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PREFACE
The OpenStax College Physics: AP® Edition program has been developed with several goals in mind: accessibility,
customization, and student engagement—all while encouraging science students toward high levels of academic scholarship.
Instructors and students alike will find that this program offers a strong foundation in physics in an accessible format. Welcome!

About OpenStax College
OpenStax College is a nonprofit organization committed to improving student access to quality learning materials. Our free
textbooks are developed and peer-reviewed by educators to ensure they are readable, accurate, and meet the scope and
sequence requirements of today’s high school courses. Unlike traditional textbooks, OpenStax College resources live online and
are owned by the community of educators using them. Through our partnerships with companies and foundations committed to
reducing costs for students, OpenStax College is working to improve access to education for all. OpenStax College is an
initiative of Rice University and is made possible through the generous support of several philanthropic foundations.

OpenStax College resources provide quality academic instruction. Three key features set our materials apart from others: they
can be customized by instructors for each class, they are a “living” resource that grows online through contributions from science
educators, and they are available for free or at minimal cost.

Customization
OpenStax College learning resources are designed to be customized for each course. Our textbooks provide a solid foundation
on which instructors can build, and our resources are conceived and written with flexibility in mind. Instructors can simply select
the sections most relevant to their curricula and create a textbook that speaks directly to the needs of their classes and students.
Teachers are encouraged to expand on existing examples by adding unique context via geographically localized applications and
topical connections. This customization feature will help bring physics to life for students and will ensure that your textbook truly
reflects the goals of your course.

Curation
To broaden access and encourage community curation, OpenStax College Physics: AP® Edition is “open source” licensed under
a Creative Commons Attribution (CC-BY) license. The scientific community is invited to submit examples, emerging research,
and other feedback to enhance and strengthen the material and keep it current and relevant for today’s students. Submit your
suggestions to info@openstaxcollege.org, and find information on edition status, alternate versions, errata, and news on the
StaxDash at http://openstaxcollege.org (http://openstaxcollege.org) .

Cost
Our textbooks are available for free online and in low-cost print and e-book editions.

About OpenStax College Physics: AP® Edition

In 2012, OpenStax College published College Physics as part of a series that offers free and open college textbooks for higher
education. College Physics was quickly adopted for science courses all around the country, and as word about this valuable
resource spread, advanced placement teachers around the country started utilizing the book in AP® courses too.

Physics: AP® Edition is the result of an effort to better serve these teachers and students. Based on College Physics—a
program based on the teaching and research experience of numerous physicists—Physics: AP® Edition focuses on and
emphasizes the new AP® curriculum's concepts and practices.

Alignment to the AP® curriculum
The new AP® Physics curriculum framework outlines the two full-year physics courses AP® Physics 1: Algebra-Based and AP®
Physics 2: Algebra-Based. These two courses replaced the one-year AP® Physics B course, which over the years had become a
fast-paced survey of physics facts and formulas that did not provide in-depth conceptual understanding of major physics ideas
and the connections between them.

The new AP® Physics 1 and 2 courses focus on the big ideas typically included in the first and second semesters of an algebra-
based, introductory college-level physics course, providing students with the essential knowledge and skills required to support
future advanced course work in physics. The AP® Physics 1 curriculum includes mechanics, mechanical waves, sound, and
electrostatics. The AP® Physics 2 curriculum focuses on thermodynamics, fluid statics, dynamics, electromagnetism, geometric
and physical optics, quantum physics, atomic physics, and nuclear physics. Seven unifying themes of physics called the Big
Ideas each include three to seven Enduring Understandings (EU), which are themselves composed of Essential Knowledge (EK)
that provides details and context for students as they explore physics.

AP® Science Practices emphasize inquiry-based learning and development of critical thinking and reasoning skills. Inquiry
usually uses a series of steps to gain new knowledge, beginning with an observation and following with a hypothesis to explain
the observation; then experiments are conducted to test the hypothesis, gather results, and draw conclusions from data. The
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AP® framework has identified seven major science practices, which can be described by short phrases: using representations
and models to communicate information and solve problems; using mathematics appropriately; engaging in questioning;
planning and implementing data collection strategies; analyzing and evaluating data; justifying scientific explanations; and
connecting concepts. The framework’s Learning Objectives merge content (EU and EK) with one or more of the seven science
practices that students should develop as they prepare for the AP® Physics exam.

Each chapter of OpenStax College Physics: AP® Edition begins with a Connection for AP® Courses introduction that explains
how the content in the chapter sections align to the Big Ideas, Enduring Understandings, and Essential Knowledge in the AP®
framework. Physics: AP® Edition contains a wealth of information and the Connection for AP® Courses sections will help you
distill the required AP® content from material that, although interesting, exceeds the scope of an introductory-level course.

Each section opens with the program’s learning objectives as well as the AP® learning objectives and science practices
addressed. We have also developed Real World Connections features and Applying the Science Practices features that highlight
concepts, examples, and practices in the framework.

Pedagogical Foundation and Features
OpenStax College Physics: AP® Edition is organized such that topics are introduced conceptually with a steady progression to
precise definitions and analytical applications. The analytical aspect (problem solving) is tied back to the conceptual before
moving on to another topic. Each introductory chapter, for example, opens with an engaging photograph relevant to the subject
of the chapter and interesting applications that are easy for most students to visualize. Our features include:

• Connections for AP® Courses introduce each chapter and explain how its content addresses the AP® curriculum.
• Worked examples promote both analytical and conceptual skills. They are introduced using an application of interest

followed by a strategy that emphasizes the concepts involved, a mathematical solution, and a discussion.
• Problem-solving strategies are presented independently and subsequently appear at crucial points in the text where

students can benefit most from them.
• Misconception Alerts address common misconceptions that students may bring to class.
• Take Home Investigations provide the opportunity for students to apply or explore what they have learned with a hands-

on activity.
• Real World Connections highlight important concepts and examples in the AP® framework.
• Applying the Science Practices includes activities and challenging questions that engage students while they apply the

AP® science practices.
• Things Great and Small explain macroscopic phenomena (such as air pressure) with submicroscopic phenomena (such

as atoms bouncing off walls).
• Simulations direct students to further explore the physics concepts they have learned about in the module through the

interactive PHeT physics simulations developed by the University of Colorado.

Assessment
Physics: AP® Edition offers a wealth of assessment options that include:

• End-of-Module Problems include conceptual questions that challenge students’ ability to explain what they have learned
conceptually, independent of the mathematical details, and problems and exercises that challenge students to apply both
concepts and skills to solve mathematical physics problems.

• Integrated Concept Problems challenge students to apply concepts and skills to solve a problem.
• Unreasonable Results encourage students to analyze the answer with respect to how likely or realistic it really is.
• Construct Your Own Problem requires students to construct the details of a problem, justify their starting assumptions,

show specific steps in the problem’s solution, and finally discuss the meaning of the result.
• Test Prep for AP® Courses consists of end-of-module problems that include assessment items with the format and rigor

found in the AP® exam to help prepare students.

About Our Team
Physics: AP® Edition would not be possible if not for the tremendous contributions of the authors and community reviewing
team.

Contributors to OpenStax College Physics: AP® Edition
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Senior Contributors

Irna Lyublinskaya CUNY College of Staten Island, Staten Island, NY

Gregg Wolfe Avonworth High School, Pittsburgh, PA

Douglas Ingram TCU Department of Physics and Astronomy, Fort Worth, TX

Liza Pujji Manukau Institute of Technology (MIT), New Zealand

Sudhi Oberoi Visiting Research Student, QuIC Lab, Raman Research Institute, India

Nathan Czuba Sabio Academy, Chicago, IL

Julie Kretchman Science Writer, BS, University of Toronto, Canada

John Stoke Science Writer, MS, University of Chicago, IL

David Anderson Science Writer, PhD, College of William and Mary, Williamsburg, VA

Erika Gasper Science Writer, MA, University of California, Santa Cruz, CA

Advanced Placement Teacher Reviewers

Michelle Burgess Avon Lake High School, Avon Lake, OH

Alexander Lavy Xavier High School, New York, NY

Brian Hastings Spring Grove Area School District, York, PA

John Boehringer Prosper High School, Prosper, TX

Victor Brazil Petaluma High School, Petaluma, CA

Jerome Mass Glastonbury Public Schools, Glastonbury, CT

Bryan Callow Lindenwold High School, Lindenwold, NJ

Faculty Reviewers

Anand Batra Howard University, Washington, DC

John Aiken Georgia Institute of Technology, Atlanta, GA

Robert Arts University of Pikeville, Pikeville, KY

Ulrich Zurcher Cleveland State University, Cleveland, OH

Michael Ottinger Missouri Western State University, Kansas City, MO

James Smith Caldwell University, Caldwell, NJ

Additional Resources

Preparing for the AP® Physics 1 Exam
Rice Online’s dynamic new course, available on edX, is fully integrated with Physics for AP® Courses for free. Developed by
nationally recognized Rice Professor Dr. Jason Hafner and AP® Physics teachers Gigi Nevils-Noe and Matt Wilson the course
combines innovative learning technologies with engaging, professionally-produced Concept Trailers™, inquiry based labs,
practice problems, lectures, demonstrations, assessments, and other compelling resources to promote engagement and long-
term retention of AP® Physics 1 concepts and application. Learn more at online.rice.edu.

Other learning resources (powerpoint slides, testbanks, online homework etc) are updated frequently and can be viewed by
going to https://openstaxcollege.org.

To the AP® Physics Student
The fundamental goal of physics is to discover and understand the “laws” that govern observed phenomena in the world around
us. Why study physics? If you plan to become a physicist, the answer is obvious—introductory physics provides the foundation
for your career; or if you want to become an engineer, physics provides the basis for the engineering principles used to solve
applied and practical problems. For example, after the discovery of the photoelectric effect by physicists, engineers developed
photocells that are used in solar panels to convert sunlight to electricity. What if you are an aspiring medical doctor? Although the
applications of the laws of physics may not be obvious, their understanding is tremendously valuable. Physics is involved in
medical diagnostics, such as x-rays, magnetic resonance imaging (MRI), and ultrasonic blood flow measurements. Medical
therapy sometimes directly involves physics; cancer radiotherapy uses ionizing radiation. What if you are planning a nonscience
career? Learning physics provides you with a well-rounded education and the ability to make important decisions, such as
evaluating the pros and cons of energy production sources or voting on decisions about nuclear waste disposal.
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This AP® Physics 1 course begins with kinematics, the study of motion without considering its causes. Motion is everywhere:
from the vibration of atoms to the planetary revolutions around the Sun. Understanding motion is key to understanding other
concepts in physics. You will then study dynamics, which considers the forces that affect the motion of moving objects and
systems. Newton’s laws of motion are the foundation of dynamics. These laws provide an example of the breadth and simplicity
of the principles under which nature functions. One of the most remarkable simplifications in physics is that only four distinct
forces account for all known phenomena. Your journey will continue as you learn about energy. Energy plays an essential role
both in everyday events and in scientific phenomena. You can likely name many forms of energy, from that provided by our
foods, to the energy we use to run our cars, to the sunlight that warms us on the beach. The next stop is learning about
oscillatory motion and waves. All oscillations involve force and energy: you push a child in a swing to get the motion started and
you put energy into a guitar string when you pluck it. Some oscillations create waves. For example, a guitar creates sound
waves. You will conclude this first physics course with the study of static electricity and electric currents. Many of the
characteristics of static electricity can be explored by rubbing things together. Rubbing creates the spark you get from walking
across a wool carpet, for example. Similarly, lightning results from air movements under certain weather conditions.

In AP® Physics 2 course you will continue your journey by studying fluid dynamics, which explains why rising smoke curls and
twists and how the body regulates blood flow. The next stop is thermodynamics, the study of heat transfer—energy in
transit—that can be used to do work. Basic physical laws govern how heat transfers and its efficiency. Then you will learn more
about electric phenomena as you delve into electromagnetism. An electric current produces a magnetic field; similarly, a
magnetic field produces a current. This phenomenon, known as magnetic induction, is essential to our technological society.
The generators in cars and nuclear plants use magnetism to generate a current. Other devices that use magnetism to induce
currents include pickup coils in electric guitars, transformers of every size, certain microphones, airport security gates, and
damping mechanisms on sensitive chemical balances. From electromagnetism you will continue your journey to optics, the
study of light. You already know that visible light is the type of electromagnetic waves to which our eyes respond. Through vision,
light can evoke deep emotions, such as when we view a magnificent sunset or glimpse a rainbow breaking through the clouds.
Optics is concerned with the generation and propagation of light. The quantum mechanics, atomic physics, and nuclear
physics are at the end of your journey. These areas of physics have been developed at the end of the 19th and early 20th
centuries and deal with submicroscopic objects. Because these objects are smaller than we can observe directly with our senses
and generally must be observed with the aid of instruments, parts of these physics areas may seem foreign and bizarre to you at
first. However, we have experimentally confirmed most of the ideas in these areas of physics.

AP® Physics is a challenging course. After all, you are taking physics at the introductory college level. You will discover that
some concepts are more difficult to understand than others; most students, for example, struggle to understand rotational motion
and angular momentum or particle-wave duality. The AP® curriculum promotes depth of understanding over breadth of content,
and to make your exploration of topics more manageable, concepts are organized around seven major themes called the Big
Ideas that apply to all levels of physical systems and interactions between them (see web diagram below). Each Big Idea
identifies Enduring Understandings (EU), Essential Knowledge (EK), and illustrative examples that support key concepts
and content. Simple descriptions define the focus of each Big Idea.

• Big Idea 1: Objects and systems have properties.
• Big Idea 2: Fields explain interactions.
• Big Idea 3: The interactions are described by forces.
• Big Idea 4: Interactions result in changes.
• Big Idea 5: Changes are constrained by conservation laws.
• Big Idea 6: Waves can transfer energy and momentum.
• Big Idea 7: The mathematics of probability can to describe the behavior of complex and quantum mechanical systems.

Doing college work is not easy, but completion of AP® classes is a reliable predictor of college success and prepares you for
subsequent courses. The more you engage in the subject, the easier your journey through the curriculum will be. Bring your
enthusiasm to class every day along with your notebook, pencil, and calculator. Prepare for class the day before, and review
concepts daily. Form a peer study group and ask your teacher for extra help if necessary. The AP® lab program focuses on more
open-ended, student-directed, and inquiry-based lab investigations designed to make you think, ask questions, and analyze data
like scientists. You will develop critical thinking and reasoning skills and apply different means of communicating information. By
the time you sit for the AP® exam in May, you will be fluent in the language of physics; because you have been doing real
science, you will be ready to show what you have learned. Along the way, you will find the study of the world around us to be one
of the most relevant and enjoyable experiences of your high school career.

Irina Lyublinskaya, PhD
Professor of Science Education

To the AP® Physics Teacher
The AP® curriculum was designed to allow instructors flexibility in their approach to teaching the physics courses. OpenStax
College Physics: AP® Edition helps you orient students as they delve deeper into the world of physics. Each chapter includes a
Connection for AP® Courses introduction that describes the AP® Physics Big Ideas, Enduring Understandings, and Essential
Knowledge addressed in that chapter.

Each section starts with specific AP® learning objectives and includes essential concepts, illustrative examples, and science
practices, along with suggestions for applying the learning objectives through take home experiments, virtual lab investigations,
and activities and questions for preparation and review. At the end of each section, students will find the Test Prep for AP®
courses with multiple-choice and open-response questions addressing AP® learning objectives to help them prepare for the AP®
exam.

4 Preface

This content is available for free at http://cnx.org/content/col11844/1.13



OpenStax College Physics: AP® Edition has been written to engage students in their exploration of physics and help them relate
what they learn in the classroom to their lives outside of it. Physics underlies much of what is happening today in other sciences
and in technology. Thus, the book content includes interesting facts and ideas that go beyond the scope of the AP® course. The
AP® Connection in each chapter directs students to the material they should focus on for the AP® exam, and what
content—although interesting—is not part of the AP® curriculum.

Physics is a beautiful and fascinating science. It is in your hands to engage and inspire your students to dive into an amazing
world of physics, so they can enjoy it beyond just preparation for the AP® exam.

Irina Lyublinskaya, PhD
Professor of Science Education

The concept map showing major links between Big Ideas and Enduring Understandings is provided below for visual reference.
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1 INTRODUCTION: THE NATURE OF
SCIENCE AND PHYSICS

Figure 1.1 Galaxies are as immense as atoms are small. Yet the same laws of physics describe both, and all the rest of nature—an indication of the
underlying unity in the universe. The laws of physics are surprisingly few in number, implying an underlying simplicity to nature's apparent complexity.
(credit: NASA, JPL-Caltech, P. Barmby, Harvard-Smithsonian Center for Astrophysics)

Chapter Outline
1.1. Physics: An Introduction

1.2. Physical Quantities and Units

1.3. Accuracy, Precision, and Significant Figures

1.4. Approximation

Connection for AP® Courses
What is your first reaction when you hear the word “physics”? Did you imagine working through difficult equations or memorizing
formulas that seem to have no real use in life outside the physics classroom? Many people come to the subject of physics with a
bit of fear. But as you begin your exploration of this broad-ranging subject, you may soon come to realize that physics plays a
much larger role in your life than you first thought, no matter your life goals or career choice.

For example, take a look at the image above. This image is of the Andromeda Galaxy, which contains billions of individual stars,
huge clouds of gas, and dust. Two smaller galaxies are also visible as bright blue spots in the background. At a staggering 2.5
million light years from Earth, this galaxy is the nearest one to our own galaxy (which is called the Milky Way). The stars and
planets that make up Andromeda might seem to be the furthest thing from most people's regular, everyday lives. But Andromeda
is a great starting point to think about the forces that hold together the universe. The forces that cause Andromeda to act as it
does are the same forces we contend with here on Earth, whether we are planning to send a rocket into space or simply raise
the walls for a new home. The same gravity that causes the stars of Andromeda to rotate and revolve also causes water to flow
over hydroelectric dams here on Earth. Tonight, take a moment to look up at the stars. The forces out there are the same as the
ones here on Earth. Through a study of physics, you may gain a greater understanding of the interconnectedness of everything
we can see and know in this universe.

Think now about all of the technological devices that you use on a regular basis. Computers, smart phones, GPS systems, MP3
players, and satellite radio might come to mind. Next, think about the most exciting modern technologies that you have heard
about in the news, such as trains that levitate above tracks, “invisibility cloaks” that bend light around them, and microscopic
robots that fight cancer cells in our bodies. All of these groundbreaking advancements, commonplace or unbelievable, rely on the
principles of physics. Aside from playing a significant role in technology, professionals such as engineers, pilots, physicians,
physical therapists, electricians, and computer programmers apply physics concepts in their daily work. For example, a pilot must
understand how wind forces affect a flight path and a physical therapist must understand how the muscles in the body
experience forces as they move and bend. As you will learn in this text, physics principles are propelling new, exciting
technologies, and these principles are applied in a wide range of careers.

In this text, you will begin to explore the history of the formal study of physics, beginning with natural philosophy and the ancient
Greeks, and leading up through a review of Sir Isaac Newton and the laws of physics that bear his name. You will also be
introduced to the standards scientists use when they study physical quantities and the interrelated system of measurements
most of the scientific community uses to communicate in a single mathematical language. Finally, you will study the limits of our
ability to be accurate and precise, and the reasons scientists go to painstaking lengths to be as clear as possible regarding their
own limitations.
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Chapter 1 introduces many fundamental skills and understandings needed for success with the AP® Learning Objectives. While
this chapter does not directly address any Big Ideas, its content will allow for a more meaningful understanding when these Big
Ideas are addressed in future chapters. For instance, the discussion of models, theories, and laws will assist you in
understanding the concept of fields as addressed in Big Idea 2, and the section titled ‘The Evolution of Natural Philosophy into
Modern Physics' will help prepare you for the statistical topics addressed in Big Idea 7.

This chapter will also prepare you to understand the Science Practices. In explicitly addressing the role of models in representing
and communicating scientific phenomena, Section 1.1 supports Science Practice 1. Additionally, anecdotes about historical
investigations and the inset on the scientific method will help you to engage in the scientific questioning referenced in Science
Practice 3. The appropriate use of mathematics, as called for in Science Practice 2, is a major focus throughout sections 1.2, 1.3,
and 1.4.

1.1 Physics: An Introduction

Figure 1.2 The flight formations of migratory birds such as Canada geese are governed by the laws of physics. (credit: David Merrett)

Learning Objectives
By the end of this section, you will be able to:

• Explain the difference between a principle and a law.
• Explain the difference between a model and a theory.

