ADVANCED PLACEMENT PHYSICS C TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

 $e = 1.60 \times 10^{-19} \text{ C}$ Electron charge magnitude,

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

 $c = 3.00 \times 10^8 \text{ m/s}$ Speed of light,

Universal gravitational

 $G = 6.67 \times 10^{-11} (\text{N} \cdot \text{m}^2)/\text{kg}^2$ constant,

Acceleration due to gravity

 $g = 9.8 \text{ m/s}^2$ at Earth's surface,

1 unified atomic mass unit.

 $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$

 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$ Planck's constant,

 $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$

 $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 / (\mathrm{N} \cdot \mathrm{m}^2)$ Vacuum permittivity,

Coulomb's law constant, $k = 1/(4\pi\varepsilon_0) = 9.0 \times 10^9 \text{ (N·m}^2)/\text{C}^2$

 $\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$ Vacuum permeability,

Magnetic constant, $k' = \mu_0/(4\pi) = 1 \times 10^{-7} \text{ (T-m)/A}$

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$ 1 atmosphere pressure,

UNIT SYMBOLS	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
	second,	S	newton,	N	volt,	V	degree Celsius,	°C
	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES					
Factor	Prefix	Symbol			
10 ⁹	giga	G			
10 ⁶	mega	M			
10 ³	kilo	k			
10^{-2}	centi	С			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10^{-9}	nano	n			
10^{-12}	pico	p			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following assumptions are used in this exam.

- I. The frame of reference of any problem is inertial unless otherwise
- The direction of current is the direction in which positive charges would drift.
- III. The electric potential is zero at an infinite distance from an isolated point charge.
- IV. All batteries and meters are ideal unless otherwise stated.
- V. Edge effects for the electric field of a parallel plate capacitor are negligible unless otherwise stated.

ADVANCED PLACEMENT PHYSICS C EQUATIONS

MECHANICS					
$v_x = v_{x0} + a_x t$	a = acceleration E = energy				
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	F = force				
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	f = frequency				
$v_x - v_{x0} + 2u_x(x - x_0)$	h = height				
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	I = rotational inertia				
$a = \frac{m}{m} = \frac{m}{m}$	J = impulse K = kinetic energy				
$\rightarrow d\vec{n}$	k = spring constant				
$\vec{F} = \frac{d\vec{p}}{dt}$	$\ell = length$				
→	L = angular momentum				
$\vec{J} = \int \vec{F} dt = \Delta \vec{p}$	m = mass P = power				
$\vec{p} = m\vec{v}$	p = momentum				
p = mv	r = radius or distance				
$\left \vec{F}_f \right \le \mu \vec{F}_N $	T = period				
	t = time				
$\Delta E = W = \int \vec{F} \cdot d\vec{r}$	U = potential energy				
1 2	v = velocity or speed W = work done on a system				
$K = \frac{1}{2}mv^2$	x = position				
dF	$\mu = \text{coefficient of friction}$				
$P = \frac{dE}{dt}$	θ = angle				
_ → _	τ = torque ω = angular speed				
$P = \vec{F} \cdot \vec{v}$	α = angular acceleration				
$\Delta U_g = mg\Delta h$	ϕ = phase angle				
$a_c = \frac{v^2}{r} = \omega^2 r$	$\vec{F}_{s} = -k\Delta \vec{x}$				
$a_c = \frac{r}{r} = \omega^2 r$	$1 L(\Lambda_{-})^2$				
$\vec{\tau} = \vec{r} \times \vec{F}$	$U_{s} = \frac{1}{2} k \left(\Delta x \right)^{2}$				
	$x = x_{\max} \cos(\omega t + \phi)$				
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	$T = \frac{2\pi}{\omega} = \frac{1}{f}$				
$I = \int r^2 dm = \sum mr^2$	$T_s = 2\pi \sqrt{\frac{m}{k}}$				
$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$				
$v = r\omega$	$^{\nu}$ $\bigvee g$				
$\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}$	$\left \vec{F}_G \right = \frac{Gm_1m_2}{r^2}$				
$K = \frac{1}{2}I\omega^2$	$U_G = -\frac{Gm_1m_2}{r}$				

