/s in 20 s.
 - b. A 1000 kg car moving at 20 m/s that brakes to a halt with uniform deceleration in 28 s
 - c. A 1000 kg car that drives once around a 130-m-diameter circle at a speed of 20 m/s.

Calculate K at several times, plot the points, and draw a smooth curve between them.

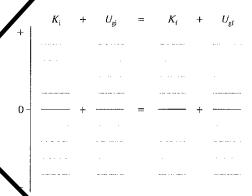

2. Below we see a 1 kg object that is initially 1 m above the ground and rises to a height of 2 m. Anjay, Brittany, and Carlos each measure its position, but each of them uses a different coordinate system. Fill in the table to show the initial and final gravitational potential energies and ΔU as measured by our three aspiring scientists.

		Anjay	Brittany	Carlos
- 3	Ends here			-0
2 m	Starts here	e	-0	
		0		

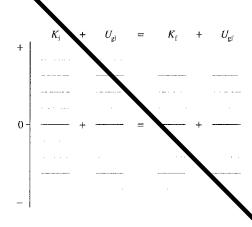
	U_{i}	$U_{ m f}$	ΔU
Anjay			
Brittany			
Carlos			

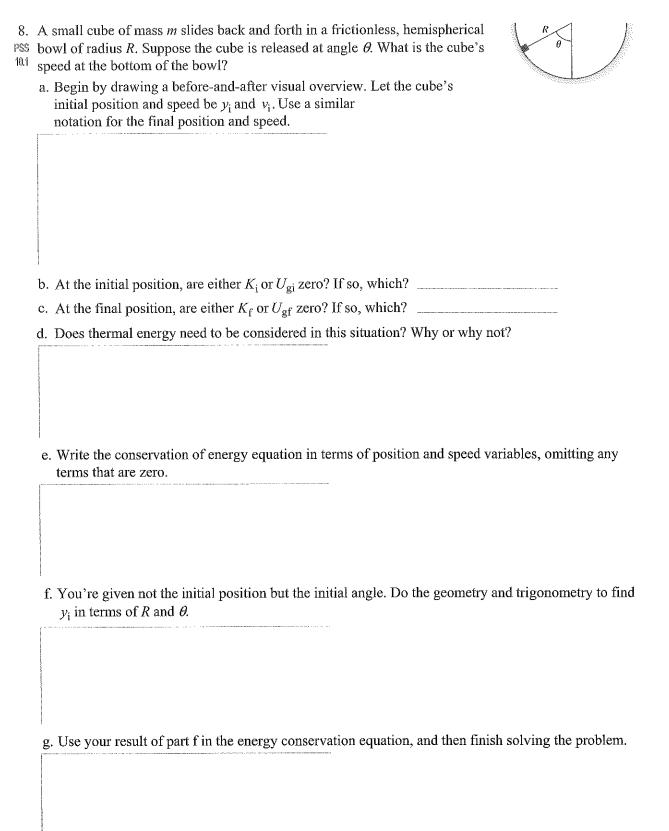

- 3. A roller coaster car rolls down a frictionless track, reaching speed v_f at the bottom.
 - a. If you want the car to go twice as fast at the bottom, by what factor must you increase the height of the track?
 - b. Does your answer to part a depend on whether the track is straight or not? Explain.

4. Below are shown three frictionless tracks. A ball is released from rest at the position shown on the left. To which point does the ball make it on the right before reversing direction and rolling back? Point B is the same height as the starting position.

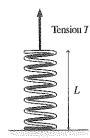


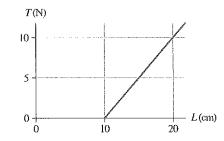
Exercises 5–7: Draw an energy bar chart to show the energy transformations for the situation described.


5. A car runs out of gas and coasts up a hill until finally stopping.



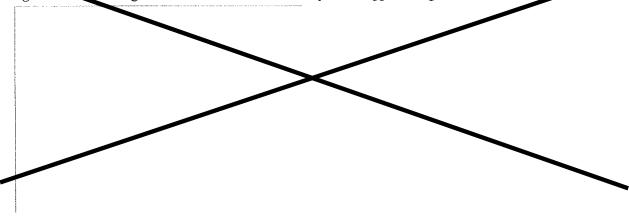
6. A pendulum is held out at 45° and released from rest. A short time later it swings through the lowest point on its arc.


7. A ball starts from rest on the top of one hill, rolls without friction through a valley, and just barely makes it to the top of an adjacent hill.



10.4 Restoring Forces and Hooke's Law

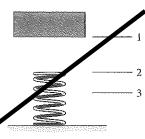
9. A spring is attached to the floor and pulled straight up by a string. The string's tension is measured. The graph shows the tension in the string as a function of the spring's length L.



a. Does this spring obey Hooke's Law? Explain why or why not.

b. If it does, what is the spring constant?

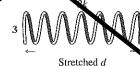
10. Brow a figure analogous to Figure 10.15 in the textbook for a spring that is attached to a wall on the *right* end. Use the figure to show that F and Δs always have opposite signs.