The physical universe is enormously complex in its detail. Every day, each of us observes a great variety of objects and
phenomena. Over the centuries, the curiosity of the human race has led us collectively to explore and catalog a tremendous
wealth of information. From the flight of birds to the colors of flowers, from lightning to gravity, from quarks to clusters of galaxies,
from the flow of time to the mystery of the creation of the universe, we have asked questions and assembled huge arrays of
facts. In the face of all these details, we have discovered that a surprisingly small and unified set of physical laws can explain
what we observe. As humans, we make generalizations and seek order. We have found that nature is remarkably cooperative—it
exhibits the underlying order and simplicity we so value.

It is the underlying order of nature that makes science in general, and physics in particular, so enjoyable to study. For example,
what do a bag of chips and a car battery have in common? Both contain energy that can be converted to other forms. The law of
conservation of energy (which says that energy can change form but is never lost) ties together such topics as food calories,
batteries, heat, light, and watch springs. Understanding this law makes it easier to learn about the various forms energy takes
and how they relate to one another. Apparently unrelated topics are connected through broadly applicable physical laws,
permitting an understanding beyond just the memorization of lists of facts.

The unifying aspect of physical laws and the basic simplicity of nature form the underlying themes of this text. In learning to apply
these laws, you will, of course, study the most important topics in physics. More importantly, you will gain analytical abilities that
will enable you to apply these laws far beyond the scope of what can be included in a single book. These analytical skills will help
you to excel academically, and they will also help you to think critically in any professional career you choose to pursue. This
module discusses the realm of physics (to define what physics is), some applications of physics (to illustrate its relevance to
other disciplines), and more precisely what constitutes a physical law (to illuminate the importance of experimentation to theory).

Science and the Realm of Physics
Science consists of the theories and laws that are the general truths of nature as well as the body of knowledge they encompass.
Scientists are continually trying to expand this body of knowledge and to perfect the expression of the laws that describe it.
Physics is concerned with describing the interactions of energy, matter, space, and time, and it is especially interested in what
fundamental mechanisms underlie every phenomenon. The concern for describing the basic phenomena in nature essentially
defines the realm of physics.

Physics aims to describe the function of everything around us, from the movement of tiny charged particles to the motion of
people, cars, and spaceships. In fact, almost everything around you can be described quite accurately by the laws of physics.
Consider a smart phone (Figure 1.3). Physics describes how electricity interacts with the various circuits inside the device. This
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knowledge helps engineers select the appropriate materials and circuit layout when building the smart phone. Next, consider a
GPS system. Physics describes the relationship between the speed of an object, the distance over which it travels, and the time
it takes to travel that distance. When you use a GPS device in a vehicle, it utilizes these physics equations to determine the
travel time from one location to another.

Figure 1.3 The Apple “iPhone” is a common smart phone with a GPS function. Physics describes the way that electricity flows through the circuits of
this device. Engineers use their knowledge of physics to construct an iPhone with features that consumers will enjoy. One specific feature of an iPhone
is the GPS function. GPS uses physics equations to determine the driving time between two locations on a map. (credit: @gletham GIS, Social, Mobile
Tech Images)

Applications of Physics
You need not be a scientist to use physics. On the contrary, knowledge of physics is useful in everyday situations as well as in
nonscientific professions. It can help you understand how microwave ovens work, why metals should not be put into them, and
why they might affect pacemakers. (See Figure 1.4 and Figure 1.5.) Physics allows you to understand the hazards of radiation
and rationally evaluate these hazards more easily. Physics also explains the reason why a black car radiator helps remove heat
in a car engine, and it explains why a white roof helps keep the inside of a house cool. Similarly, the operation of a car's ignition
system as well as the transmission of electrical signals through our body's nervous system are much easier to understand when
you think about them in terms of basic physics.

Physics is the foundation of many important disciplines and contributes directly to others. Chemistry, for example—since it deals
with the interactions of atoms and molecules—is rooted in atomic and molecular physics. Most branches of engineering are
applied physics. In architecture, physics is at the heart of structural stability, and is involved in the acoustics, heating, lighting,
and cooling of buildings. Parts of geology rely heavily on physics, such as radioactive dating of rocks, earthquake analysis, and
heat transfer in the Earth. Some disciplines, such as biophysics and geophysics, are hybrids of physics and other disciplines.

Physics has many applications in the biological sciences. On the microscopic level, it helps describe the properties of cell walls
and cell membranes (Figure 1.6 and Figure 1.7). On the macroscopic level, it can explain the heat, work, and power associated
with the human body. Physics is involved in medical diagnostics, such as x-rays, magnetic resonance imaging (MRI), and
ultrasonic blood flow measurements. Medical therapy sometimes directly involves physics; for example, cancer radiotherapy
uses ionizing radiation. Physics can also explain sensory phenomena, such as how musical instruments make sound, how the
eye detects color, and how lasers can transmit information.

It is not necessary to formally study all applications of physics. What is most useful is knowledge of the basic laws of physics and
a skill in the analytical methods for applying them. The study of physics also can improve your problem-solving skills.
Furthermore, physics has retained the most basic aspects of science, so it is used by all of the sciences, and the study of
physics makes other sciences easier to understand.

Figure 1.4 The laws of physics help us understand how common appliances work. For example, the laws of physics can help explain how microwave
ovens heat up food, and they also help us understand why it is dangerous to place metal objects in a microwave oven. (credit: MoneyBlogNewz)
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Figure 1.5 These two applications of physics have more in common than meets the eye. Microwave ovens use electromagnetic waves to heat food.
Magnetic resonance imaging (MRI) also uses electromagnetic waves to yield an image of the brain, from which the exact location of tumors can be
determined. (credit: Rashmi Chawla, Daniel Smith, and Paul E. Marik)

Figure 1.6 Physics, chemistry, and biology help describe the properties of cell walls in plant cells, such as the onion cells seen here. (credit: Umberto
Salvagnin)

Figure 1.7 An artist's rendition of the the structure of a cell membrane. Membranes form the boundaries of animal cells and are complex in structure
and function. Many of the most fundamental properties of life, such as the firing of nerve cells, are related to membranes. The disciplines of biology,
chemistry, and physics all help us understand the membranes of animal cells. (credit: Mariana Ruiz)

Models, Theories, and Laws; The Role of Experimentation
The laws of nature are concise descriptions of the universe around us; they are human statements of the underlying laws or rules
that all natural processes follow. Such laws are intrinsic to the universe; humans did not create them and so cannot change
them. We can only discover and understand them. Their discovery is a very human endeavor, with all the elements of mystery,
imagination, struggle, triumph, and disappointment inherent in any creative effort. (See Figure 1.8 and Figure 1.9.) The
cornerstone of discovering natural laws is observation; science must describe the universe as it is, not as we may imagine it to
be.
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Figure 1.8 Isaac Newton (1642–1727) was very reluctant to publish his revolutionary work and had to be convinced to do so. In his later years, he
stepped down from his academic post and became exchequer of the Royal Mint. He took this post seriously, inventing reeding (or creating ridges) on
the edge of coins to prevent unscrupulous people from trimming the silver off of them before using them as currency. (credit: Arthur Shuster and Arthur
E. Shipley: Britain's Heritage of Science. London, 1917.)

Figure 1.9 Marie Curie (1867–1934) sacrificed monetary assets to help finance her early research and damaged her physical well-being with radiation
exposure. She is the only person to win Nobel prizes in both physics and chemistry. One of her daughters also won a Nobel Prize. (credit: Wikimedia
Commons)

We all are curious to some extent. We look around, make generalizations, and try to understand what we see—for example, we
look up and wonder whether one type of cloud signals an oncoming storm. As we become serious about exploring nature, we
become more organized and formal in collecting and analyzing data. We attempt greater precision, perform controlled
experiments (if we can), and write down ideas about how the data may be organized and unified. We then formulate models,
theories, and laws based on the data we have collected and analyzed to generalize and communicate the results of these
experiments.

A model is a representation of something that is often too difficult (or impossible) to display directly. While a model is justified
with experimental proof, it is only accurate under limited situations. An example is the planetary model of the atom in which
electrons are pictured as orbiting the nucleus, analogous to the way planets orbit the Sun. (See Figure 1.10.) We cannot observe
electron orbits directly, but the mental image helps explain the observations we can make, such as the emission of light from hot
gases (atomic spectra). Physicists use models for a variety of purposes. For example, models can help physicists analyze a
scenario and perform a calculation, or they can be used to represent a situation in the form of a computer simulation. A theory is
an explanation for patterns in nature that is supported by scientific evidence and verified multiple times by various groups of
researchers. Some theories include models to help visualize phenomena, whereas others do not. Newton's theory of gravity, for
example, does not require a model or mental image, because we can observe the objects directly with our own senses. The
kinetic theory of gases, on the other hand, is a model in which a gas is viewed as being composed of atoms and molecules.
Atoms and molecules are too small to be observed directly with our senses—thus, we picture them mentally to understand what
our instruments tell us about the behavior of gases.

A law uses concise language to describe a generalized pattern in nature that is supported by scientific evidence and repeated
experiments. Often, a law can be expressed in the form of a single mathematical equation. Laws and theories are similar in that
they are both scientific statements that result from a tested hypothesis and are supported by scientific evidence. However, the
designation law is reserved for a concise and very general statement that describes phenomena in nature, such as the law that
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energy is conserved during any process, or Newton's second law of motion, which relates force, mass, and acceleration by the
simple equation F = a . A theory, in contrast, is a less concise statement of observed phenomena. For example, the Theory of
Evolution and the Theory of Relativity cannot be expressed concisely enough to be considered a law. The biggest difference
between a law and a theory is that a theory is much more complex and dynamic. A law describes a single action, whereas a
theory explains an entire group of related phenomena. And, whereas a law is a postulate that forms the foundation of the
scientific method, a theory is the end result of that process.

Less broadly applicable statements are usually called principles (such as Pascal's principle, which is applicable only in fluids),
but the distinction between laws and principles often is not carefully made.

Figure 1.10 What is a model? This planetary model of the atom shows electrons orbiting the nucleus. It is a drawing that we use to form a mental
image of the atom that we cannot see directly with our eyes because it is too small.

Models, Theories, and Laws

Models, theories, and laws are used to help scientists analyze the data they have already collected. However, often after a
model, theory, or law has been developed, it points scientists toward new discoveries they would not otherwise have made.

The models, theories, and laws we devise sometimes imply the existence of objects or phenomena as yet unobserved. These
predictions are remarkable triumphs and tributes to the power of science. It is the underlying order in the universe that enables
scientists to make such spectacular predictions. However, if experiment does not verify our predictions, then the theory or law is
wrong, no matter how elegant or convenient it is. Laws can never be known with absolute certainty because it is impossible to
perform every imaginable experiment in order to confirm a law in every possible scenario. Physicists operate under the
assumption that all scientific laws and theories are valid until a counterexample is observed. If a good-quality, verifiable
experiment contradicts a well-established law, then the law must be modified or overthrown completely.

The study of science in general and physics in particular is an adventure much like the exploration of uncharted ocean.
Discoveries are made; models, theories, and laws are formulated; and the beauty of the physical universe is made more sublime
for the insights gained.

The Scientific Method

As scientists inquire and gather information about the world, they follow a process called the scientific method. This
process typically begins with an observation and question that the scientist will research. Next, the scientist typically
performs some research about the topic and then devises a hypothesis. Then, the scientist will test the hypothesis by
performing an experiment. Finally, the scientist analyzes the results of the experiment and draws a conclusion. Note that the
scientific method can be applied to many situations that are not limited to science, and this method can be modified to suit
the situation.

Consider an example. Let us say that you try to turn on your car, but it will not start. You undoubtedly wonder: Why will the
car not start? You can follow a scientific method to answer this question. First off, you may perform some research to
determine a variety of reasons why the car will not start. Next, you will state a hypothesis. For example, you may believe that
the car is not starting because it has no engine oil. To test this, you open the hood of the car and examine the oil level. You
observe that the oil is at an acceptable level, and you thus conclude that the oil level is not contributing to your car issue. To
troubleshoot the issue further, you may devise a new hypothesis to test and then repeat the process again.

The Evolution of Natural Philosophy into Modern Physics
Physics was not always a separate and distinct discipline. It remains connected to other sciences to this day. The word physics

comes from Greek, meaning nature. The study of nature came to be called “natural philosophy.” From ancient times through the
Renaissance, natural philosophy encompassed many fields, including astronomy, biology, chemistry, physics, mathematics, and
medicine. Over the last few centuries, the growth of knowledge has resulted in ever-increasing specialization and branching of
natural philosophy into separate fields, with physics retaining the most basic facets. (See Figure 1.11, Figure 1.12, and Figure
1.13.) Physics as it developed from the Renaissance to the end of the 19th century is called classical physics. It was
transformed into modern physics by revolutionary discoveries made starting at the beginning of the 20th century.
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Figure 1.11 Over the centuries, natural philosophy has evolved into more specialized disciplines, as illustrated by the contributions of some of the
greatest minds in history. The Greek philosopher Aristotle (384–322 B.C.) wrote on a broad range of topics including physics, animals, the soul,
politics, and poetry. (credit: Jastrow (2006)/Ludovisi Collection)

Figure 1.12 Galileo Galilei (1564–1642) laid the foundation of modern experimentation and made contributions in mathematics, physics, and
astronomy. (credit: Domenico Tintoretto)

Figure 1.13 Niels Bohr (1885–1962) made fundamental contributions to the development of quantum mechanics, one part of modern physics. (credit:
United States Library of Congress Prints and Photographs Division)

Classical physics is not an exact description of the universe, but it is an excellent approximation under the following conditions:
Matter must be moving at speeds less than about 1% of the speed of light, the objects dealt with must be large enough to be
seen with a microscope, and only weak gravitational fields, such as the field generated by the Earth, can be involved. Because
humans live under such circumstances, classical physics seems intuitively reasonable, while many aspects of modern physics
seem bizarre. This is why models are so useful in modern physics—they let us conceptualize phenomena we do not ordinarily
experience. We can relate to models in human terms and visualize what happens when objects move at high speeds or imagine
what objects too small to observe with our senses might be like. For example, we can understand an atom's properties because
we can picture it in our minds, although we have never seen an atom with our eyes. New tools, of course, allow us to better
picture phenomena we cannot see. In fact, new instrumentation has allowed us in recent years to actually “picture” the atom.
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Limits on the Laws of Classical Physics

For the laws of classical physics to apply, the following criteria must be met: Matter must be moving at speeds less than
about 1% of the speed of light, the objects dealt with must be large enough to be seen with a microscope, and only weak
gravitational fields (such as the field generated by the Earth) can be involved.

Figure 1.14 Using a scanning tunneling microscope (STM), scientists can see the individual atoms that compose this sheet of gold. (credit:
Erwinrossen)

Some of the most spectacular advances in science have been made in modern physics. Many of the laws of classical physics
have been modified or rejected, and revolutionary changes in technology, society, and our view of the universe have resulted.
Like science fiction, modern physics is filled with fascinating objects beyond our normal experiences, but it has the advantage
over science fiction of being very real. Why, then, is the majority of this text devoted to topics of classical physics? There are two
main reasons: Classical physics gives an extremely accurate description of the universe under a wide range of everyday
circumstances, and knowledge of classical physics is necessary to understand modern physics.

Modern physics itself consists of the two revolutionary theories, relativity and quantum mechanics. These theories deal with the
very fast and the very small, respectively. Relativity must be used whenever an object is traveling at greater than about 1% of
the speed of light or experiences a strong gravitational field such as that near the Sun. Quantum mechanics must be used for
objects smaller than can be seen with a microscope. The combination of these two theories is relativistic quantum mechanics,

and it describes the behavior of small objects traveling at high speeds or experiencing a strong gravitational field. Relativistic
quantum mechanics is the best universally applicable theory we have. Because of its mathematical complexity, it is used only
when necessary, and the other theories are used whenever they will produce sufficiently accurate results. We will find, however,
that we can do a great deal of modern physics with the algebra and trigonometry used in this text.

Check Your Understanding

A friend tells you he has learned about a new law of nature. What can you know about the information even before your
friend describes the law? How would the information be different if your friend told you he had learned about a scientific
theory rather than a law?

Solution
Without knowing the details of the law, you can still infer that the information your friend has learned conforms to the
requirements of all laws of nature: it will be a concise description of the universe around us; a statement of the underlying
rules that all natural processes follow. If the information had been a theory, you would be able to infer that the information will
be a large-scale, broadly applicable generalization.

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the
individual terms (e.g. = ) to see how they add to generate the polynomial curve.

Figure 1.15 Equation Grapher (http://cnx.org/content/m54764/1.2/equation-grapher_en.jar)
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1.2 Physical Quantities and Units

Figure 1.16 The distance from Earth to the Moon may seem immense, but it is just a tiny fraction of the distances from Earth to other celestial bodies.
(credit: NASA)

Learning Objectives
By the end of this section, you will be able to:

• Perform unit conversions both in the SI and English units.
• Explain the most common prefixes in the SI units and be able to write them in scientific notation.

The range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a nucleus to the age of
Earth, from the tiny sizes of sub-nuclear particles to the vast distance to the edges of the known universe, from the force exerted
by a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the imagination of even
the most experienced scientist. Giving numerical values for physical quantities and equations for physical principles allows us to
understand nature much more deeply than does qualitative description alone. To comprehend these vast ranges, we must also
have accepted units in which to express them. And we shall find that (even in the potentially mundane discussion of meters,
kilograms, and seconds) a profound simplicity of nature appears—all physical quantities can be expressed as combinations of
only four fundamental physical quantities: length, mass, time, and electric current.

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from other
measurements. For example, we define distance and time by specifying methods for measuring them, whereas we define
average speed by stating that it is calculated as distance traveled divided by time of travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length of
a race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners).
Without standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful
way. (See Figure 1.17.)

Figure 1.17 Distances given in unknown units are maddeningly useless.

There are two major systems of units used in the world: SI units (also known as the metric system) and English units (also
known as the customary or imperial system). English units were historically used in nations once ruled by the British Empire
and are still widely used in the United States. Virtually every other country in the world now uses SI units as the standard; the
metric system is also the standard system agreed upon by scientists and mathematicians. The acronym “SI” is derived from the
French Système International.
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SI Units: Fundamental and Derived Units
Table 1.1 gives the fundamental SI units that are used throughout this textbook. This text uses non-SI units in a few applications
where they are in very common use, such as the measurement of blood pressure in millimeters of mercury (mm Hg). Whenever
non-SI units are discussed, they will be tied to SI units through conversions.

Table 1.1 Fundamental SI Units

Length Mass Time Electric Charge

meter (m) kilogram (kg) second (s) coulomb (c)

It is an intriguing fact that some physical quantities are more fundamental than others and that the most fundamental physical
quantities can be defined only in terms of the procedure used to measure them. The units in which they are measured are thus
called fundamental units. In this textbook, the fundamental physical quantities are taken to be length, mass, time, and electric
charge. (Note that electric current will not be introduced until much later in this text.) All other physical quantities, such as force
and electric current, can be expressed as algebraic combinations of length, mass, time, and current (for example, speed is length
divided by time); these units are called derived units.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram

The Second

The SI unit for time, the second(abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar
day. More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a non-varying, or
constant, physical phenomenon (because the solar day is getting longer due to very gradual slowing of the Earth's rotation).
Cesium atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967
the second was redefined as the time required for 9,192,631,770 of these vibrations. (See Figure 1.18.) Accuracy in the
fundamental units is essential, because all measurements are ultimately expressed in terms of fundamental units and can be no
more accurate than are the fundamental units themselves.

Figure 1.18 An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a microsecond per year.
The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic fountain nearly 30 feet tall!
(credit: Steve Jurvetson/Flickr)

The Meter

The SI unit for length is the meter (abbreviated m); its definition has also changed over time to become more accurate and
precise. The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This
measurement was improved in 1889 by redefining the meter to be the distance between two engraved lines on a platinum-iridium
bar now kept near Paris. By 1960, it had become possible to define the meter even more accurately in terms of the wavelength
of light, so it was again redefined as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was
given its present definition (partly for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second.
(See Figure 1.19.) This change defines the speed of light to be exactly 299,792,458 meters per second. The length of the meter
will change if the speed of light is someday measured with greater accuracy.

The Kilogram

The SI unit for mass is the kilogram (abbreviated kg); it is defined to be the mass of a platinum-iridium cylinder kept with the old
meter standard at the International Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram are also
kept at the United States' National Institute of Standards and Technology, or NIST, located in Gaithersburg, Maryland outside of
Washington D.C., and at other locations around the world. The determination of all other masses can be ultimately traced to a
comparison with the standard mass.
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Figure 1.19 The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is speed multiplied by
time.