 $\omega = \omega_0 + \alpha t$

 $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$

ELECTRICITY	AND MAGNETISM
$\left \vec{F}_E \right = \frac{1}{4\pi\varepsilon_0} \left \frac{q_1 q_2}{r^2} \right $	A = area
$ e^{-E} 4\pi \varepsilon_0 r^2 $	B = magnetic field
→	C = capacitance
$\vec{E} = \frac{\vec{F}_E}{a}$	d = distance
q	E = electric field
	$\varepsilon = \text{emf}$
$\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$	F = force
, $oldsymbol{arepsilon}_0$	I = current
dV	J = current density
$E_x = -\frac{dV}{dx}$	L = inductance
ил	$\ell = length$
$\Delta V = -\int \vec{E} \cdot d\vec{r}$	n = number of loops of wire
J	per unit length
$1 \mathbf{\nabla} g_i$	N = number of charge carriers
$V = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i}$	P = power
i = 0 i i	Q = charge
$1 q_1q_2$	q = point charge
$U_E = qV = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$	q = point enarge $R = resistance$
Ü	r = radius or distance
$\Delta V = \frac{Q}{C}$	t = time
$\Delta V = \overline{C}$	U = potential or stored energy
va 1	
$C = \frac{\kappa \varepsilon_0 A}{d}$	V = electric potential
а	v = velocity or speed
$C_p = \sum_{i} C_i$	$\rho = \text{resistivity}$
$p = \frac{1}{i}$	$\Phi = \text{flux}$
1 _ 1	κ = dielectric constant
$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$	$\vec{F}_M = q\vec{v} \times \vec{B}$

	$-\Sigma^{\frac{1}{2}}$	→
- =	$-\frac{\sum_{i}\overline{C_{i}}}{C_{i}}$	$F_{\underline{c}}$

$$= \frac{dQ}{dt} \qquad \qquad \oint \vec{B} \cdot d\vec{\ell} = \mu_0 \vec{R}$$

$$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$$

$$\vec{F}_M = q\vec{v} \times \vec{B}$$

$$I = \frac{dQ}{dt}$$

$$\psi \vec{B} \cdot d\vec{\ell} = \mu_0 I$$

$$U_C = \frac{1}{2} Q \Delta V = \frac{1}{2} C (\Delta V)^2$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{\ell} \times \hat{r}}{r^2}$$

$$R = \frac{\rho \ell}{A}$$

$$\vec{F} = \int I d\vec{\ell} \times \vec{B}$$

$$\vec{E} = \rho \vec{J}$$

$$I = Nev_d A$$

$$Q_B = \int \vec{B} \circ d\vec{A}$$

$$I = \frac{\Delta V}{R}$$

$$R_s = \sum_{i} R_i$$

$$\mathcal{E} = -L \frac{dI}{dt}$$

$$U_L = \frac{1}{2} L I^2$$

$$P = I \Delta V$$

$$\vec{E} = \alpha \vec{I} \qquad B_s = \mu_0 nI$$

$$I = \frac{\Delta V}{R} \qquad \qquad \mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$$

$$R_{s} = \sum_{i} R_{i} \qquad \qquad \varepsilon = -L \frac{dl}{dt}$$

$$\frac{1}{R_n} = \sum_{i} \frac{1}{R_i} \qquad U_L = \frac{1}{2}LI$$

$$P = I\Delta V$$

GEOMETRY AND TRIGONOMETRY

Rectangle

A = bh

A = area

Triangle

C = circumference V = volume

S =surface area

 $A = \frac{1}{2}bh$

b = base

Circle

h = height $\ell = length$

 $A = \pi r^2$

w = width

 $C = 2\pi r$

r = radius

 $s = r\theta$

s = arc length θ = angle

Rectangular Solid

 $V = \ell w h$

$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

Cylinder

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\ln ax) = \frac{1}{x}$$

$$\frac{d}{dx}[\sin(ax)] = a\cos(ax)$$

$$\frac{d}{dx}[\cos(ax)] = -a\sin(ax)$$

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \frac{dx}{x+a} = \ln|x+a|$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$$

VECTOR PRODUCTS

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$|\vec{A} \times \vec{B}| = AB\sin\theta$$