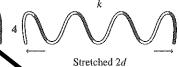


11. A spring has an 11 cm.	unstretched length of 10 cm. It exerts a restoring force F when stretched to a length of	f
a. For what ler	gth of the spring is its restoring force 3F?	
b. At what con	pressed length is the restoring force 2F?	
stretches the sp Each pulls on h	a spring is attached to a wall. When Bob pulls on the right end with a 200 N force, he ring by 20 cm. The same spring is then used for a tug-of-war between Bob and Carlos. is end of the spring with a 200 N force.	
a. How far doe	s Bob's end of the spring move? Explain.	
b. How far doe	s Carlos's end of the spring move? Explain.	

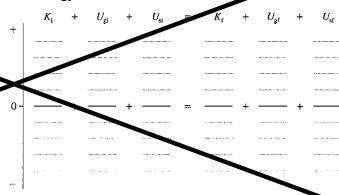
10.5 Elastic Potential Energy


13. A heavy object is released from rest at position 1 above a spring. It falls and contacts the spring at position 2. The spring achieves maximum compression at position 3. Fill in the table below to indicate whether each of the quartities are +, -, or 0 during the intervals $1\rightarrow 2$, $2\rightarrow 3$, and $1\rightarrow 3$.


	1→2	2→3	1→3
ΔK			
$\Delta U_{ m g}$			
$\Delta U_{ m s}$			



14. Rank in order, from most to least, the amount of elastic potential energy $(U_s)_1$ to $(U_s)_4$ stored in each of these springs.


Order:

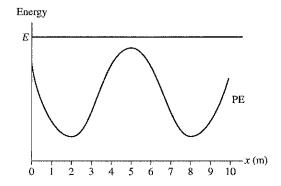
Explanation:

- 15. A spring gun shoots out a plastic ball at speed v_0 . The spring is then compressed twice the distance it was on the first shot.
 - a. By what factor is the spring's potential energy increased?
 - b. By what factor is the ball's launch speed increased? Explain.

Exercises 16–17: Draw an energy bar chart to show the energy transformations for the situation described.

16. A bobsled sliding across frictionless, horizontal ice runs into a giant spring. A short time later the spring reaches its maximum compression.

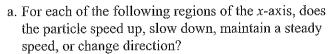
17. A brick is held above a spring that is standing on the ground. The brick is released from rest, and a short time later the spring reaches its maximum compression.


+	<i>K</i> _i	+	U_{gi}	+	$U_{ m si}$	=	$K_{\mathfrak{l}}$	+	$U_{ m gf}$		$U_{ m sf}$
	4		Andrew Market and the state of				***************************************				
			A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. ~		artifles : 1 harts : %				A official conference from
S		+		+		=		+		+	
i											
	,					•			100 21 12 1		****

10.6 Energy Diagrams

18. A particle with the potential energy shown in the graph is moving to the right at x = 0 m with total energy E.

a. At what value or values of x is the particle's speed a maximum?

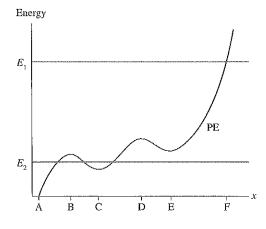

b. At what value or values of x is the particle's speed a minimum?

c. At what value or values of x is the potential energy a maximum?

d. Does this particle have a turning point in the range of x covered by the graph? If so, where?

© 2013 Pearson Education.

19. The figure shows a potential-energy curve. Suppose a particle with total energy E_1 is at position A and moving to the right.


A to B

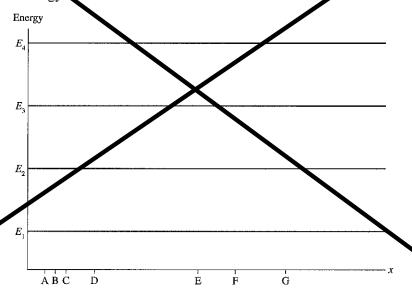
B to C

C to D

D to E

E to F

b. Where is the particle's turning point?


c. For a particle that has total energy E_2 , what are the possible motions and where do they occur along the x-axis?

d. What position or positions are points of stable equilibrium? For each, would a particle in equilibrium at that point have total energy $\leq E_2$, between E_2 and E_1 , or $\geq E_1$?

e. What position or positions are points of unstable equilibrium? For each, would a particle in equilibrium at that point have total energy $\leq E_2$, between E_2 and E_1 , or $\geq E_1$?

- 20. Below are a set of axes on which you are going to draw a potential-energy curve. By doing experipents, you find the following information:
 - A particle with energy E_1 oscillates between positions D and E.
 - A particle with energy E_2 oscillates between positions C and F.
 - A particle with energy E_3 oscillates between positions B and G.
 - A particle with evergy E_4 enters from the right, bounces at A, then never returns.

Draw a potential-energy surve that is consistent with this information

10.7 Elastic Collisions

- 21. Ball 1 with an initial speed of 14 m/s has a perfectly elastic collision with ball 2 that is initially at rest. Afterward, the speed of ball 2 is 21 m/s.
 - a. What will be the speed of ball 2 if the initial speed of ball 1 is doubled?

b. What will be the speed of ball 2 if the mass of ball 1 is doubled?