Electric current and its accompanying unit, the ampere, will be introduced in Introduction to Electric Current, Resistance, and
Ohm's Law when electricity and magnetism are covered. The initial modules in this textbook are concerned with mechanics,
fluids, heat, and waves. In these subjects all pertinent physical quantities can be expressed in terms of the fundamental units of
length, mass, and time.

Metric Prefixes
SI units are part of the metric system. The metric system is convenient for scientific and engineering calculations because the
units are categorized by factors of 10. Table 1.2 gives metric prefixes and symbols used to denote various factors of 10.

Metric systems have the advantage that conversions of units involve only powers of 10. There are 100 centimeters in a meter,
1000 meters in a kilometer, and so on. In nonmetric systems, such as the system of U.S. customary units, the relationships are
not as simple—there are 12 inches in a foot, 5280 feet in a mile, and so on. Another advantage of the metric system is that the
same unit can be used over extremely large ranges of values simply by using an appropriate metric prefix. For example,
distances in meters are suitable in construction, while distances in kilometers are appropriate for air travel, and the tiny measure
of nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular
applications.

The term order of magnitude refers to the scale of a value expressed in the metric system. Each power of 10 in the metric

system represents a different order of magnitude. For example, 101 102 103 , and so forth are all different orders of

magnitude. All quantities that can be expressed as a product of a specific power of 10 are said to be of the same order of

magnitude. For example, the number 800 can be written as 8×102 , and the number 450 can be written as 4.5×102. Thus,

the numbers 800 and 450 are of the same order of magnitude: 102. Order of magnitude can be thought of as a ballpark

estimate for the scale of a value. The diameter of an atom is on the order of 10−9  m, while the diameter of the Sun is on the

order of 109  m.

The Quest for Microscopic Standards for Basic Units

The fundamental units described in this chapter are those that produce the greatest accuracy and precision in
measurement. There is a sense among physicists that, because there is an underlying microscopic substructure to matter, it
would be most satisfying to base our standards of measurement on microscopic objects and fundamental physical
phenomena such as the speed of light. A microscopic standard has been accomplished for the standard of time, which is
based on the oscillations of the cesium atom.

The standard for length was once based on the wavelength of light (a small-scale length) emitted by a certain type of atom,
but it has been supplanted by the more precise measurement of the speed of light. If it becomes possible to measure the
mass of atoms or a particular arrangement of atoms such as a silicon sphere to greater precision than the kilogram
standard, it may become possible to base mass measurements on the small scale. There are also possibilities that electrical
phenomena on the small scale may someday allow us to base a unit of charge on the charge of electrons and protons, but
at present current and charge are related to large-scale currents and forces between wires.
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Table 1.2 Metric Prefixes for Powers of 10 and their Symbols

Prefix Symbol Value[1] Example (some are approximate)

exa E 1018 exameter Em 1018  m distance light travels in a century

peta P 1015 petasecond Ps 1015  s 30 million years

tera T 1012 terawatt TW 1012  W powerful laser output

giga G 109 gigahertz GHz 109  Hz a microwave frequency

mega M 106 megacurie MCi 106  Ci high radioactivity

kilo k 103 kilometer km 103  m about 6/10 mile

hecto h 102 hectoliter hL 102  L 26 gallons

deka da 101 dekagram dag 101  g teaspoon of butter

— — 100 (=1)

deci d 10−1 deciliter dL 10−1  L less than half a soda

centi c 10−2 centimeter cm 10−2  m fingertip thickness

milli m 10−3 millimeter mm 10−3  m flea at its shoulders

micro µ 10−6 micrometer µm 10−6  m detail in microscope

nano n 10−9 nanogram ng 10−9  g small speck of dust

pico p 10−12 picofarad pF 10−12  F small capacitor in radio

femto f 10−15 femtometer fm 10−15  m size of a proton

atto a 10−18 attosecond as 10−18  s time light crosses an atom

Known Ranges of Length, Mass, and Time
The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known
lengths, masses, and times in Table 1.3. Examination of this table will give you some feeling for the range of possible topics and
numerical values. (See Figure 1.20 and Figure 1.21.)

Figure 1.20 Tiny phytoplankton swims among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2 millimeters in
length. (credit: Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps Collections)

1. See Appendix A for a discussion of powers of 10.
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Figure 1.21 Galaxies collide 2.4 billion light years away from Earth. The tremendous range of observable phenomena in nature challenges the
imagination. (credit: NASA/CXC/UVic./A. Mahdavi et al. Optical/lensing: CFHT/UVic./H. Hoekstra et al.)

Unit Conversion and Dimensional Analysis
It is often necessary to convert from one type of unit to another. For example, if you are reading a European cookbook, some
quantities may be expressed in units of liters and you need to convert them to cups. Or, perhaps you are reading walking
directions from one location to another and you are interested in how many miles you will be walking. In this case, you will need
to convert units of feet to miles.

Let us consider a simple example of how to convert units. Let us say that we want to convert 80 meters (m) to kilometers (km).

The first thing to do is to list the units that you have and the units that you want to convert to. In this case, we have units in
meters and we want to convert to kilometers.

Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio expressing how
many of one unit are equal to another unit. For example, there are 12 inches in 1 foot, 100 centimeters in 1 meter, 60 seconds in
1 minute, and so on. In this case, we know that there are 1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply them by the conversion factor so
that the units cancel out, as shown:

(1.1)
80m× 1 km

1000m
= 0.080 km.

Note that the unwanted m unit cancels, leaving only the desired km unit. You can use this method to convert between any types
of unit.

Click Appendix C for a more complete list of conversion factors.
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Table 1.3 Approximate Values of Length, Mass, and Time

Lengths in meters Masses in kilograms (more
precise values in parentheses)

Times in seconds (more precise
values in parentheses)

10−18 Present experimental limit to
smallest observable detail 10−30

Mass of an electron

9.11×10−31  kg 10−23 Time for light to cross a
proton

10−15 Diameter of a proton 10−27
Mass of a hydrogen atom

1.67×10−27  kg 10−22 Mean life of an extremely
unstable nucleus

10−14 Diameter of a uranium nucleus 10−15 Mass of a bacterium 10−15 Time for one oscillation of
visible light

10−10 Diameter of a hydrogen atom 10−5 Mass of a mosquito 10−13 Time for one vibration of an
atom in a solid

10−8 Thickness of membranes in cells of
living organisms 10−2 Mass of a hummingbird 10−8 Time for one oscillation of an

FM radio wave

10−6 Wavelength of visible light 1 Mass of a liter of water (about
a quart) 10−3 Duration of a nerve impulse

10−3 Size of a grain of sand 102 Mass of a person 1 Time for one heartbeat

1 Height of a 4-year-old child 103 Mass of a car 105 One day 8.64×104 s

102 Length of a football field 108 Mass of a large ship 107 One year (y) 3.16×107 s

104 Greatest ocean depth 1012 Mass of a large iceberg 109 About half the life
expectancy of a human

107 Diameter of the Earth 1015 Mass of the nucleus of a comet 1011 Recorded history

1011 Distance from the Earth to the Sun 1023
Mass of the Moon

7.35×1022  kg 1017 Age of the Earth

1016 Distance traveled by light in 1 year
(a light year) 1025

Mass of the Earth

5.97×1024  kg 1018 Age of the universe

1021 Diameter of the Milky Way galaxy 1030
Mass of the Sun

1.99×1030  kg

1022 Distance from the Earth to the
nearest large galaxy (Andromeda) 1042 Mass of the Milky Way galaxy

(current upper limit)

1026 Distance from the Earth to the
edges of the known universe 1053 Mass of the known universe

(current upper limit)

Example 1.1 Unit Conversions: A Short Drive Home

Suppose that you drive the 10.0 km from your university to home in 20.0 min. Calculate your average speed (a) in kilometers
per hour (km/h) and (b) in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units. Then we can get the average speed into the desired units by
picking the correct conversion factor and multiplying by it. The correct conversion factor is the one that cancels the
unwanted unit and leaves the desired unit in its place.

Solution for (a)

(1) Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for
now—average speed and other motion concepts will be covered in a later module.) In equation form,

(1.2)
average speed =distance

time
.

(2) Substitute the given values for distance and time.
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(1.3)
average speed = 10.0 km

20.0 min
= 0.500  km

 min
.

(3) Convert km/min to km/h: multiply by the conversion factor that will cancel minutes and leave hours. That conversion
factor is 60 min/hr . Thus,

(1.4)
average speed =0.500  km

 min
×60 min

1 h
= 30.0 km

 h
.

Discussion for (a)

To check your answer, consider the following:

(1) Be sure that you have properly cancelled the units in the unit conversion. If you have written the unit conversion factor
upside down, the units will not cancel properly in the equation. If you accidentally get the ratio upside down, then the units
will not cancel; rather, they will give you the wrong units as follows:

(1.5) km
min

× 1 hr
60 min

= 1
60

 km ⋅ hr

 min2
,

which are obviously not the desired units of km/h.

(2) Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units
of km/h and we have indeed obtained these units.

(3) Check the significant figures. Because each of the values given in the problem has three significant figures, the answer
should also have three significant figures. The answer 30.0 km/hr does indeed have three significant figures, so this is
appropriate. Note that the significant figures in the conversion factor are not relevant because an hour is defined to be 60
minutes, so the precision of the conversion factor is perfect.

(4) Next, check whether the answer is reasonable. Let us consider some information from the problem—if you travel 10 km
in a third of an hour (20 min), you would travel three times that far in an hour. The answer does seem reasonable.

Solution for (b)

There are several ways to convert the average speed into meters per second.

(1) Start with the answer to (a) and convert km/h to m/s. Two conversion factors are needed—one to convert hours to
seconds, and another to convert kilometers to meters.

(2) Multiplying by these yields

(1.6)
Average speed = 30.0km

h
× 1 h

3,600 s
×

1,000 m
1 km

,

(1.7)Average speed = 8.33m
s .

Discussion for (b)

If we had started with 0.500 km/min, we would have needed different conversion factors, but the answer would have been
the same: 8.33 m/s.

You may have noted that the answers in the worked example just covered were given to three digits. Why? When do you
need to be concerned about the number of digits in something you calculate? Why not write down all the digits your
calculator produces? The module Accuracy, Precision, and Significant Figures will help you answer these questions.

Nonstandard Units

While there are numerous types of units that we are all familiar with, there are others that are much more obscure. For
example, a firkin is a unit of volume that was once used to measure beer. One firkin equals about 34 liters. To learn more
about nonstandard units, use a dictionary or encyclopedia to research different “weights and measures.” Take note of any
unusual units, such as a barleycorn, that are not listed in the text. Think about how the unit is defined and state its
relationship to SI units.

Check Your Understanding

Some hummingbirds beat their wings more than 50 times per second. A scientist is measuring the time it takes for a
hummingbird to beat its wings once. Which fundamental unit should the scientist use to describe the measurement? Which
factor of 10 is the scientist likely to use to describe the motion precisely? Identify the metric prefix that corresponds to this
factor of 10.

Solution
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The scientist will measure the time between each movement using the fundamental unit of seconds. Because the wings beat

so fast, the scientist will probably need to measure in milliseconds, or 10−3 seconds. (50 beats per second corresponds to
20 milliseconds per beat.)

Check Your Understanding

One cubic centimeter is equal to one milliliter. What does this tell you about the different units in the SI metric system?

Solution
The fundamental unit of length (meter) is probably used to create the derived unit of volume (liter). The measure of a milliliter
is dependent on the measure of a centimeter.

1.3 Accuracy, Precision, and Significant Figures

Figure 1.22 A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one pan and
objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in both pans are equal.
The “known masses” are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams. (credit: Serge Melki)

Figure 1.23 Many mechanical balances, such as double-pan balances, have been replaced by digital scales, which can typically measure the mass of
an object more precisely. Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, many digital scales can
measure the mass of an object up to the nearest thousandth of a gram. (credit: Karel Jakubec)

Learning Objectives
By the end of this section, you will be able to:

• Determine the appropriate number of significant figures in both addition and subtraction, as well as multiplication and
division calculations.

• Calculate the percent uncertainty of a measurement.

Accuracy and Precision of a Measurement
Science is based on observation and experiment—that is, on measurements. Accuracy is how close a measurement is to the
correct value for that measurement. For example, let us say that you are measuring the length of standard computer paper. The
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packaging in which you purchased the paper states that it is 11.0 inches long. You measure the length of the paper three times
and obtain the following measurements: 11.1 in., 11.2 in., and 10.9 in. These measurements are quite accurate because they are
very close to the correct value of 11.0 inches. In contrast, if you had obtained a measurement of 12 inches, your measurement
would not be very accurate.

The precision of a measurement system is refers to how close the agreement is between repeated measurements (which are
repeated under the same conditions). Consider the example of the paper measurements. The precision of the measurements
refers to the spread of the measured values. One way to analyze the precision of the measurements would be to determine the
range, or difference, between the lowest and the highest measured values. In that case, the lowest value was 10.9 in. and the
highest value was 11.2 in. Thus, the measured values deviated from each other by at most 0.3 in. These measurements were
relatively precise because they did not vary too much in value. However, if the measured values had been 10.9, 11.1, and 11.9,
then the measurements would not be very precise because there would be significant variation from one measurement to
another.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not
precise, or they are precise but not accurate. Let us consider an example of a GPS system that is attempting to locate the
position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull's-eye target, and think of each
GPS attempt to locate the restaurant as a black dot. In Figure 1.24, you can see that the GPS measurements are spread out far
apart from each other, but they are all relatively close to the actual location of the restaurant at the center of the target. This
indicates a low precision, high accuracy measuring system. However, in Figure 1.25, the GPS measurements are concentrated
quite closely to one another, but they are far away from the target location. This indicates a high precision, low accuracy
measuring system.

Figure 1.24 A GPS system attempts to locate a restaurant at the center of the bull's-eye. The black dots represent each attempt to pinpoint the location
of the restaurant. The dots are spread out quite far apart from one another, indicating low precision, but they are each rather close to the actual location
of the restaurant, indicating high accuracy. (credit: Dark Evil)

Figure 1.25 In this figure, the dots are concentrated rather closely to one another, indicating high precision, but they are rather far away from the actual
location of the restaurant, indicating low accuracy. (credit: Dark Evil)

Accuracy, Precision, and Uncertainty
The degree of accuracy and precision of a measuring system are related to the uncertainty in the measurements. Uncertainty is
a quantitative measure of how much your measured values deviate from a standard or expected value. If your measurements
are not very accurate or precise, then the uncertainty of your values will be very high. In more general terms, uncertainty can be
thought of as a disclaimer for your measured values. For example, if someone asked you to provide the mileage on your car, you
might say that it is 45,000 miles, plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is, you
are indicating that the actual mileage of your car might be as low as 44,500 miles or as high as 45,500 miles, or anywhere in
between. All measurements contain some amount of uncertainty. In our example of measuring the length of the paper, we might
say that the length of the paper is 11 in., plus or minus 0.2 in. The uncertainty in a measurement, , is often denoted as

(“delta ”), so the measurement result would be recorded as ± . In our paper example, the length of the paper could be

expressed as 11 in. ± 0.2.

The factors contributing to uncertainty in a measurement include:
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1. Limitations of the measuring device,

2. The skill of the person making the measurement,

3. Irregularities in the object being measured,

4. Any other factors that affect the outcome (highly dependent on the situation).

In our example, such factors contributing to the uncertainty could be the following: the smallest division on the ruler is 0.1 in., the
person using the ruler has bad eyesight, or one side of the paper is slightly longer than the other. At any rate, the uncertainty in a
measurement must be based on a careful consideration of all the factors that might contribute and their possible effects.

Making Connections: Real-World Connections—Fevers or Chills?

Uncertainty is a critical piece of information, both in physics and in many other real-world applications. Imagine you are
caring for a sick child. You suspect the child has a fever, so you check his or her temperature with a thermometer. What if
the uncertainty of the thermometer were 3.0ºC ? If the child's temperature reading was 37.0ºC (which is normal body

temperature), the “true” temperature could be anywhere from a hypothermic 34.0ºC to a dangerously high 40.0ºC . A

thermometer with an uncertainty of 3.0ºC would be useless.

Percent Uncertainty

One method of expressing uncertainty is as a percent of the measured value. If a measurement is expressed with

uncertainty, , the percent uncertainty (%unc) is defined to be

(1.8)
% unc = ×100%.

Example 1.2 Calculating Percent Uncertainty: A Bag of Apples

A grocery store sells 5 lb bags of apples. You purchase four bags over the course of a month and weigh the apples each
time. You obtain the following measurements:

• Week 1 weight: 4.8 lb

• Week 2 weight: 5.3 lb

• Week 3 weight: 4.9 lb

• Week 4 weight: 5.4 lb

You determine that the weight of the 5 lb bag has an uncertainty of ±0.4 lb . What is the percent uncertainty of the bag's

weight?

Strategy

First, observe that the expected value of the bag's weight, , is 5 lb. The uncertainty in this value, , is 0.4 lb. We can
use the following equation to determine the percent uncertainty of the weight:

(1.9)
% unc = ×100%.

Solution

Plug the known values into the equation:

(1.10)
% unc =0.4 lb

5 lb
×100% = 8%.

Discussion

We can conclude that the weight of the apple bag is 5 lb ± 8% . Consider how this percent uncertainty would change if the

bag of apples were half as heavy, but the uncertainty in the weight remained the same. Hint for future calculations: when
calculating percent uncertainty, always remember that you must multiply the fraction by 100%. If you do not do this, you will
have a decimal quantity, not a percent value.

Uncertainties in Calculations

There is an uncertainty in anything calculated from measured quantities. For example, the area of a floor calculated from
measurements of its length and width has an uncertainty because the length and width have uncertainties. How big is the
uncertainty in something you calculate by multiplication or division? If the measurements going into the calculation have small
uncertainties (a few percent or less), then the method of adding percents can be used for multiplication or division. This
method says that the percent uncertainty in a quantity calculated by multiplication or division is the sum of the percent
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uncertainties in the items used to make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m ,

with uncertainties of 2% and 1% , respectively, then the area of the floor is 12.0 m2 and has an uncertainty of 3% .

(Expressed as an area this is 0.36 m2 , which we round to 0.4 m2 since the area of the floor is given to a tenth of a square
meter.)

Check Your Understanding

A high school track coach has just purchased a new stopwatch. The stopwatch manual states that the stopwatch has an
uncertainty of ±0.05 s . Runners on the track coach's team regularly clock 100 m sprints of 11.49 s to 15.01 s . At the

school's last track meet, the first-place sprinter came in at 12.04 s and the second-place sprinter came in at 12.07 s . Will
the coach's new stopwatch be helpful in timing the sprint team? Why or why not?

Solution
No, the uncertainty in the stopwatch is too great to effectively differentiate between the sprint times.

Precision of Measuring Tools and Significant Figures
An important factor in the accuracy and precision of measurements involves the precision of the measuring tool. In general, a
precise measuring tool is one that can measure values in very small increments. For example, a standard ruler can measure
length to the nearest millimeter, while a caliper can measure length to the nearest 0.01 millimeter. The caliper is a more precise
measuring tool because it can measure extremely small differences in length. The more precise the measuring tool, the more
precise and accurate the measurements can be.

When we express measured values, we can only list as many digits as we initially measured with our measuring tool. For
example, if you use a standard ruler to measure the length of a stick, you may measure it to be 36.7 cm . You could not express

this value as 36.71 cm because your measuring tool was not precise enough to measure a hundredth of a centimeter. It should
be noted that the last digit in a measured value has been estimated in some way by the person performing the measurement.
For example, the person measuring the length of a stick with a ruler notices that the stick length seems to be somewhere in
between 36.6 cm and 36.7 cm , and he or she must estimate the value of the last digit. Using the method of significant
figures, the rule is that the last digit written down in a measurement is the first digit with some uncertainty. In order to determine
the number of significant digits in a value, start with the first measured value at the left and count the number of digits through the
last digit written on the right. For example, the measured value 36.7 cm has three digits, or significant figures. Significant
figures indicate the precision of a measuring tool that was used to measure a value.

Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant, because they are
only placekeepers that locate the decimal point. There are two significant figures in 0.053. The zeros in 10.053 are not
placekeepers but are significant—this number has five significant figures. The zeros in 1300 may or may not be significant
depending on the style of writing numbers. They could mean the number is known to the last digit, or they could be
placekeepers. So 1300 could have two, three, or four significant figures. (To avoid this ambiguity, write 1300 in scientific
notation.) Zeros are significant except when they serve only as placekeepers.

Check Your Understanding

Determine the number of significant figures in the following measurements:

a. 0.0009

b. 15,450.0

c. 6×103

d. 87.990

e. 30.42

Solution

(a) 1; the zeros in this number are placekeepers that indicate the decimal point

(b) 6; here, the zeros indicate that a measurement was made to the 0.1 decimal point, so the zeros are significant

(c) 1; the value 103 signifies the decimal place, not the number of measured values

(d) 5; the final zero indicates that a measurement was made to the 0.001 decimal point, so it is significant

(e) 4; any zeros located in between significant figures in a number are also significant
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Significant Figures in Calculations

When combining measurements with different degrees of accuracy and precision, the number of significant digits in the final

answer can be no greater than the number of significant digits in the least precise measured value. There are two different rules,
one for multiplication and division and the other for addition and subtraction, as discussed below.

1. For multiplication and division: The result should have the same number of significant figures as the quantity having the

least significant figures entering into the calculation. For example, the area of a circle can be calculated from its radius using

= 2 . Let us see how many significant figures the area has if the radius has only two—say, = 1.2 m . Then,

(1.11)= 2 = (3.1415927...)×(1.2 m)2 = 4.5238934 m2

is what you would get using a calculator that has an eight-digit output. But because the radius has only two significant figures, it
limits the calculated quantity to two significant figures or

(1.12)=4.5 m2,

even though is good to at least eight digits.

2. For addition and subtraction: The answer can contain no more decimal places than the least precise measurement.

Suppose that you buy 7.56 kg of potatoes in a grocery store as measured with a scale with precision 0.01 kg. Then you drop off
6.052 kg of potatoes at your laboratory as measured by a scale with precision 0.001 kg. Finally, you go home and add 13.7 kg of
potatoes as measured by a bathroom scale with precision 0.1 kg. How many kilograms of potatoes do you now have, and how
many significant figures are appropriate in the answer? The mass is found by simple addition and subtraction:

(1.13)7.56 kg

- 6.052 kg

+13.7 kg

15.208 kg
= 15.2 kg.

Next, we identify the least precise measurement: 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final
answer must also be expressed to the 0.1 decimal place. Thus, the answer is rounded to the tenths place, giving us 15.2 kg.

Significant Figures in this Text

In this text, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant figures
are used in all worked examples. You will note that an answer given to three digits is based on input good to at least three digits,
for example. If the input has fewer significant figures, the answer will also have fewer significant figures. Care is also taken that
the number of significant figures is reasonable for the situation posed. In some topics, particularly in optics, more accurate
numbers are needed and more than three significant figures will be used. Finally, if a number is exact, such as the two in the
formula for the circumference of a circle, = 2π , it does not affect the number of significant figures in a calculation.

Check Your Understanding

Perform the following calculations and express your answer using the correct number of significant digits.

(a) A woman has two bags weighing 13.5 pounds and one bag with a weight of 10.2 pounds. What is the total weight of the
bags?

(b) The force on an object is equal to its mass multiplied by its acceleration . If a wagon with mass 55 kg

accelerates at a rate of 0.0255 m/s2 , what is the force on the wagon? (The unit of force is called the newton, and it is
expressed with the symbol N.)

Solution

(a) 37.2 pounds; Because the number of bags is an exact value, it is not considered in the significant figures.

(b) 1.4 N; Because the value 55 kg has only two significant figures, the final value must also contain two significant figures.

PhET Explorations: Estimation

Explore size estimation in one, two, and three dimensions! Multiple levels of difficulty allow for progressive skill improvement.

Figure 1.26 Estimation (http://cnx.org/content/m54766/1.7/estimation_en.jar)
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1.4 Approximation

Learning Objectives
By the end of this section, you will be able to:

• Make reasonable approximations based on given data.

On many occasions, physicists, other scientists, and engineers need to make approximations or “guesstimates” for a particular
quantity. What is the distance to a certain destination? What is the approximate density of a given item? About how large a
current will there be in a circuit? Many approximate numbers are based on formulae in which the input quantities are known only
to a limited accuracy. As you develop problem-solving skills (that can be applied to a variety of fields through a study of physics),
you will also develop skills at approximating. You will develop these skills through thinking more quantitatively, and by being
willing to take risks. As with any endeavor, experience helps, as well as familiarity with units. These approximations allow us to
rule out certain scenarios or unrealistic numbers. Approximations also allow us to challenge others and guide us in our
approaches to our scientific world. Let us do two examples to illustrate this concept.

Example 1.3 Approximate the Height of a Building

Can you approximate the height of one of the buildings on your campus, or in your neighborhood? Let us make an
approximation based upon the height of a person. In this example, we will calculate the height of a 39-story building.

Strategy

Think about the average height of an adult male. We can approximate the height of the building by scaling up from the
height of a person.

Solution

Based on information in the example, we know there are 39 stories in the building. If we use the fact that the height of one
story is approximately equal to about the length of two adult humans (each human is about 2 m tall), then we can estimate
the total height of the building to be

(1.14)2 m
1 person

×
2 person

1 story
×39 stories = 156 m.

Discussion

You can use known quantities to determine an approximate measurement of unknown quantities. If your hand measures 10
cm across, how many hand lengths equal the width of your desk? What other measurements can you approximate besides
length?

Example 1.4 Approximating Vast Numbers: a Trillion Dollars

Figure 1.27 A bank stack contains one-hundred $100 bills, and is worth $10,000. How many bank stacks make up a trillion dollars? (credit:
Andrew Magill)

The U.S. federal deficit in the 2008 fiscal year was a little greater than $10 trillion. Most of us do not have any concept of
how much even one trillion actually is. Suppose that you were given a trillion dollars in $100 bills. If you made 100-bill stacks
and used them to evenly cover a football field (between the end zones), make an approximation of how high the money pile
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would become. (We will use feet/inches rather than meters here because football fields are measured in yards.) One of your
friends says 3 in., while another says 10 ft. What do you think?

Strategy

When you imagine the situation, you probably envision thousands of small stacks of 100 wrapped $100 bills, such as you
might see in movies or at a bank. Since this is an easy-to-approximate quantity, let us start there. We can find the volume of
a stack of 100 bills, find out how many stacks make up one trillion dollars, and then set this volume equal to the area of the
football field multiplied by the unknown height.

Solution

(1) Calculate the volume of a stack of 100 bills. The dimensions of a single bill are approximately 3 in. by 6 in. A stack of 100
of these is about 0.5 in. thick. So the total volume of a stack of 100 bills is:

(1.15)volume of stack = length×width×height,

volume of stack = 6 in.×3 in.×0.5 in.

volume of stack = 9 in.3 .

(2) Calculate the number of stacks. Note that a trillion dollars is equal to $1×1012, and a stack of one-hundred $100

bills is equal to $10 000 or $1×104 . The number of stacks you will have is:

(1.16)$1×1012(a trillion dollars)/ $1×104 per stack = 1×108 stacks.

(3) Calculate the area of a football field in square inches. The area of a football field is 100 yd×50 yd, which gives

5,000 yd2. Because we are working in inches, we need to convert square yards to square inches:

(1.17)
Area = 5,000 yd2× 3 ft

1 yd
× 3 ft

1 yd
×12 in.

1 ft
×12 in.

1 ft
= 6,480 000 in.2

Area ≈ 6×106 in.2 .

This conversion gives us 6×106 in.2 for the area of the field. (Note that we are using only one significant figure in these
calculations.)

(4) Calculate the total volume of the bills. The volume of all the $100 -bill stacks is

9 in.3 / stack×108 stacks = 9×108 in.3.

(5) Calculate the height. To determine the height of the bills, use the equation:

(1.18)volume of bills = area of field×height of money:

Height of money = volume of bills
area of field

Height of money = 9×108in.3

6×106in.2
= 1.33×102 in.,

Height of money ≈ 1×102 in. = 100 in.

The height of the money will be about 100 in. high. Converting this value to feet gives

(1.19)
100 in.× 1 ft

12 in.
= 8.33 ft ≈ 8 ft.

Discussion

The final approximate value is much higher than the early estimate of 3 in., but the other early estimate of 10 ft (120 in.) was
roughly correct. How did the approximation measure up to your first guess? What can this exercise tell you in terms of rough
“guesstimates” versus carefully calculated approximations?

Check Your Understanding

Using mental math and your understanding of fundamental units, approximate the area of a regulation basketball court.
Describe the process you used to arrive at your final approximation.

Solution
An average male is about two meters tall. It would take approximately 15 men laid out end to end to cover the length, and

about 7 to cover the width. That gives an approximate area of 420 m2 .
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accuracy:

approximation:

classical physics:

conversion factor:

derived units:

English units:

fundamental units:

kilogram:

law:

meter:

method of adding percents:

metric system:

model:

modern physics:

order of magnitude:

percent uncertainty:

physical quantity :

physics:

precision:

quantum mechanics:

relativity:

scientific method:

second:

SI units :

significant figures:

theory:

uncertainty:

units :

Glossary
the degree to which a measured value agrees with correct value for that measurement

an estimated value based on prior experience and reasoning

physics that was developed from the Renaissance to the end of the 19th century

a ratio expressing how many of one unit are equal to another unit

units that can be calculated using algebraic combinations of the fundamental units

system of measurement used in the United States; includes units of measurement such as feet, gallons, and
pounds

units that can only be expressed relative to the procedure used to measure them

the SI unit for mass, abbreviated (kg)

a description, using concise language or a mathematical formula, a generalized pattern in nature that is supported by
scientific evidence and repeated experiments

the SI unit for length, abbreviated (m)

the percent uncertainty in a quantity calculated by multiplication or division is the sum of the
percent uncertainties in the items used to make the calculation

a system in which values can be calculated in factors of 10

representation of something that is often too difficult (or impossible) to display directly

the study of relativity, quantum mechanics, or both

refers to the size of a quantity as it relates to a power of 10

the ratio of the uncertainty of a measurement to the measured value, expressed as a percentage

a characteristic or property of an object that can be measured or calculated from other measurements

the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested
in what fundamental mechanisms underlie every phenomenon

the degree to which repeated measurements agree with each other

the study of objects smaller than can be seen with a microscope

the study of objects moving at speeds greater than about 1% of the speed of light, or of objects being affected by a
strong gravitational field

a method that typically begins with an observation and question that the scientist will research; next, the
scientist typically performs some research about the topic and then devises a hypothesis; then, the scientist will test the
hypothesis by performing an experiment; finally, the scientist analyzes the results of the experiment and draws a
conclusion

the SI unit for time, abbreviated (s)

the international system of units that scientists in most countries have agreed to use; includes units such as meters,
liters, and grams

express the precision of a measuring tool used to measure a value

an explanation for patterns in nature that is supported by scientific evidence and verified multiple times by various
groups of researchers

a quantitative measure of how much your measured values deviate from a standard or expected value

a standard used for expressing and comparing measurements

Section Summary

1.1 Physics: An Introduction
• Science seeks to discover and describe the underlying order and simplicity in nature.
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• Physics is the most basic of the sciences, concerning itself with energy, matter, space and time, and their interactions.
• Scientific laws and theories express the general truths of nature and the body of knowledge they encompass. These laws

of nature are rules that all natural processes appear to follow.

1.2 Physical Quantities and Units
• Physical quantities are a characteristic or property of an object that can be measured or calculated from other

measurements.
• Units are standards for expressing and comparing the measurement of physical quantities. All units can be expressed as

combinations of four fundamental units.
• The four fundamental units we will use in this text are the meter (for length), the kilogram (for mass), the second (for time),

and the ampere (for electric current). These units are part of the metric system, which uses powers of 10 to relate quantities
over the vast ranges encountered in nature.

• The four fundamental units are abbreviated as follows: meter, m; kilogram, kg; second, s; and ampere, A. The metric
system also uses a standard set of prefixes to denote each order of magnitude greater than or lesser than the fundamental
unit itself.

• Unit conversions involve changing a value expressed in one type of unit to another type of unit. This is done by using
conversion factors, which are ratios relating equal quantities of different units.

1.3 Accuracy, Precision, and Significant Figures
• Accuracy of a measured value refers to how close a measurement is to the correct value. The uncertainty in a

measurement is an estimate of the amount by which the measurement result may differ from this value.
• Precision of measured values refers to how close the agreement is between repeated measurements.
• The precision of a measuring tool is related to the size of its measurement increments. The smaller the measurement

increment, the more precise the tool.
• Significant figures express the precision of a measuring tool.
• When multiplying or dividing measured values, the final answer can contain only as many significant figures as the least

precise value.
• When adding or subtracting measured values, the final answer cannot contain more decimal places than the least precise

value.

1.4 Approximation
Scientists often approximate the values of quantities to perform calculations and analyze systems.

Conceptual Questions

1.1 Physics: An Introduction
1. Models are particularly useful in relativity and quantum mechanics, where conditions are outside those normally encountered
by humans. What is a model?

2. How does a model differ from a theory?

3. If two different theories describe experimental observations equally well, can one be said to be more valid than the other
(assuming both use accepted rules of logic)?

4. What determines the validity of a theory?

5. Certain criteria must be satisfied if a measurement or observation is to be believed. Will the criteria necessarily be as strict for
an expected result as for an unexpected result?

6. Can the validity of a model be limited, or must it be universally valid? How does this compare to the required validity of a
theory or a law?

7. Classical physics is a good approximation to modern physics under certain circumstances. What are they?

8. When is it necessary to use relativistic quantum mechanics?

9. Can classical physics be used to accurately describe a satellite moving at a speed of 7500 m/s? Explain why or why not.

1.2 Physical Quantities and Units
10. Identify some advantages of metric units.

1.3 Accuracy, Precision, and Significant Figures
11. What is the relationship between the accuracy and uncertainty of a measurement?

12. Prescriptions for vision correction are given in units called diopters (D). Determine the meaning of that unit. Obtain
information (perhaps by calling an optometrist or performing an internet search) on the minimum uncertainty with which
corrections in diopters are determined and the accuracy with which corrective lenses can be produced. Discuss the sources of
uncertainties in both the prescription and accuracy in the manufacture of lenses.
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Problems & Exercises

1.2 Physical Quantities and Units
1. The speed limit on some interstate highways is roughly 100
km/h. (a) What is this in meters per second? (b) How many
miles per hour is this?

2. A car is traveling at a speed of 33 m/s . (a) What is its
speed in kilometers per hour? (b) Is it exceeding the
90 km/h speed limit?

3. Show that 1.0 m/s = 3.6 km/h . Hint: Show the explicit

steps involved in converting 1.0 m/s = 3.6 km/h.

4. American football is played on a 100-yd-long field,
excluding the end zones. How long is the field in meters?
(Assume that 1 meter equals 3.281 feet.)

5. Soccer fields vary in size. A large soccer field is 115 m long
and 85 m wide. What are its dimensions in feet and inches?
(Assume that 1 meter equals 3.281 feet.)

6. What is the height in meters of a person who is 6 ft 1.0 in.
tall? (Assume that 1 meter equals 39.37 in.)

7. Mount Everest, at 29,028 feet, is the tallest mountain on
the Earth. What is its height in kilometers? (Assume that 1
kilometer equals 3,281 feet.)

8. The speed of sound is measured to be 342 m/s on a
certain day. What is this in km/h?

9. Tectonic plates are large segments of the Earth's crust that
move slowly. Suppose that one such plate has an average
speed of 4.0 cm/year. (a) What distance does it move in 1 s at
this speed? (b) What is its speed in kilometers per million
years?

10. (a) Refer to Table 1.3 to determine the average distance
between the Earth and the Sun. Then calculate the average
speed of the Earth in its orbit in kilometers per second. (b)
What is this in meters per second?

1.3 Accuracy, Precision, and Significant
Figures
Express your answers to problems in this section to the
correct number of significant figures and proper units.

11. Suppose that your bathroom scale reads your mass as 65
kg with a 3% uncertainty. What is the uncertainty in your mass
(in kilograms)?

12. A good-quality measuring tape can be off by 0.50 cm over
a distance of 20 m. What is its percent uncertainty?

13. (a) A car speedometer has a 5.0% uncertainty. What is

the range of possible speeds when it reads 90 km/h ? (b)

Convert this range to miles per hour. (1 km = 0.6214 mi)

14. An infant's pulse rate is measured to be 130 ± 5 beats/

min. What is the percent uncertainty in this measurement?

15. (a) Suppose that a person has an average heart rate of
72.0 beats/min. How many beats does he or she have in 2.0
y? (b) In 2.00 y? (c) In 2.000 y?

16. A can contains 375 mL of soda. How much is left after
308 mL is removed?

17. State how many significant figures are proper in the
results of the following calculations: (a)

(106.7)(98.2) / (46.210)(1.01) (b) (18.7)2 (c)

1.60×10−19 (3712) .

18. (a) How many significant figures are in the numbers 99
and 100? (b) If the uncertainty in each number is 1, what is
the percent uncertainty in each? (c) Which is a more
meaningful way to express the accuracy of these two
numbers, significant figures or percent uncertainties?

19. (a) If your speedometer has an uncertainty of 2.0 km/h

at a speed of 90 km/h , what is the percent uncertainty? (b)

If it has the same percent uncertainty when it reads 60 km/h

, what is the range of speeds you could be going?

20. (a) A person's blood pressure is measured to be
120 ± 2 mm Hg . What is its percent uncertainty? (b)

Assuming the same percent uncertainty, what is the
uncertainty in a blood pressure measurement of
80 mm Hg?

21. A person measures his or her heart rate by counting the
number of beats in 30 s . If 40 ± 1 beats are counted in

30.0 ± 0.5 s , what is the heart rate and its uncertainty in

beats per minute?

22. What is the area of a circle 3.102 cm in diameter?

23. If a marathon runner averages 9.5 mi/h, how long does it
take him or her to run a 26.22 mi marathon?

24. A marathon runner completes a 42.188 km course in

2 h , 30 min, and 12 s . There is an uncertainty of 25 m in
the distance traveled and an uncertainty of 1 s in the elapsed
time. (a) Calculate the percent uncertainty in the distance. (b)
Calculate the uncertainty in the elapsed time. (c) What is the
average speed in meters per second? (d) What is the
uncertainty in the average speed?

25. The sides of a small rectangular box are measured to be
1.80 ± 0.01 cm , 2.05 ± 0.02 cm, and 3.1 ± 0.1 cm

long. Calculate its volume and uncertainty in cubic
centimeters.

26. When non-metric units were used in the United Kingdom,
a unit of mass called the pound-mass (lbm) was employed,
where 1 lbm = 0.4539 kg . (a) If there is an uncertainty of

0.0001 kg in the pound-mass unit, what is its percent

uncertainty? (b) Based on that percent uncertainty, what
mass in pound-mass has an uncertainty of 1 kg when
converted to kilograms?

27. The length and width of a rectangular room are measured
to be 3.955 ± 0.005 m and 3.050 ± 0.005 m . Calculate

the area of the room and its uncertainty in square meters.

28. A car engine moves a piston with a circular cross section
of 7.500 ± 0.002 cm diameter a distance of

3.250 ± 0.001 cm to compress the gas in the cylinder. (a)

By what amount is the gas decreased in volume in cubic
centimeters? (b) Find the uncertainty in this volume.

1.4 Approximation
29. How many heartbeats are there in a lifetime?
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30. A generation is about one-third of a lifetime.
Approximately how many generations have passed since the
year 0 AD?

31. How many times longer than the mean life of an
extremely unstable atomic nucleus is the lifetime of a human?
(Hint: The lifetime of an unstable atomic nucleus is on the

order of 10−22  s .)

32. Calculate the approximate number of atoms in a
bacterium. Assume that the average mass of an atom in the
bacterium is ten times the mass of a hydrogen atom. (Hint:

The mass of a hydrogen atom is on the order of 10−27  kg

and the mass of a bacterium is on the order of 10−15  kg. )

Figure 1.28 This color-enhanced photo shows Salmonella typhimurium

(red) attacking human cells. These bacteria are commonly known for
causing foodborne illness. Can you estimate the number of atoms in
each bacterium? (credit: Rocky Mountain Laboratories, NIAID, NIH)

33. Approximately how many atoms thick is a cell membrane,
assuming all atoms there average about twice the size of a
hydrogen atom?

34. (a) What fraction of Earth's diameter is the greatest ocean
depth? (b) The greatest mountain height?

35. (a) Calculate the number of cells in a hummingbird
assuming the mass of an average cell is ten times the mass
of a bacterium. (b) Making the same assumption, how many
cells are there in a human?

36. Assuming one nerve impulse must end before another
can begin, what is the maximum firing rate of a nerve in
impulses per second?
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2 KINEMATICS

Figure 2.1 The motion of an American kestrel through the air can be described by the bird's displacement, speed, velocity, and acceleration. When it
flies in a straight line without any change in direction, its motion is said to be one dimensional. (credit: Vince Maidens, Wikimedia Commons)

Chapter Outline
2.1. Displacement

2.2. Vectors, Scalars, and Coordinate Systems

2.3. Time, Velocity, and Speed

2.4. Acceleration

2.5. Motion Equations for Constant Acceleration in One Dimension

2.6. Problem-Solving Basics for One Dimensional Kinematics

2.7. Falling Objects

2.8. Graphical Analysis of One Dimensional Motion

Connection for AP® Courses
Objects are in motion everywhere we look. Everything from a tennis game to a space-probe flyby of the planet Neptune involves
motion. When you are resting, your heart moves blood through your veins. Even in inanimate objects, there is a continuous
motion in the vibrations of atoms and molecules. Questions about motion are interesting in and of themselves: How long will it

take for a space probe to get to Mars? Where will a football land if it is thrown at a certain angle?

Understanding motion will not only provide answers to these questions, but will be key to understanding more advanced
concepts in physics. For example, the discussion of force in Chapter 4 will not fully make sense until you understand
acceleration. This relationship between force and acceleration is also critical to understanding Big Idea 3.

Additionally, this unit will explore the topic of reference frames, a critical component to quantifying how things move. If you have
ever waved to a departing friend at a train station, you are likely familiar with this idea. While you see your friend move away
from you at a considerable rate, those sitting with her will likely see her as not moving. The effect that the chosen reference
frame has on your observations is substantial, and an understanding of this is needed to grasp both Enduring Understanding 3.A
and Essential Knowledge 3.A.1.

Our formal study of physics begins with kinematics, which is defined as the study of motion without considering its causes. In
one- and two-dimensional kinematics we will study only the motion of a football, for example, without worrying about what forces
cause or change its motion. In this chapter, we examine the simplest type of motion—namely, motion along a straight line, or
one-dimensional motion. Later, in two-dimensional kinematics, we apply concepts developed here to study motion along curved
paths (two- and three-dimensional motion), for example, that of a car rounding a curve.

The content in this chapter supports:

Big Idea 3 The interactions of an object with other objects can be described by forces.
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Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.1 An observer in a particular reference frame can describe the motion of an object using such
quantities as position, displacement, distance, velocity, speed, and acceleration.

2.1 Displacement

Figure 2.2 These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by their change
in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Learning Objectives
By the end of this section, you will be able to:

• Define position, displacement, distance, and distance traveled in a particular frame of reference.
• Explain the relationship between position and displacement.
• Distinguish between displacement and distance traveled.
• Calculate displacement and distance given initial position, final position, and the path between the two.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Position
In order to describe the motion of an object, you must first be able to describe its position—where it is at any particular time.
More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference
frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a
rocket launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor's
position could be described in terms of where she is in relation to the nearby white board. (See Figure 2.3.) In other cases, we
use reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an
airplane, for example, we use the airplane, not the Earth, as the reference frame. (See Figure 2.4.)

Displacement
If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a
passenger moves toward the rear of an airplane), then the object's position changes. This change in position is known as
displacement. The word “displacement” implies that an object has moved, or has been displaced.

Displacement

Displacement is the change in position of an object:

(2.1)Δ = f − 0,

where Δ is displacement, f is the final position, and 0 is the initial position.
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In this text the upper case Greek letter Δ (delta) always means “change in” whatever quantity follows it; thus, Δ means
change in position. Always solve for displacement by subtracting initial position 0 from final position f .

Note that the SI unit for displacement is the meter (m) (see Physical Quantities and Units), but sometimes kilometers, miles,
feet, and other units of length are used. Keep in mind that when units other than the meter are used in a problem, you may need
to convert them into meters to complete the calculation.

Figure 2.3 A professor paces left and right while lecturing. Her position relative to the blackboard is given by . The +2.0 m displacement of the

professor relative to the blackboard is represented by an arrow pointing to the right.

Figure 2.4 A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by . The −4 m displacement of the
passenger relative to the plane is represented by an arrow toward the rear of the plane. Notice that the arrow representing his displacement is twice as
long as the arrow representing the displacement of the professor (he moves twice as far) in Figure 2.3.

Note that displacement has a direction as well as a magnitude. The professor's displacement is 2.0 m to the right, and the airline
passenger's displacement is 4.0 m toward the rear. In one-dimensional motion, direction can be specified with a plus or minus
sign. When you begin a problem, you should select which direction is positive (usually that will be to the right or up, but you are
free to select positive as being any direction). The professor's initial position is 0 = 1.5 m and her final position is

f = 3.5 m . Thus her displacement is

(2.2)Δ = f − 0 = 3.5 m − 1.5 m = + 2.0 m.

In this coordinate system, motion to the right is positive, whereas motion to the left is negative. Similarly, the airplane passenger's
initial position is 0 = 6.0 m and his final position is f = 2.0 m , so his displacement is
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(2.3)Δ = f − 0 = 2.0 m − 6.0 m = −4.0 m.

His displacement is negative because his motion is toward the rear of the plane, or in the negative direction in our coordinate
system.

Distance
Although displacement is described in terms of direction, distance is not. Distance is defined to be the magnitude or size of

displacement between two positions. Note that the distance between two positions is not the same as the distance traveled
between them. Distance traveled is the total length of the path traveled between two positions. Distance has no direction and,
thus, no sign. For example, the distance the professor walks is 2.0 m. The distance the airplane passenger walks is 4.0 m.

Misconception Alert: Distance Traveled vs. Magnitude of Displacement

It is important to note that the distance traveled, however, can be greater than the magnitude of the displacement (by
magnitude, we mean just the size of the displacement without regard to its direction; that is, just a number with a unit). For
example, the professor could pace back and forth many times, perhaps walking a distance of 150 m during a lecture, yet still
end up only 2.0 m to the right of her starting point. In this case her displacement would be +2.0 m, the magnitude of her
displacement would be 2.0 m, but the distance she traveled would be 150 m. In kinematics we nearly always deal with
displacement and magnitude of displacement, and almost never with distance traveled. One way to think about this is to
assume you marked the start of the motion and the end of the motion. The displacement is simply the difference in the
position of the two marks and is independent of the path taken in traveling between the two marks. The distance traveled,
however, is the total length of the path taken between the two marks.

Check Your Understanding

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does
she ride? (c) What is the magnitude of her displacement?

Solution

Figure 2.5

(a) The rider's displacement is Δ = f − 0 = −1 km . (The displacement is negative because we take east to be

positive and west to be negative.)

(b) The distance traveled is 3 km + 2 km = 5 km .

(c) The magnitude of the displacement is 1 km .
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2.2 Vectors, Scalars, and Coordinate Systems

Figure 2.6 The motion of this Eclipse Concept jet can be described in terms of the distance it has traveled (a scalar quantity) or its displacement in a
specific direction (a vector quantity). In order to specify the direction of motion, its displacement must be described based on a coordinate system. In
this case, it may be convenient to choose motion toward the left as positive motion (it is the forward direction for the plane), although in many cases,
the -coordinate runs from left to right, with motion to the right as positive and motion to the left as negative. (credit: Armchair Aviator, Flickr)

Learning Objectives
By the end of this section, you will be able to:

• Define and distinguish between scalar and vector quantities.
• Assign a coordinate system for a scenario involving one-dimensional motion.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.2 The student is able to design an experimental investigation of the motion of an object.

What is the difference between distance and displacement? Whereas displacement is defined by both direction and magnitude,
distance is defined only by magnitude. Displacement is an example of a vector quantity. Distance is an example of a scalar
quantity. A vector is any quantity with both magnitude and direction. Other examples of vectors include a velocity of 90 km/h east
and a force of 500 newtons straight down.

The direction of a vector in one-dimensional motion is given simply by a plus ( + ) or minus ( − ) sign. Vectors are

represented graphically by arrows. An arrow used to represent a vector has a length proportional to the vector's magnitude (e.g.,
the larger the magnitude, the longer the length of the vector) and points in the same direction as the vector.

Some physical quantities, like distance, either have no direction or none is specified. A scalar is any quantity that has a
magnitude, but no direction. For example, a 20ºC temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, a
90 km/h speed limit, a person's 1.8 m height, and a distance of 2.0 m are all scalars—quantities with no specified direction. Note,
however, that a scalar can be negative, such as a −20ºC temperature. In this case, the minus sign indicates a point on a scale
rather than a direction. Scalars are never represented by arrows.

Coordinate Systems for One-Dimensional Motion
In order to describe the direction of a vector quantity, you must designate a coordinate system within the reference frame. For
one-dimensional motion, this is a simple coordinate system consisting of a one-dimensional coordinate line. In general, when
describing horizontal motion, motion to the right is usually considered positive, and motion to the left is considered negative. With
vertical motion, motion up is usually positive and motion down is negative. In some cases, however, as with the jet in Figure 2.6,
it can be more convenient to switch the positive and negative directions. For example, if you are analyzing the motion of falling
objects, it can be useful to define downwards as the positive direction. If people in a race are running to the left, it is useful to
define left as the positive direction. It does not matter as long as the system is clear and consistent. Once you assign a positive
direction and start solving a problem, you cannot change it.
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Figure 2.7 It is usually convenient to consider motion upward or to the right as positive ( + ) and motion downward or to the left as negative ( − ) .

Check Your Understanding

A person's speed can stay the same as he or she rounds a corner and changes direction. Given this information, is speed a
scalar or a vector quantity? Explain.

Solution
Speed is a scalar quantity. It does not change at all with direction changes; therefore, it has magnitude only. If it were a
vector quantity, it would change as direction changes (even if its magnitude remained constant).

Switching Reference Frames

A fundamental tenet of physics is that information about an event can be gathered from a variety of reference frames. For
example, imagine that you are a passenger walking toward the front of a bus. As you walk, your motion is observed by a
fellow bus passenger and by an observer standing on the sidewalk.

Both the bus passenger and sidewalk observer will be able to collect information about you. They can determine how far you
moved and how much time it took you to do so. However, while you moved at a consistent pace, both observers will get
different results. To the passenger sitting on the bus, you moved forward at what one would consider a normal pace,
something similar to how quickly you would walk outside on a sunny day. To the sidewalk observer though, you will have
moved much quicker. Because the bus is also moving forward, the distance you move forward against the sidewalk each
second increases, and the sidewalk observer must conclude that you are moving at a greater pace.

To show that you understand this concept, you will need to create an event and think of a way to view this event from two
different frames of reference. In order to ensure that the event is being observed simultaneously from both frames, you will
need an assistant to help out. An example of a possible event is to have a friend ride on a skateboard while tossing a ball.
How will your friend observe the ball toss, and how will those observations be different from your own?

Your task is to describe your event and the observations of your event from both frames of reference. Answer the following
questions below to demonstrate your understanding. For assistance, you can review the information given in the ‘Position'
paragraph at the start of Section 2.1.

1. What is your event? What object are both you and your assistant observing?

2. What do you see as the event takes place?

3. What does your assistant see as the event takes place?

4. How do your reference frames cause you and your assistant to have two different sets of observations?
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2.3 Time, Velocity, and Speed

Figure 2.8 The motion of these racing snails can be described by their speeds and their velocities. (credit: tobitasflickr, Flickr)

Learning Objectives
By the end of this section, you will be able to:

• Explain the relationships between instantaneous velocity, average velocity, instantaneous speed, average speed,
displacement, and time.

• Calculate velocity and speed given initial position, initial time, final position, and final time.
• Derive a graph of velocity vs. time given a graph of position vs. time.
• Interpret a graph of velocity vs. time.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

There is more to motion than distance and displacement. Questions such as, “How long does a foot race take?” and “What was
the runner's speed?” cannot be answered without an understanding of other concepts. In this section we add definitions of time,
velocity, and speed to expand our description of motion.

Time
As discussed in Physical Quantities and Units, the most fundamental physical quantities are defined by how they are
measured. This is the case with time. Every measurement of time involves measuring a change in some physical quantity. It may
be a number on a digital clock, a heartbeat, or the position of the Sun in the sky. In physics, the definition of time is simple— time
is change, or the interval over which change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The SI unit for time is the second, abbreviated s. We
might, for example, observe that a certain pendulum makes one full swing every 0.75 s. We could then use the pendulum to
measure time by counting its swings or, of course, by connecting the pendulum to a clock mechanism that registers time on a
dial. This allows us to not only measure the amount of time, but also to determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time for a particular motion, such as how long it takes an
airplane passenger to get from his seat to the back of the plane. To find elapsed time, we note the time at the beginning and end
of the motion and subtract the two. For example, a lecture may start at 11:00 A.M. and end at 11:50 A.M., so that the elapsed
time would be 50 min. Elapsed time Δt is the difference between the ending time and beginning time,

(2.4)Δ = f − 0,

where Δ is the change in time or elapsed time, f is the time at the end of the motion, and 0 is the time at the beginning of

the motion. (As usual, the delta symbol, Δ , means the change in the quantity that follows it.)

Life is simpler if the beginning time 0 is taken to be zero, as when we use a stopwatch. If we were using a stopwatch, it would

simply read zero at the start of the lecture and 50 min at the end. If 0 = 0 , then Δ = f ≡ .

In this text, for simplicity's sake,

• motion starts at time equal to zero ( 0 = 0)

• the symbol is used for elapsed time unless otherwise specified (Δ = f ≡ )
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Velocity
Your notion of velocity is probably the same as its scientific definition. You know that if you have a large displacement in a small
amount of time you have a large velocity, and that velocity has units of distance divided by time, such as miles per hour or
kilometers per hour.

Average Velocity

Average velocity is displacement (change in position) divided by the time of travel,

(2.5)- = Δ
Δ

= f − 0

f − 0

where - is the average (indicated by the bar over the ) velocity, Δ is the change in position (or displacement), and f

and 0 are the final and beginning positions at times f and 0 , respectively. If the starting time 0 is taken to be zero,

then the average velocity is simply

(2.6)- = Δ .

Notice that this definition indicates that velocity is a vector because displacement is a vector. It has both magnitude and direction.
The SI unit for velocity is meters per second or m/s, but many other units, such as km/h, mi/h (also written as mph), and cm/s,
are in common use. Suppose, for example, an airplane passenger took 5 seconds to move −4 m (the minus sign indicates that
displacement is toward the back of the plane). His average velocity would be

(2.7)- = Δ = −4 m
5 s

= − 0.8 m/s.

The minus sign indicates the average velocity is also toward the rear of the plane.

The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point,
however. For example, we cannot tell from average velocity whether the airplane passenger stops momentarily or backs up
before he goes to the back of the plane. To get more details, we must consider smaller segments of the trip over smaller time
intervals.

Figure 2.9 A more detailed record of an airplane passenger heading toward the back of the plane, showing smaller segments of his trip.

The smaller the time intervals considered in a motion, the more detailed the information. When we carry this process to its logical
conclusion, we are left with an infinitesimally small interval. Over such an interval, the average velocity becomes the
instantaneous velocity or the velocity at a specific instant. A car's speedometer, for example, shows the magnitude (but not the
direction) of the instantaneous velocity of the car. (Police give tickets based on instantaneous velocity, but when calculating how
long it will take to get from one place to another on a road trip, you need to use average velocity.) Instantaneous velocity is
the average velocity at a specific instant in time (or over an infinitesimally small time interval).

Mathematically, finding instantaneous velocity, , at a precise instant can involve taking a limit, a calculus operation beyond
the scope of this text. However, under many circumstances, we can find precise values for instantaneous velocity without
calculus.

Speed
In everyday language, most people use the terms “speed” and “velocity” interchangeably. In physics, however, they do not have
the same meaning and they are distinct concepts. One major difference is that speed has no direction. Thus speed is a scalar.
Just as we need to distinguish between instantaneous velocity and average velocity, we also need to distinguish between
instantaneous speed and average speed.
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Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the airplane passenger at one instant
had an instantaneous velocity of −3.0 m/s (the minus meaning toward the rear of the plane). At that same time his instantaneous
speed was 3.0 m/s. Or suppose that at one time during a shopping trip your instantaneous velocity is 40 km/h due north. Your
instantaneous speed at that instant would be 40 km/h—the same magnitude but without a direction. Average speed, however, is
very different from average velocity. Average speed is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than displacement. So average speed can be greater than average velocity,
which is displacement divided by time. For example, if you drive to a store and return home in half an hour, and your car's
odometer shows the total distance traveled was 6 km, then your average speed was 12 km/h. Your average velocity, however,
was zero, because your displacement for the round trip is zero. (Displacement is change in position and, thus, is zero for a round
trip.) Thus average speed is not simply the magnitude of average velocity.

Figure 2.10 During a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is 12 km/h. The displacement for the
round trip is zero, since there was no net change in position. Thus the average velocity is zero.

Another way of visualizing the motion of an object is to use a graph. A plot of position or of velocity as a function of time can be
very useful. For example, for this trip to the store, the position, velocity, and speed-vs.-time graphs are displayed in Figure 2.11.
(Note that these graphs depict a very simplified model of the trip. We are assuming that speed is constant during the trip, which
is unrealistic given that we'll probably stop at the store. But for simplicity's sake, we will model it with no stops or changes in
speed. We are also assuming that the route between the store and the house is a perfectly straight line.)
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Figure 2.11 Position vs. time, velocity vs. time, and speed vs. time on a trip. Note that the velocity for the return trip is negative.

Making Connections: Take-Home Investigation—Getting a Sense of Speed

If you have spent much time driving, you probably have a good sense of speeds between about 10 and 70 miles per hour.
But what are these in meters per second? What do we mean when we say that something is moving at 10 m/s? To get a
better sense of what these values really mean, do some observations and calculations on your own:

• calculate typical car speeds in meters per second
• estimate jogging and walking speed by timing yourself; convert the measurements into both m/s and mi/h
• determine the speed of an ant, snail, or falling leaf
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Check Your Understanding

A commuter train travels from Baltimore to Washington, DC, and back in 1 hour and 45 minutes. The distance between the
two stations is approximately 40 miles. What is (a) the average velocity of the train, and (b) the average speed of the train in
m/s?

Solution

(a) The average velocity of the train is zero because f = 0 ; the train ends up at the same place it starts.

(b) The average speed of the train is calculated below. Note that the train travels 40 miles one way and 40 miles back, for a
total distance of 80 miles.

(2.8)distance
time

= 80 miles
105 minutes

(2.9)80 miles
105 minutes

×5280 feet
1 mile

× 1 meter
3.28 feet

× 1 minute
60 seconds

= 20 m/s

2.4 Acceleration

Figure 2.12 A plane decelerates, or slows down, as it comes in for landing in St. Maarten. Its acceleration is opposite in direction to its velocity. (credit:
Steve Conry, Flickr)

Learning Objectives
By the end of this section, you will be able to:

• Define and distinguish between instantaneous acceleration and average acceleration.
• Calculate acceleration given initial time, initial velocity, final time, and final velocity.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

In everyday conversation, to accelerate means to speed up. The accelerator in a car can in fact cause it to speed up. The greater
the acceleration, the greater the change in velocity over a given time. The formal definition of acceleration is consistent with
these notions, but more inclusive.

Average Acceleration

Average Acceleration is the rate at which velocity changes,

(2.10)
- = Δ

Δ
= f − 0

f − 0
,

where is average acceleration, is velocity, and is time. (The bar over the means average acceleration.)

Because acceleration is velocity in m/s divided by time in s, the SI units for acceleration are m/s2 , meters per second squared
or meters per second per second, which literally means by how many meters per second the velocity changes every second.
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Recall that velocity is a vector—it has both magnitude and direction. This means that a change in velocity can be a change in
magnitude (or speed), but it can also be a change in direction. For example, if a car turns a corner at constant speed, it is
accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration
when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Acceleration as a Vector

Acceleration is a vector in the same direction as the change in velocity, Δ . Since velocity is a vector, it can change either
in magnitude or in direction. Acceleration is therefore a change in either speed or direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the direction of motion.
When an object's acceleration is in the same direction of its motion, the object will speed up. However, when an object's
acceleration is opposite to the direction of its motion, the object will slow down. Speeding up and slowing down should not be
confused with a positive and negative acceleration. The next two examples should help to make this distinction clear.

Figure 2.13 A subway train in Sao Paulo, Brazil, decelerates as it comes into a station. It is accelerating in a direction opposite to its direction of
motion. (credit: Yusuke Kawasaki, Flickr)

Making Connections: Car Motion

Figure 2.14 Above are arrows representing the motion of five cars (A–E). In all five cases, the positive direction should be considered to the right
of the page.

Consider the acceleration and velocity of each car in terms of its direction of travel.

Figure 2.15 Car A is speeding up.

Because the positive direction is considered to the right of the paper, Car A is moving with a positive velocity. Because it is
speeding up while moving with a positive velocity, its acceleration is also considered positive.
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Figure 2.16 Car B is slowing down.

Because the positive direction is considered to the right of the paper, Car B is also moving with a positive velocity. However,
because it is slowing down while moving with a positive velocity, its acceleration is considered negative. (This can be viewed
in a mathematical manner as well. If the car was originally moving with a velocity of +25 m/s, it is finishing with a speed less
than that, like +5 m/s. Because the change in velocity is negative, the acceleration will be as well.)

Figure 2.17 Car C has a constant speed.

Because the positive direction is considered to the right of the paper, Car C is moving with a positive velocity. Because all
arrows are of the same length, this car is not changing its speed. As a result, its change in velocity is zero, and its
acceleration must be zero as well.

Figure 2.18 Car D is speeding up in the opposite direction of Cars A, B, C.

Because the car is moving opposite to the positive direction, Car D is moving with a negative velocity. Because it is speeding
up while moving in a negative direction, its acceleration is negative as well.

Figure 2.19 Car E is slowing down in the same direction as Car D and opposite of Cars A, B, C.

Because it is moving opposite to the positive direction, Car E is moving with a negative velocity as well. However, because it
is slowing down while moving in a negative direction, its acceleration is actually positive. As in example B, this may be more
easily understood in a mathematical sense. The car is originally moving with a large negative velocity (−25 m/s) but slows to
a final velocity that is less negative (−5 m/s). This change in velocity, from −25 m/s to −5 m/s, is actually a positive change (

− = − 5 m/s − − 25 m/s of 20 m/s. Because the change in velocity is positive, the acceleration must also be

positive.

Making Connection - Illustrative Example

The three graphs below are labeled A, B, and C. Each one represents the position of a moving object plotted against time.
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Figure 2.20 Three position and time graphs: A, B, and C.

As we did in the previous example, let's consider the acceleration and velocity of each object in terms of its direction of
travel.

Figure 2.21 Graph A of Position (y axis) vs. Time (x axis).

Object A is continually increasing its position in the positive direction. As a result, its velocity is considered positive.
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Figure 2.22 Breakdown of Graph A into two separate sections.

During the first portion of time (shaded grey) the position of the object does not change much, resulting in a small positive
velocity. During a later portion of time (shaded green) the position of the object changes more, resulting in a larger positive
velocity. Because this positive velocity is increasing over time, the acceleration of the object is considered positive.

Figure 2.23 Graph B of Position (y axis) vs. Time (x axis).

As in case A, Object B is continually increasing its position in the positive direction. As a result, its velocity is considered
positive.

Figure 2.24 Breakdown of Graph B into two separate sections.

During the first portion of time (shaded grey) the position of the object changes a large amount, resulting in a large positive
velocity. During a later portion of time (shaded green) the position of the object does not change as much, resulting in a
smaller positive velocity. Because this positive velocity is decreasing over time, the acceleration of the object is considered
negative.
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Figure 2.25 Graph C of Position (y axis) vs. Time (x axis).

Object C is continually decreasing its position in the positive direction. As a result, its velocity is considered negative.

Figure 2.26 Breakdown of Graph C into two separate sections.

During the first portion of time (shaded grey) the position of the object does not change a large amount, resulting in a small
negative velocity. During a later portion of time (shaded green) the position of the object changes a much larger amount,
resulting in a larger negative velocity. Because the velocity of the object is becoming more negative during the time period,
the change in velocity is negative. As a result, the object experiences a negative acceleration.

Example 2.1 Calculating Acceleration: A Racehorse Leaves the Gate

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its average
acceleration?

Figure 2.27 (credit: Jon Sullivan, PD Photo.org)

Strategy
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First we draw a sketch and assign a coordinate system to the problem. This is a simple problem, but it always helps to
visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

Figure 2.28

We can solve this problem by identifying Δ and Δ from the given information and then calculating the average

acceleration directly from the equation - = Δ
Δ

= f − 0

f − 0
.

Solution

1. Identify the knowns. 0 = 0 , f = −15.0 m/s (the minus sign indicates direction toward the west), Δ = 1.80 s .

2. Find the change in velocity. Since the horse is going from zero to − 15.0 m/s , its change in velocity equals its final

velocity: Δ = f = −15.0 m/s .

3. Plug in the known values ( Δ and Δ ) and solve for the unknown - .

(2.11)- = Δ
Δ

= −15.0 m/s
1.80 s

= −8.33 m/s2.

Discussion

The minus sign for acceleration indicates that acceleration is toward the west. An acceleration of 8.33 m/s2 due west
means that the horse increases its velocity by 8.33 m/s due west each second, that is, 8.33 meters per second per second,

which we write as 8.33 m/s2 . This is truly an average acceleration, because the ride is not smooth. We shall see later that
an acceleration of this magnitude would require the rider to hang on with a force nearly equal to his weight.

Instantaneous Acceleration
Instantaneous acceleration , or the acceleration at a specific instant in time, is obtained by the same process as discussed
for instantaneous velocity in Time, Velocity, and Speed—that is, by considering an infinitesimally small interval of time. How do
we find instantaneous acceleration using only algebra? The answer is that we choose an average acceleration that is
representative of the motion. Figure 2.29 shows graphs of instantaneous acceleration versus time for two very different motions.
In Figure 2.29(a), the acceleration varies slightly and the average over the entire interval is nearly the same as the
instantaneous acceleration at any time. In this case, we should treat this motion as if it had a constant acceleration equal to the

average (in this case about 1.8 m/s2 ). In Figure 2.29(b), the acceleration varies drastically over time. In such situations it is
best to consider smaller time intervals and choose an average acceleration for each. For example, we could consider motion

over the time intervals from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of +3.0 m/s2 and

–2.0 m/s2 , respectively.

Chapter 2 | Kinematics 49



Figure 2.29 Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Here acceleration varies only slightly and
is always in the same direction, since it is positive. The average over the interval is nearly the same as the acceleration at any given time. (b) Here the
acceleration varies greatly, perhaps representing a package on a post office conveyor belt that is accelerated forward and backward as it bumps along.
It is necessary to consider small time intervals (such as from 0 to 1.0 s) with constant or nearly constant acceleration in such a situation.

The next several examples consider the motion of the subway train shown in Figure 2.30. In (a) the shuttle moves to the right,
and in (b) it moves to the left. The examples are designed to further illustrate aspects of motion and to illustrate some of the
reasoning that goes into solving problems.

Figure 2.30 One-dimensional motion of a subway train considered in Example 2.2, Example 2.3, Example 2.4, Example 2.5, Example 2.6, and
Example 2.7. Here we have chosen the -axis so that + means to the right and − means to the left for displacements, velocities, and accelerations.

(a) The subway train moves to the right from 0 to f . Its displacement Δ is +2.0 km. (b) The train moves to the left from ′0 to ′f . Its

displacement Δ ′ is −1.5 km . (Note that the prime symbol (′) is used simply to distinguish between displacement in the two different situations.
The distances of travel and the size of the cars are on different scales to fit everything into the diagram.)

Example 2.2 Calculating Displacement: A Subway Train

What are the magnitude and sign of displacements for the motions of the subway train shown in parts (a) and (b) of Figure
2.30?

Strategy
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A drawing with a coordinate system is already provided, so we don't need to make a sketch, but we should analyze it to
make sure we understand what it is showing. Pay particular attention to the coordinate system. To find displacement, we use
the equation Δ = f − 0 . This is straightforward since the initial and final positions are given.

Solution

1. Identify the knowns. In the figure we see that f = 6.70 km and 0 = 4.70 km for part (a), and ′f = 3.75 km and

′0 = 5.25 km for part (b).

2. Solve for displacement in part (a).

(2.12)Δ = f − 0 = 6.70 km − 4.70 km= +2.00 km

3. Solve for displacement in part (b).

(2.13)Δ ′ = ′f − ′0 = 3.75 km − 5.25 km = − 1.50 km

Discussion

The direction of the motion in (a) is to the right and therefore its displacement has a positive sign, whereas motion in (b) is to
the left and thus has a minus sign.

Example 2.3 Comparing Distance Traveled with Displacement: A Subway Train

What are the distances traveled for the motions shown in parts (a) and (b) of the subway train in Figure 2.30?

Strategy

To answer this question, think about the definitions of distance and distance traveled, and how they are related to
displacement. Distance between two positions is defined to be the magnitude of displacement, which was found in Example
2.2. Distance traveled is the total length of the path traveled between the two positions. (See Displacement.) In the case of
the subway train shown in Figure 2.30, the distance traveled is the same as the distance between the initial and final
positions of the train.

Solution

1. The displacement for part (a) was +2.00 km. Therefore, the distance between the initial and final positions was 2.00 km,
and the distance traveled was 2.00 km.

2. The displacement for part (b) was −1.5 km. Therefore, the distance between the initial and final positions was 1.50 km,
and the distance traveled was 1.50 km.

Discussion

Distance is a scalar. It has magnitude but no sign to indicate direction.

Example 2.4 Calculating Acceleration: A Subway Train Speeding Up

Suppose the train in Figure 2.30(a) accelerates from rest to 30.0 km/h in the first 20.0 s of its motion. What is its average
acceleration during that time interval?

Strategy

It is worth it at this point to make a simple sketch:

Figure 2.31

This problem involves three steps. First we must determine the change in velocity, then we must determine the change in
time, and finally we use these values to calculate the acceleration.

Solution
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1. Identify the knowns. 0 = 0 (the trains starts at rest), f = 30.0 km/h , and Δ = 20.0 s .

2. Calculate Δ . Since the train starts from rest, its change in velocity is Δ = +30.0 km/h , where the plus sign means
velocity to the right.

3. Plug in known values and solve for the unknown, - .

(2.14)- = Δ
Δ

= +30.0 km/h
20.0 s

4. Since the units are mixed (we have both hours and seconds for time), we need to convert everything into SI units of
meters and seconds. (See Physical Quantities and Units for more guidance.)

(2.15)- = +30 km/h
20.0 s

103 m
1 km

1 h
3600 s

= 0.417 m/s2

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train starts from rest and ends up with
a velocity to the right (also positive). So acceleration is in the same direction as the change in velocity, as is always the case.

Example 2.5 Calculate Acceleration: A Subway Train Slowing Down

Now suppose that at the end of its trip, the train in Figure 2.30(a) slows to a stop from a speed of 30.0 km/h in 8.00 s. What
is its average acceleration while stopping?

Strategy

Figure 2.32

In this case, the train is decelerating and its acceleration is negative because it is toward the left. As in the previous
example, we must find the change in velocity and the change in time and then solve for acceleration.

Solution

1. Identify the knowns. 0 = 30.0 km/h , f = 0 km/h (the train is stopped, so its velocity is 0), and Δ = 8.00 s .

2. Solve for the change in velocity, Δ .

(2.16)Δ = f − 0 = 0 − 30.0 km/h = −30.0 km/h

3. Plug in the knowns, Δ and Δ , and solve for - .

(2.17)- = Δ
Δ

= −30.0 km/h
8.00 s

4. Convert the units to meters and seconds.

(2.18)- = Δ
Δ

= −30.0 km/h
8.00 s

103 m
1 km

1 h
3600 s

= −1.04 m/s2.

Discussion

The minus sign indicates that acceleration is to the left. This sign is reasonable because the train initially has a positive
velocity in this problem, and a negative acceleration would oppose the motion. Again, acceleration is in the same direction
as the change in velocity, which is negative here. This acceleration can be called a deceleration because it has a direction
opposite to the velocity.

The graphs of position, velocity, and acceleration vs. time for the trains in Example 2.4 and Example 2.5 are displayed in Figure
2.33. (We have taken the velocity to remain constant from 20 to 40 s, after which the train decelerates.)
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Figure 2.33 (a) Position of the train over time. Notice that the train's position changes slowly at the beginning of the journey, then more and more
quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the
velocity remains constant, the position changes at a constant rate. (b) Velocity of the train over time. The train's velocity increases as it accelerates at
the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at
the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It
has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.

Example 2.6 Calculating Average Velocity: The Subway Train

What is the average velocity of the train in part b of Example 2.2, and shown again below, if it takes 5.00 min to make its
trip?
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Figure 2.34

Strategy

Average velocity is displacement divided by time. It will be negative here, since the train moves to the left and has a negative
displacement.

Solution

1. Identify the knowns. ′f = 3.75 km , ′0 = 5.25 km , Δ = 5.00 min .

2. Determine displacement, Δ ′ . We found Δ ′ to be − 1.5 km in Example 2.2.

3. Solve for average velocity.

(2.19)- = Δ ′
Δ

= −1.50 km
5.00 min

4. Convert units.

(2.20)- = Δ ′
Δ

= −1.50 km
5.00 min

60 min
1 h

= −18.0 km/h

Discussion

The negative velocity indicates motion to the left.

Example 2.7 Calculating Deceleration: The Subway Train

Finally, suppose the train in Figure 2.34 slows to a stop from a velocity of 20.0 km/h in 10.0 s. What is its average
acceleration?

Strategy

Once again, let's draw a sketch:

Figure 2.35

As before, we must find the change in velocity and the change in time to calculate average acceleration.

Solution

1. Identify the knowns. 0 = −20 km/h , f = 0 km/h , Δ = 10.0 s .

2. Calculate Δ . The change in velocity here is actually positive, since

(2.21)Δ = f − 0 = 0 − (−20 km/h)=+20 km/h.

3. Solve for - .

(2.22)- = Δ
Δ

= +20.0 km/h
10.0 s

4. Convert units.
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(2.23)- = +20.0 km/h
10.0 s

103 m
1 km

1 h
3600 s

= +0.556 m/s2

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train initially has a negative velocity (to
the left) in this problem and a positive acceleration opposes the motion (and so it is to the right). Again, acceleration is in the
same direction as the change in velocity, which is positive here. As in Example 2.5, this acceleration can be called a
deceleration since it is in the direction opposite to the velocity.

Sign and Direction
Perhaps the most important thing to note about these examples is the signs of the answers. In our chosen coordinate system,
plus means the quantity is to the right and minus means it is to the left. This is easy to imagine for displacement and velocity. But
it is a little less obvious for acceleration. Most people interpret negative acceleration as the slowing of an object. This was not the
case in Example 2.7, where a positive acceleration slowed a negative velocity. The crucial distinction was that the acceleration
was in the opposite direction from the velocity. In fact, a negative acceleration will increase a negative velocity. For example, the
train moving to the left in Figure 2.34 is sped up by an acceleration to the left. In that case, both and are negative. The
plus and minus signs give the directions of the accelerations. If acceleration has the same sign as the velocity, the object is
speeding up. If acceleration has the opposite sign as the velocity, the object is slowing down.

Check Your Understanding

An airplane lands on a runway traveling east. Describe its acceleration.

Solution
If we take east to be positive, then the airplane has negative acceleration, as it is accelerating toward the west. It is also
decelerating: its acceleration is opposite in direction to its velocity.

PhET Explorations: Moving Man Simulation

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his
motion. Set the position, velocity, or acceleration and let the simulation move the man for you.

Figure 2.36 Moving Man (http://cnx.org/content/m54772/1.3/moving-man_en.jar)

2.5 Motion Equations for Constant Acceleration in One Dimension

Figure 2.37 Kinematic equations can help us describe and predict the motion of moving objects such as these kayaks racing in Newbury, England.
(credit: Barry Skeates, Flickr)

Learning Objectives
By the end of this section, you will be able to:
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• Calculate displacement of an object that is not accelerating, given initial position and velocity.
• Calculate final velocity of an accelerating object, given initial velocity, acceleration, and time.
• Calculate displacement and final position of an accelerating object, given initial position, initial velocity, time, and

acceleration.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, or graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a
given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop
some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration
already covered.

Notation: t, x, v, a

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a
great simplification. Since elapsed time is Δ = f − 0 , taking 0 = 0 means that Δ = f , the final time on the stopwatch.

When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, 0 is the

initial position and 0 is the initial velocity. We put no subscripts on the final values. That is, is the final time, is the final

position, and is the final velocity. This gives a simpler expression for elapsed time—now, Δ = . It also simplifies the

expression for displacement, which is now Δ = − 0 . Also, it simplifies the expression for change in velocity, which is now

Δ = − 0 . To summarize, using the simplified notation, with the initial time taken to be zero,

(2.24)Δ =

Δ = − 0

Δ = − 0

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under
consideration.

We now make the important assumption that acceleration is constant. This assumption allows us to avoid using calculus to find
instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,

(2.25)- = = constant,

so we use the symbol for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations
we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations.
Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the
average acceleration for that motion. Finally, in motions where acceleration changes drastically, such as a car accelerating to top
speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant
acceleration.

Solving for Displacement ( Δ ) and Final Position ( ) from Average Velocity when Acceleration ( ) is Constant

To get our first two new equations, we start with the definition of average velocity:

(2.26)- = Δ
Δ

.

Substituting the simplified notation for Δ and Δ yields

(2.27)- =
− 0.

Solving for yields

(2.28)= 0 + - ,

where the average velocity is

(2.29)- = 0 +

2
(constant ).
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The equation - = 0 +

2
reflects the fact that, when acceleration is constant, is just the simple average of the initial and

final velocities. For example, if you steadily increase your velocity (that is, with constant acceleration) from 30 to 60 km/h, then

your average velocity during this steady increase is 45 km/h. Using the equation - = 0 +

2
to check this, we see that

(2.30)- = 0 +

2
= 30 km/h + 60 km/h

2
= 45 km/h,

which seems logical.

Example 2.8 Calculating Displacement: How Far does the Jogger Run?

A jogger runs down a straight stretch of road with an average velocity of 4.00 m/s for 2.00 min. What is his final position,
taking his initial position to be zero?

Strategy

Draw a sketch.

Figure 2.38

The final position is given by the equation

(2.31)= 0 + - .

To find , we identify the values of 0 , , and from the statement of the problem and substitute them into the equation.

Solution

1. Identify the knowns. - = 4.00 m/s , Δ = 2.00 min , and 0 = 0 m .

2. Enter the known values into the equation.

(2.32)= 0 + - = 0 + (4.00 m/s)(120 s) = 480 m

Discussion

Velocity and final displacement are both positive, which means they are in the same direction.

The equation = 0 + - gives insight into the relationship between displacement, average velocity, and time. It shows, for

example, that displacement is a linear function of average velocity. (By linear function, we mean that displacement depends on

rather than on raised to some other power, such as . When graphed, linear functions look like straight lines with a
constant slope.) On a car trip, for example, we will get twice as far in a given time if we average 90 km/h than if we average 45
km/h.
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Figure 2.39 There is a linear relationship between displacement and average velocity. For a given time , an object moving twice as fast as another
object will move twice as far as the other object.

Solving for Final Velocity

We can derive another useful equation by manipulating the definition of acceleration.

(2.33)
= Δ

Δ

Substituting the simplified notation for Δ and Δ gives us

(2.34)
=

− 0 (constant ).

Solving for yields

(2.35)= 0 + (constant ).

Example 2.9 Calculating Final Velocity: An Airplane Slowing Down after Landing

An airplane lands with an initial velocity of 70.0 m/s and then decelerates at 1.50 m/s2 for 40.0 s. What is its final velocity?

Strategy

Draw a sketch. We draw the acceleration vector in the direction opposite the velocity vector because the plane is
decelerating.

Figure 2.40

Solution

1. Identify the knowns. 0 = 70.0 m/s , = −1.50 m/s2 , = 40.0 s .

2. Identify the unknown. In this case, it is final velocity, f .
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3. Determine which equation to use. We can calculate the final velocity using the equation = 0 + .

4. Plug in the known values and solve.

(2.36)= 0 + = 70.0 m/s + −1.50 m/s2 (40.0 s) = 10.0 m/s

Discussion

The final velocity is much less than the initial velocity, as desired when slowing down, but still positive. With jet engines,
reverse thrust could be maintained long enough to stop the plane and start moving it backward. That would be indicated by
a negative final velocity, which is not the case here.

Figure 2.41 The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before heading for the terminal. Note
that the acceleration is negative because its direction is opposite to its velocity, which is positive.

In addition to being useful in problem solving, the equation = 0 + gives us insight into the relationships among velocity,

acceleration, and time. From it we can see, for example, that

• final velocity depends on how large the acceleration is and how long it lasts
• if the acceleration is zero, then the final velocity equals the initial velocity ( = 0) , as expected (i.e., velocity is constant)

• if is negative, then the final velocity is less than the initial velocity

(All of these observations fit our intuition, and it is always useful to examine basic equations in light of our intuition and
experiences to check that they do indeed describe nature accurately.)

Making Connections: Real-World Connection

Figure 2.42 The Space Shuttle Endeavor blasts off from the Kennedy Space Center in February 2010. (credit: Matthew Simantov, Flickr)

An intercontinental ballistic missile (ICBM) has a larger average acceleration than the Space Shuttle and achieves a greater
velocity in the first minute or two of flight (actual ICBM burn times are classified—short-burn-time missiles are more difficult
for an enemy to destroy). But the Space Shuttle obtains a greater final velocity, so that it can orbit the earth rather than come
directly back down as an ICBM does. The Space Shuttle does this by accelerating for a longer time.

Solving for Final Position When Velocity is Not Constant ( ≠ 0 )

We can combine the equations above to find a third equation that allows us to calculate the final position of an object
experiencing constant acceleration. We start with

(2.37)= 0 + .

Adding 0 to each side of this equation and dividing by 2 gives

(2.38)0 +

2
= 0 + 1

2
.
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Since 0 +

2
= - for constant acceleration, then

(2.39)- = 0 + 1
2

.

Now we substitute this expression for - into the equation for displacement, = 0 + - , yielding

(2.40)
= 0 + 0 + 1

2
2 (constant ).

Example 2.10 Calculating Displacement of an Accelerating Object: Dragsters

Dragsters can achieve average accelerations of 26.0 m/s2 . Suppose such a dragster accelerates from rest at this rate for
5.56 s. How far does it travel in this time?

Figure 2.43 U.S. Army Top Fuel pilot Tony “The Sarge” Schumacher begins a race with a controlled burnout. (credit: Lt. Col. William Thurmond.
Photo Courtesy of U.S. Army.)

Strategy

Draw a sketch.

Figure 2.44

We are asked to find displacement, which is if we take 0 to be zero. (Think about it like the starting line of a race. It can

be anywhere, but we call it 0 and measure all other positions relative to it.) We can use the equation = 0 + 0 + 1
2

2

once we identify 0 , , and from the statement of the problem.

Solution

1. Identify the knowns. Starting from rest means that 0 = 0 , is given as 26.0 m/s2 and is given as 5.56 s.

2. Plug the known values into the equation to solve for the unknown :

(2.41)
= 0 + 0 + 1

2
2.

Since the initial position and velocity are both zero, this simplifies to

(2.42)
= 1

2
2.

Substituting the identified values of and gives
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(2.43)
= 1

2
26.0 m/s2 (5.56 s)2

yielding

(2.44)= 402 m.

Discussion

If we convert 402 m to miles, we find that the distance covered is very close to one quarter of a mile, the standard distance
for drag racing. So the answer is reasonable. This is an impressive displacement in only 5.56 s, but top-notch dragsters can
do a quarter mile in even less time than this.

What else can we learn by examining the equation = 0 + 0 + 1
2

2? We see that:

• displacement depends on the square of the elapsed time when acceleration is not zero. In Example 2.10, the dragster
covers only one fourth of the total distance in the first half of the elapsed time

• if acceleration is zero, then the initial velocity equals average velocity ( 0 = - ) and = 0 + 0 + 1
2

2 becomes

= 0 + 0

Solving for Final Velocity when Velocity Is Not Constant ( ≠ 0 )

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve = 0 + for , we get

(2.45)
=

− 0.

Substituting this and - = 0 +

2
into = 0 + - , we get

(2.46)2 = 0
2 + 2 ( − 0) (constant ).

Example 2.11 Calculating Final Velocity: Dragsters

Calculate the final velocity of the dragster in Example 2.10 without using information about time.

Strategy

Draw a sketch.

Figure 2.45

The equation 2 = 0
2 + 2 ( − 0) is ideally suited to this task because it relates velocities, acceleration, and

displacement, and no time information is required.

Solution

1. Identify the known values. We know that 0 = 0 , since the dragster starts from rest. Then we note that

− 0 = 402 m (this was the answer in Example 2.10). Finally, the average acceleration was given to be

= 26.0 m/s2 .

2. Plug the knowns into the equation 2 = 0
2 + 2 ( − 0) and solve for .

(2.47)2 = 0 + 2 26.0 m/s2 (402 m).
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Thus

(2.48)2 = 2.09×104 m2 /s2.

To get , we take the square root:

(2.49)
= 2.09×104 m2 /s2 = 145 m/s.

Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also,
note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the
acceleration.

An examination of the equation 2 = 0
2 + 2 ( − 0) can produce further insights into the general relationships among

physical quantities:

• The final velocity depends on how large the acceleration is and the distance over which it acts
• For a fixed deceleration, a car that is going twice as fast doesn't simply stop in twice the distance—it takes much further to

stop. (This is why we have reduced speed zones near schools.)

Putting Equations Together
In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic
manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the
equations needed.

Summary of Kinematic Equations (constant )

(2.50)= 0 + -

(2.51)- = 0 +

2

(2.52)= 0 +

(2.53)
= 0 + 0 + 1

2
2

(2.54)2 = 0
2 + 2 ( − 0)

Example 2.12 Calculating Displacement: How Far Does a Car Go When Coming to a Halt?

On dry concrete, a car can decelerate at a rate of 7.00 m/s2 , whereas on wet concrete it can decelerate at only

5.00 m/s2 . Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on
wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn
red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

Figure 2.46
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In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we
need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

Solution for (a)

1. Identify the knowns and what we want to solve for. We know that 0 = 30.0 m/s ; = 0 ; = −7.00 m/s2 ( is

negative because it is in a direction opposite to velocity). We take 0 to be 0. We are looking for displacement Δ , or

− 0 .

2. Identify the equation that will help up solve the problem. The best equation to use is

(2.55)2 = 0
2 + 2 ( − 0).

This equation is best because it includes only one unknown, . We know the values of all the other variables in this
equation. (There are other equations that would allow us to solve for , but they require us to know the stopping time, ,
which we do not know. We could use them but it would entail additional calculations.)

3. Rearrange the equation to solve for .

(2.56)
− 0 =

2 − 0
2

2

4. Enter known values.

(2.57)
− 0 =

02 − (30.0 m/s)2

2 −7.00 m/s2

Thus,

(2.58)= 64.3 m on dry concrete.

Solution for (b)

This part can be solved in exactly the same manner as Part A. The only difference is that the deceleration is – 5.00 m/s2 .
The result is

(2.59)wet = 90.0 m on wet concrete.

Solution for (c)

Once the driver reacts, the stopping distance is the same as it is in Parts A and B for dry and wet concrete. So to answer
this question, we need to calculate how far the car travels during the reaction time, and then add that to the stopping time. It
is reasonable to assume that the velocity remains constant during the driver's reaction time.

1. Identify the knowns and what we want to solve for. We know that - = 30.0 m/s ; reaction = 0.500 s ; reaction = 0 .

We take 0 − reaction to be 0. We are looking for reaction .

2. Identify the best equation to use.

= 0 + - works well because the only unknown value is , which is what we want to solve for.

3. Plug in the knowns to solve the equation.

(2.60)= 0 + (30.0 m/s)(0.500 s) = 15.0 m.

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet
concrete 15.0 m greater than if he reacted instantly.

4. Add the displacement during the reaction time to the displacement when braking.

(2.61)braking + reaction = total

a. 64.3 m + 15.0 m = 79.3 m when dry

b. 90.0 m + 15.0 m = 105 m when wet
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Figure 2.47 The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown here are the
braking distances for dry and wet pavement, as calculated in this example, for a car initially traveling at 30.0 m/s. Also shown are the total
distances traveled from the point where the driver first sees a light turn red, assuming a 0.500 s reaction time.

Discussion

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a car
on wet rather than dry pavement. It is interesting that reaction time adds significantly to the displacements. But more
important is the general approach to solving problems. We identify the knowns and the quantities to be determined and then
find an appropriate equation. There is often more than one way to solve a problem. The various parts of this example can in
fact be solved by other methods, but the solutions presented above are the shortest.

Example 2.13 Calculating Time: A Car Merges into Traffic

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at

2.00 m/s2 , how long does it take to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy

Draw a sketch.

Figure 2.48

We are asked to solve for the time . As before, we identify the known quantities in order to choose a convenient physical
relationship (that is, an equation with one unknown, ).

Solution

1. Identify the knowns and what we want to solve for. We know that 0 = 10 m/s ; = 2.00 m/s2 ; and = 200 m .

2. We need to solve for . Choose the best equation. = 0 + 0 + 1
2

2 works best because the only unknown in the

equation is the variable for which we need to solve.

3. We will need to rearrange the equation to solve for . In this case, it will be easier to plug in the knowns first.

(2.62)
200 m = 0 m + (10.0 m/s) + 1

2
2.00 m/s2 2
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4. Simplify the equation. The units of meters (m) cancel because they are in each term. We can get the units of seconds (s)
to cancel by taking = s , where is the magnitude of time and s is the unit. Doing so leaves

(2.63)200 = 10 + 2.

5. Use the quadratic formula to solve for .

(a) Rearrange the equation to get 0 on one side of the equation.

(2.64)2 + 10 − 200 = 0

This is a quadratic equation of the form

(2.65)2 + + = 0,

where the constants are = 1.00, = 10.0, and = −200 .

(b) Its solutions are given by the quadratic formula:

(2.66)
= − ± 2 − 4

2
.

This yields two solutions for , which are

(2.67)= 10.0 and−20.0.

In this case, then, the time is = in seconds, or

(2.68)= 10.0 s and − 20.0 s.

A negative value for time is unreasonable, since it would mean that the event happened 20 s before the motion began. We
can discard that solution. Thus,

(2.69)= 10.0 s.

Discussion

Whenever an equation contains an unknown squared, there will be two solutions. In some problems both solutions are
meaningful, but in others, such as the above, only one solution is reasonable. The 10.0 s answer seems reasonable for a
typical freeway on-ramp.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of
developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and
insights into physical relationships. Problem-Solving Basics discusses problem-solving basics and outlines an approach that
will help you succeed in this invaluable task.

Making Connections: Take-Home Experiment—Breaking News

We have been using SI units of meters per second squared to describe some examples of acceleration or deceleration of
cars, runners, and trains. To achieve a better feel for these numbers, one can measure the braking deceleration of a car
doing a slow (and safe) stop. Recall that, for average acceleration, - = Δ / Δ . While traveling in a car, slowly apply the
brakes as you come up to a stop sign. Have a passenger note the initial speed in miles per hour and the time taken (in
seconds) to stop. From this, calculate the deceleration in miles per hour per second. Convert this to meters per second
squared and compare with other decelerations mentioned in this chapter. Calculate the distance traveled in braking.

Check Your Understanding

A manned rocket accelerates at a rate of 20 m/s2 during launch. How long does it take the rocket reach a velocity of 400
m/s?

Solution

To answer this, choose an equation that allows you to solve for time , given only , 0 , and .

(2.70)= 0 +

Rearrange to solve for .

(2.71)
= − = 400 m/s − 0 m/s

20 m/s2
= 20 s
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2.6 Problem-Solving Basics for One Dimensional Kinematics

Figure 2.49 Problem-solving skills are essential to your success in Physics. (credit: scui3asteveo, Flickr)

Learning Objectives
By the end of this section, you will be able to:

• Apply problem-solving steps and strategies to solve problems of one-dimensional kinematics.
• Apply strategies to determine whether or not the result of a problem is reasonable, and if not, determine the cause.

Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to apply
broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It is much
more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations,
whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both
for solving problems in this text and for applying physics in everyday and professional life.

Problem-Solving Steps
While there is no simple step-by-step method that works for every problem, the following general procedures facilitate problem
solving and make it more meaningful. A certain amount of creativity and insight is required as well.

Step 1

Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the outset.
You will also need to decide which direction is positive and note that on your sketch. Once you have identified the physical
principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is
essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities.
Without a conceptual understanding of a problem, a numerical solution is meaningless.

Step 2

Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Many problems are stated very
succinctly and require some inspection to determine what is known. A sketch can also be very useful at this point. Formally
identifying the knowns is of particular importance in applying physics to real-world situations. Remember, “stopped” means
velocity is zero, and we often can take initial time and position as zero.

Step 3

Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it is not
always obvious what needs to be found or in what sequence. Making a list can help.

Step 4

Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here. It is
easiest if you can find equations that contain only one unknown—that is, all of the other variables are known, so you can easily
solve for the unknown. If the equation contains more than one unknown, then an additional equation is needed to solve the
problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is
especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or
more) different equations to get the final answer.

Step 5

Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.
This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units of the
answer are incorrect, then an error has been made. However, be warned that correct units do not guarantee that the numerical
part of the answer is also correct.
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Step 6

Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important—the goal of physics is to
accurately describe nature. To see if the answer is reasonable, check both its magnitude and its sign, in addition to its units. Your
judgment will improve as you solve more and more physics problems, and it will become possible for you to make finer and finer
judgments regarding whether nature is adequately described by the answer to a problem. This step brings the problem back to
its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than
just being able to mechanically solve a problem.

When solving problems, we often perform these steps in different order, and we also tend to do several steps simultaneously.
There is no rigid procedure that will work every time. Creativity and insight grow with experience, and the basics of problem
solving become almost automatic. One way to get practice is to work out the text's examples for yourself as you read. Another is
to work as many end-of-section problems as possible, starting with the easiest to build confidence and progressing to the more
difficult. Once you become involved in physics, you will see it all around you, and you can begin to apply it to situations you
encounter outside the classroom, just as is done in many of the applications in this text.

Unreasonable Results
Physics must describe nature accurately. Some problems have results that are unreasonable because one premise is
unreasonable or because certain premises are inconsistent with one another. The physical principle applied correctly then

produces an unreasonable result. For example, if a person starting a foot race accelerates at 0.40 m/s2 for 100 s, his final
speed will be 40 m/s (about 150 km/h)—clearly unreasonable because the time of 100 s is an unreasonable premise. The
physics is correct in a sense, but there is more to describing nature than just manipulating equations correctly. Checking the
result of a problem to see if it is reasonable does more than help uncover errors in problem solving—it also builds intuition in
judging whether nature is being accurately described.

Use the following strategies to determine whether an answer is reasonable and, if it is not, to determine what is the cause.

Step 1

Solve the problem using strategies as outlined and in the format followed in the worked examples in the text. In the example
given in the preceding paragraph, you would identify the givens as the acceleration and time and use the equation below to find
the unknown final velocity. That is,

(2.72)= 0 + = 0 + 0.40 m/s2 (100 s) = 40 m/s.

Step 2

Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper units, …? In this
case, you may need to convert meters per second into a more familiar unit, such as miles per hour.

(2.73)40 m
s

3.28 ft
m

1 mi
5280 ft

60 s
min

60 min
1 h

= 89 mph

This velocity is about four times greater than a person can run—so it is too large.

Step 3

If the answer is unreasonable, look for what specifically could cause the identified difficulty. In the example of the runner, there
are only two assumptions that are suspect. The acceleration could be too great or the time too long. First look at the acceleration

and think about what the number means. If someone accelerates at 0.40 m/s2 , their velocity is increasing by 0.4 m/s each
second. Does this seem reasonable? If so, the time must be too long. It is not possible for someone to accelerate at a constant

rate of 0.40 m/s2 for 100 s (almost two minutes).

2.7 Falling Objects

Learning Objectives
By the end of this section, you will be able to:

• Describe the effects of gravity on objects in motion.
• Describe the motion of objects that are in free fall.
• Calculate the position and velocity of objects in free fall.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, or graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.2 The student is able to design an experimental investigation of the motion of an object. (S.P. 4.2)
• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the

results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)
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Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by
dropping a rock into it and listening for the rock to hit the bottom. By applying the kinematics developed so far to falling objects,
we can examine some interesting situations and learn much about gravity in the process.

Gravity
The most remarkable and unexpected fact about falling objects is that, if air resistance and friction are negligible, then in a given
location all objects fall toward the center of Earth with the same constant acceleration, independent of their mass. This
experimentally determined fact is unexpected, because we are so accustomed to the effects of air resistance and friction that we
expect light objects to fall slower than heavy ones.

Figure 2.50 A hammer and a feather will fall with the same constant acceleration if air resistance is considered negligible. This is a general
characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated on the Moon in 1971, where the acceleration due to gravity is

only 1.67 m/s2 .

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball will
reach the ground after a hard baseball dropped at the same time. (It might be difficult to observe the difference if the height is not
large.) Air resistance opposes the motion of an object through the air, while friction between objects—such as between clothes
and a laundry chute or between a stone and a pool into which it is dropped—also opposes motion between them. For the ideal
situations of these first few chapters, an object falling without air resistance or friction is defined to be in free-fall.

The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects is therefore called
the acceleration due to gravity. The acceleration due to gravity is constant, which means we can apply the kinematics
equations to any falling object where air resistance and friction are negligible. This opens a broad class of interesting situations
to us. The acceleration due to gravity is so important that its magnitude is given its own symbol, . It is constant at any given

location on Earth and has the average value

(2.74)= 9.80 m/s2.

Although varies from 9.78 m/s2 to 9.83 m/s2 , depending on latitude, altitude, underlying geological formations, and local

topography, the average value of 9.80 m/s2 will be used in this text unless otherwise specified. The direction of the
acceleration due to gravity is downward (towards the center of Earth). In fact, its direction defines what we call vertical. Note that
whether the acceleration in the kinematic equations has the value + or − depends on how we define our coordinate

system. If we define the upward direction as positive, then = − = −9.80 m/s2 , and if we define the downward direction as

positive, then = = 9.80 m/s2 .

One-Dimensional Motion Involving Gravity
The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress toward
more complex ones. So we start by considering straight up and down motion with no air resistance or friction. These
assumptions mean that the velocity (if there is any) is vertical. If the object is dropped, we know the initial velocity is zero. Once
the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-
dimensional and has constant acceleration of magnitude . We will also represent vertical displacement with the symbol and

use for horizontal displacement.

Kinematic Equations for Objects in Free-Fall where Acceleration = -g
(2.75)= 0 −

(2.76)
= 0 + 0 − 1

2
2

(2.77)2 = 0
2 − 2 ( − 0)
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Example 2.14 Calculating Position and Velocity of a Falling Object: A Rock Thrown Upward

A person standing on the edge of a high cliff throws a rock straight up with an initial velocity of 13.0 m/s. The rock misses the
edge of the cliff as it falls back to Earth. Calculate the position and velocity of the rock 1.00 s, 2.00 s, and 3.00 s after it is
thrown, neglecting the effects of air resistance.

Strategy

Draw a sketch.

Figure 2.51

We are asked to determine the position at various times. It is reasonable to take the initial position 0 to be zero. This

problem involves one-dimensional motion in the vertical direction. We use plus and minus signs to indicate direction, with up
being positive and down negative. Since up is positive, and the rock is thrown upward, the initial velocity must be positive
too. The acceleration due to gravity is downward, so is negative. It is crucial that the initial velocity and the acceleration
due to gravity have opposite signs. Opposite signs indicate that the acceleration due to gravity opposes the initial motion
and will slow and eventually reverse it.

Since we are asked for values of position and velocity at three times, we will refer to these as 1 and 1 ; and 2 ; and

3 and 3 .

Solution for Position 1

1. Identify the knowns. We know that 0 = 0 ; 0 = 13.0 m/s ; = − = −9.80 m/s2 ; and = 1.00 s .

2. Identify the best equation to use. We will use = 0 + 0 + 1
2

2 because it includes only one unknown, (or 1 ,

here), which is the value we want to find.

3. Plug in the known values and solve for 1 .

(2.78)
= 0 + (13.0 m/s)(1.00 s) + 1

2
−9.80 m/s2 (1.00 s)2 = 8.10 m

Discussion

The rock is 8.10 m above its starting point at = 1.00 s, since 1 > 0 . It could be moving up or down; the only way to

tell is to calculate 1 and find out if it is positive or negative.

Solution for Velocity 1

1. Identify the knowns. We know that 0 = 0 ; 0 = 13.0 m/s ; = − = −9.80 m/s2 ; and = 1.00 s . We also know

from the solution above that 1 = 8.10 m .

2. Identify the best equation to use. The most straightforward is = 0 − (from = 0 + , where

= gravitational acceleration = − ).

3. Plug in the knowns and solve.

(2.79)
1 = 0 − = 13.0 m/s − 9.80 m/s2 (1.00 s) = 3.20 m/s

Discussion

The positive value for 1 means that the rock is still heading upward at = 1.00 s . However, it has slowed from its original

13.0 m/s, as expected.

Solution for Remaining Times

The procedures for calculating the position and velocity at = 2.00 s and 3.00 s are the same as those above. The
results are summarized in Table 2.1 and illustrated in Figure 2.52.
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Table 2.1 Results

Time, t Position, y Velocity, v Acceleration, a

1.00 s 8.10 m 3.20 m/s −9.80 m/s2

2.00 s 6.40 m −6.60 m/s −9.80 m/s2

3.00 s −5.10 m −16.4 m/s −9.80 m/s2

Graphing the data helps us understand it more clearly.

Figure 2.52 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that
velocity changes linearly with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical
position only. It is easy to get the impression that the graph shows some horizontal motion—the shape of the graph looks like the path of a
projectile. But this is not the case; the horizontal axis is time, not space. The actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since 1

and 1 are both positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving

downward. At 3.00 s, both 3 and 3 are negative, meaning the rock is below its starting point and continuing to move
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downward. Notice that when the rock is at its highest point (at 1.5 s), its velocity is zero, but its acceleration is still

−9.80 m/s2 . Its acceleration is −9.80 m/s2 for the whole trip—while it is moving up and while it is moving down. Note
that the values for are the positions (or displacements) of the rock, not the total distances traveled. Finally, note that free-

fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which
remains constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while
arcing up as well as down, as we will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index
finger, separated by about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler
unexpectedly, and try to catch it between your two fingers. Note the new reading on the ruler. Assuming acceleration is that
due to gravity, calculate your reaction time. How far would you travel in a car (moving at 30 m/s) if the time it took your foot
to go from the gas pedal to the brake was twice this reaction time?

Example 2.15 Calculating Velocity of a Falling Object: A Rock Thrown Down

What happens if the person on the cliff throws the rock straight down, instead of straight up? To explore this question,
calculate the velocity of the rock when it is 5.10 m below the starting point, and has been thrown downward with an initial
speed of 13.0 m/s.

Strategy

Draw a sketch.

Figure 2.53

Since up is positive, the final position of the rock will be negative because it finishes below the starting point at 0 = 0 .

Similarly, the initial velocity is downward and therefore negative, as is the acceleration due to gravity. We expect the final
velocity to be negative since the rock will continue to move downward.

Solution

1. Identify the knowns. 0 = 0 ; 1 = − 5.10 m ; 0 = −13.0 m/s ; = − = −9.80 m/s2 .

2. Choose the kinematic equation that makes it easiest to solve the problem. The equation 2 = 0
2 + 2 ( − 0) works

well because the only unknown in it is . (We will plug 1 in for .)

3. Enter the known values

(2.80)2 = (−13.0 m/s)2 + 2 −9.80 m/s2 (−5.10 m − 0 m) = 268.96 m2 /s2,

where we have retained extra significant figures because this is an intermediate result.

Taking the square root, and noting that a square root can be positive or negative, gives

(2.81)= ±16.4 m/s.

The negative root is chosen to indicate that the rock is still heading down. Thus,

(2.82)= −16.4 m/s.

Discussion

Note that this is exactly the same velocity the rock had at this position when it was thrown straight upward with the same

initial speed. (See Example 2.14 and Figure 2.54(a).) This is not a coincidental result. Because we only consider the
acceleration due to gravity in this problem, the speed of a falling object depends only on its initial speed and its vertical
position relative to the starting point. For example, if the velocity of the rock is calculated at a height of 8.10 m above the
starting point (using the method from Example 2.14) when the initial velocity is 13.0 m/s straight up, a result of ±3.20 m/s
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is obtained. Here both signs are meaningful; the positive value occurs when the rock is at 8.10 m and heading up, and the
negative value occurs when the rock is at 8.10 m and heading back down. It has the same speed but the opposite direction.

Figure 2.54 (a) A person throws a rock straight up, as explored in Example 2.14. The arrows are velocity vectors at 0, 1.00, 2.00, and 3.00 s. (b)
A person throws a rock straight down from a cliff with the same initial speed as before, as in Example 2.15. Note that at the same distance below
the point of release, the rock has the same velocity in both cases.

Another way to look at it is this: In Example 2.14, the rock is thrown up with an initial velocity of 13.0 m/s . It rises and then

falls back down. When its position is = 0 on its way back down, its velocity is −13.0 m/s . That is, it has the same

speed on its way down as on its way up. We would then expect its velocity at a position of = −5.10 m to be the same

whether we have thrown it upwards at +13.0 m/s or thrown it downwards at −13.0 m/s . The velocity of the rock on its

way down from = 0 is the same whether we have thrown it up or down to start with, as long as the speed with which it

was initially thrown is the same.

Example 2.16 Find g from Data on a Falling Object

The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are
on a hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt
beneath you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics

72 Chapter 2 | Kinematics

This content is available for free at http://cnx.org/content/col11844/1.13



laboratory course. An object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall
a known distance is measured. See, for example, Figure 2.55. Very precise results can be produced with this method if
sufficient care is taken in measuring the distance fallen and the elapsed time.

Figure 2.55 Positions and velocities of a metal ball released from rest when air resistance is negligible. Velocity is seen to increase linearly with
time while displacement increases with time squared. Acceleration is a constant and is equal to gravitational acceleration.

Suppose the ball falls 1.0000 m in 0.45173 s. Assuming the ball is not affected by air resistance, what is the precise
acceleration due to gravity at this location?

Strategy

Draw a sketch.
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Figure 2.56

We need to solve for acceleration . Note that in this case, displacement is downward and therefore negative, as is
acceleration.

Solution

1. Identify the knowns. 0 = 0 ; = –1.0000 m ; = 0.45173 ; 0 = 0 .

2. Choose the equation that allows you to solve for using the known values.

(2.83)
= 0 + 0 + 1

2
2

3. Substitute 0 for 0 and rearrange the equation to solve for . Substituting 0 for 0 yields

(2.84)
= 0 + 1

2
2.

Solving for gives

(2.85)
=

2( − 0)
2

.

4. Substitute known values yields

(2.86)
=

2( − 1.0000 m – 0)

(0.45173 s)2
= −9.8010 m/s2

so, because = − with the directions we have chosen,

(2.87)= 9.8010 m/s2.

Discussion

The negative value for indicates that the gravitational acceleration is downward, as expected. We expect the value to be

somewhere around the average value of 9.80 m/s2 , so 9.8010 m/s2 makes sense. Since the data going into the

calculation are relatively precise, this value for is more precise than the average value of 9.80 m/s2 ; it represents the

local value for the acceleration due to gravity.

Applying the Science Practices: Finding Acceleration Due to Gravity

While it is well established that the acceleration due to gravity is quite nearly 9.8 m/s2 at all locations on Earth, you can verify
this for yourself with some basic materials.

Your task is to find the acceleration due to gravity at your location. Achieving an acceleration of precisely 9.8 m/s2 will be
difficult. However, with good preparation and attention to detail, you should be able to get close. Before you begin working,
consider the following questions.

What measurements will you need to take in order to find the acceleration due to gravity?

What relationships and equations found in this chapter may be useful in calculating the acceleration?

What variables will you need to hold constant?

What materials will you use to record your measurements?

Upon completing these four questions, record your procedure. Once recorded, you may carry out the experiment. If you find
that your experiment cannot be carried out, you may revise your procedure.

Once you have found your experimental acceleration, compare it to the assumed value of 9.8 m/s2. If error exists, what were
the likely sources of this error? How could you change your procedure in order to improve the accuracy of your findings?
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Check Your Understanding

A chunk of ice breaks off a glacier and falls 30.0 meters before it hits the water. Assuming it falls freely (there is no air
resistance), how long does it take to hit the water?

Solution

We know that initial position 0 = 0 , final position = −30.0 m , and = − = −9.80 m/s2 . We can then use the

equation = 0 + 0 + 1
2

2 to solve for . Inserting = − , we obtain

(2.88)
= 0 + 0 − 1

2
2

2 =
2
−

= ±
2
− = ±

2( − 30.0 m)

−9.80 m/s2
= ± 6.12 s2 = 2.47 s ≈ 2.5 s

where we take the positive value as the physically relevant answer. Thus, it takes about 2.5 seconds for the piece of ice to
hit the water.

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the
individual terms (e.g. = ) to see how they add to generate the polynomial curve.

Figure 2.57 Equation Grapher (http://cnx.org/content/m54775/1.5/equation-grapher_en.jar)

2.8 Graphical Analysis of One Dimensional Motion

Learning Objectives
By the end of this section, you will be able to:

• Describe a straight-line graph in terms of its slope and y-intercept.
• Determine average velocity or instantaneous velocity from a graph of position vs. time.
• Determine average or instantaneous acceleration from a graph of velocity vs. time.
• Derive a graph of velocity vs. time from a graph of position vs. time.
• Derive a graph of acceleration vs. time from a graph of velocity vs. time.

A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information; they also reveal relationships
between physical quantities. This section uses graphs of displacement, velocity, and acceleration versus time to illustrate one-
dimensional kinematics.

Slopes and General Relationships
First note that graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities are
plotted against one another in such a graph, the horizontal axis is usually considered to be an independent variable and the
vertical axis a dependent variable. If we call the horizontal axis the -axis and the vertical axis the -axis, as in Figure 2.58, a

straight-line graph has the general form

(2.89)= + .

Here is the slope, defined to be the rise divided by the run (as seen in the figure) of the straight line. The letter is used for
the y-intercept, which is the point at which the line crosses the vertical axis.
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Figure 2.58 A straight-line graph. The equation for a straight line is = + .

Graph of Displacement vs. Time (a = 0, so v is constant)
Time is usually an independent variable that other quantities, such as displacement, depend upon. A graph of displacement
versus time would, thus, have on the vertical axis and on the horizontal axis. Figure 2.59 is just such a straight-line graph.
It shows a graph of displacement versus time for a jet-powered car on a very flat dry lake bed in Nevada.

Figure 2.59 Graph of displacement versus time for a jet-powered car on the Bonneville Salt Flats.

Using the relationship between dependent and independent variables, we see that the slope in the graph above is average
velocity - and the intercept is displacement at time zero—that is, 0 . Substituting these symbols into = + gives

(2.90)= - + 0

or

(2.91)= 0 + - .

Thus a graph of displacement versus time gives a general relationship among displacement, velocity, and time, as well as giving
detailed numerical information about a specific situation.

The Slope of x vs. t

The slope of the graph of displacement vs. time is velocity .

(2.92)
slope = Δ

Δ
=

Notice that this equation is the same as that derived algebraically from other motion equations in Motion Equations for
Constant Acceleration in One Dimension.

From the figure we can see that the car has a displacement of 400 m at time 0.650 m at = 1.0 s, and so on. Its displacement at
times other than those listed in the table can be read from the graph; furthermore, information about its velocity and acceleration
can also be obtained from the graph.
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Example 2.17 Determining Average Velocity from a Graph of Displacement versus Time: Jet
Car

Find the average velocity of the car whose position is graphed in Figure 2.59.

Strategy

The slope of a graph of vs. is average velocity, since slope equals rise over run. In this case, rise = change in
displacement and run = change in time, so that

(2.93)
slope = Δ

Δ
= - .

Since the slope is constant here, any two points on the graph can be used to find the slope. (Generally speaking, it is most
accurate to use two widely separated points on the straight line. This is because any error in reading data from the graph is
proportionally smaller if the interval is larger.)

Solution

1. Choose two points on the line. In this case, we choose the points labeled on the graph: (6.4 s, 2000 m) and (0.50 s, 525
m). (Note, however, that you could choose any two points.)

2. Substitute the and values of the chosen points into the equation. Remember in calculating change (Δ) we always

use final value minus initial value.

(2.94)- = Δ
Δ

= 2000 m − 525 m
6.4 s − 0.50 s

,

yielding

(2.95)- = 250 m/s.

Discussion

This is an impressively large land speed (900 km/h, or about 560 mi/h): much greater than the typical highway speed limit of
60 mi/h (27 m/s or 96 km/h), but considerably shy of the record of 343 m/s (1234 km/h or 766 mi/h) set in 1997.

Graphs of Motion when is constant but ≠ 0

The graphs in Figure 2.60 below represent the motion of the jet-powered car as it accelerates toward its top speed, but only
during the time when its acceleration is constant. Time starts at zero for this motion (as if measured with a stopwatch), and the
displacement and velocity are initially 200 m and 15 m/s, respectively.
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Figure 2.60 Graphs of motion of a jet-powered car during the time span when its acceleration is constant. (a) The slope of an vs. graph is
velocity. This is shown at two points, and the instantaneous velocities obtained are plotted in the next graph. Instantaneous velocity at any point is the
slope of the tangent at that point. (b) The slope of the vs. graph is constant for this part of the motion, indicating constant acceleration. (c)

Acceleration has the constant value of 5.0 m/s2 over the time interval plotted.
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Figure 2.61 A U.S. Air Force jet car speeds down a track. (credit: Matt Trostle, Flickr)

The graph of displacement versus time in Figure 2.60(a) is a curve rather than a straight line. The slope of the curve becomes
steeper as time progresses, showing that the velocity is increasing over time. The slope at any point on a displacement-versus-
time graph is the instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of
interest and taking the slope of this straight line. Tangent lines are shown for two points in Figure 2.60(a). If this is done at every
point on the curve and the values are plotted against time, then the graph of velocity versus time shown in Figure 2.60(b) is
obtained. Furthermore, the slope of the graph of velocity versus time is acceleration, which is shown in Figure 2.60(c).

Example 2.18 Determining Instantaneous Velocity from the Slope at a Point: Jet Car

Calculate the velocity of the jet car at a time of 25 s by finding the slope of the vs. graph in the graph below.

Figure 2.62 The slope of an vs. graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent
at that point.

Strategy

The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point. This principle is
illustrated in Figure 2.62, where Q is the point at = 25 s .

Solution

1. Find the tangent line to the curve at = 25 s .

2. Determine the endpoints of the tangent. These correspond to a position of 1300 m at time 19 s and a position of 3120 m
at time 32 s.

3. Plug these endpoints into the equation to solve for the slope, .

(2.96)
slope = Q =

Δ Q

Δ Q
=

(3120 m − 1300 m)
(32 s − 19 s)

Thus,

(2.97)
Q = 1820 m

13 s
= 140 m/s.

Discussion
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This is the value given in this figure's table for at = 25 s . The value of 140 m/s for Q is plotted in Figure 2.62. The

entire graph of vs. can be obtained in this fashion.

Carrying this one step further, we note that the slope of a velocity versus time graph is acceleration. Slope is rise divided by run;
on a vs. graph, rise = change in velocity Δ and run = change in time Δ .

The Slope of v vs. t

The slope of a graph of velocity vs. time is acceleration .

(2.98)
slope = Δ

Δ
=

Since the velocity versus time graph in Figure 2.60(b) is a straight line, its slope is the same everywhere, implying that
acceleration is constant. Acceleration versus time is graphed in Figure 2.60(c).

Additional general information can be obtained from Figure 2.62 and the expression for a straight line, = + .

In this case, the vertical axis is , the intercept is 0 , the slope is , and the horizontal axis is . Substituting

these symbols yields

(2.99)= 0 + .

A general relationship for velocity, acceleration, and time has again been obtained from a graph. Notice that this equation was
also derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.

It is not accidental that the same equations are obtained by graphical analysis as by algebraic techniques. In fact, an important
way to discover physical relationships is to measure various physical quantities and then make graphs of one quantity against
another to see if they are correlated in any way. Correlations imply physical relationships and might be shown by smooth graphs
such as those above. From such graphs, mathematical relationships can sometimes be postulated. Further experiments are then
performed to determine the validity of the hypothesized relationships.

Graphs of Motion Where Acceleration is Not Constant
Now consider the motion of the jet car as it goes from 165 m/s to its top velocity of 250 m/s, graphed in Figure 2.63. Time again
starts at zero, and the initial displacement and velocity are 2900 m and 165 m/s, respectively. (These were the final displacement

and velocity of the car in the motion graphed in Figure 2.60.) Acceleration gradually decreases from 5.0 m/s2 to zero when the

car hits 250 m/s. The slope of the vs. graph increases until = 55 s , after which time the slope is constant. Similarly,
velocity increases until 55 s and then becomes constant, since acceleration decreases to zero at 55 s and remains zero
afterward.
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Figure 2.63 Graphs of motion of a jet-powered car as it reaches its top velocity. This motion begins where the motion in Figure 2.60 ends. (a) The
slope of this graph is velocity; it is plotted in the next graph. (b) The velocity gradually approaches its top value. The slope of this graph is acceleration;
it is plotted in the final graph. (c) Acceleration gradually declines to zero when velocity becomes constant.

Example 2.19 Calculating Acceleration from a Graph of Velocity versus Time

Calculate the acceleration of the jet car at a time of 25 s by finding the slope of the vs. graph in Figure 2.63(b).

Strategy

The slope of the curve at = 25 s is equal to the slope of the line tangent at that point, as illustrated in Figure 2.63(b).

Solution

Determine endpoints of the tangent line from the figure, and then plug them into the equation to solve for slope, .

(2.100)
slope = Δ

Δ
=

(260 m/s − 210 m/s)
(51 s − 1.0 s)
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acceleration:

acceleration due to gravity:

average acceleration:

average speed:

average velocity:

deceleration:

dependent variable:

displacement:

distance:

distance traveled:

(2.101)
= 50 m/s

50 s
= 1.0 m/s2.

Discussion

Note that this value for is consistent with the value plotted in Figure 2.63(c) at = 25 s .

A graph of displacement versus time can be used to generate a graph of velocity versus time, and a graph of velocity versus time
can be used to generate a graph of acceleration versus time. We do this by finding the slope of the graphs at every point. If the
graph is linear (i.e., a line with a constant slope), it is easy to find the slope at any point and you have the slope for every point.
Graphical analysis of motion can be used to describe both specific and general characteristics of kinematics. Graphs can also be
used for other topics in physics. An important aspect of exploring physical relationships is to graph them and look for underlying
relationships.

Check Your Understanding

A graph of velocity vs. time of a ship coming into a harbor is shown below. (a) Describe the motion of the ship based on the
graph. (b)What would a graph of the ship's acceleration look like?

Figure 2.64

Solution

(a) The ship moves at constant velocity and then begins to decelerate at a constant rate. At some point, its deceleration rate
decreases. It maintains this lower deceleration rate until it stops moving.

(b) A graph of acceleration vs. time would show zero acceleration in the first leg, large and constant negative acceleration in
the second leg, and constant negative acceleration.

Figure 2.65

Glossary
the rate of change in velocity; the change in velocity over time

acceleration of an object as a result of gravity

the change in velocity divided by the time over which it changes

distance traveled divided by time during which motion occurs

displacement divided by time over which displacement occurs

acceleration in the direction opposite to velocity; acceleration that results in a decrease in velocity

the variable that is being measured; usually plotted along the -axis

the change in position of an object

the magnitude of displacement between two positions

the total length of the path traveled between two positions
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elapsed time:

free-fall:

independent variable:

instantaneous acceleration:

instantaneous speed:

instantaneous velocity:

kinematics:

model:

position:

scalar:

slope:

time:

vector:

y-intercept:

the difference between the ending time and beginning time

the state of movement that results from gravitational force only

the variable that the dependent variable is measured with respect to; usually plotted along the -axis

acceleration at a specific point in time

magnitude of the instantaneous velocity

velocity at a specific instant, or the average velocity over an infinitesimal time interval

the study of motion without considering its causes

simplified description that contains only those elements necessary to describe the physics of a physical situation

the location of an object at a particular time

a quantity that is described by magnitude, but not direction

the difference in -value (the rise) divided by the difference in -value (the run) of two points on a straight line

change, or the interval over which change occurs

a quantity that is described by both magnitude and direction

the - value when = 0, or when the graph crosses the -axis

Section Summary

2.1 Displacement
• Kinematics is the study of motion without considering its causes. In this chapter, it is limited to motion along a straight line,

called one-dimensional motion.
• Displacement is the change in position of an object.
• In symbols, displacement Δ is defined to be

Δ = f − 0,

where 0 is the initial position and f is the final position. In this text, the Greek letter Δ (delta) always means “change

in” whatever quantity follows it. The SI unit for displacement is the meter (m). Displacement has a direction as well as a
magnitude.

• When you start a problem, assign which direction will be positive.
• Distance is the magnitude of displacement between two positions.
• Distance traveled is the total length of the path traveled between two positions.

2.2 Vectors, Scalars, and Coordinate Systems
• A vector is any quantity that has magnitude and direction.
• A scalar is any quantity that has magnitude but no direction.
• Displacement and velocity are vectors, whereas distance and speed are scalars.
• In one-dimensional motion, direction is specified by a plus or minus sign to signify left or right, up or down, and the like.

2.3 Time, Velocity, and Speed
• Time is measured in terms of change, and its SI unit is the second (s). Elapsed time for an event is

Δ = f − 0,

where f is the final time and 0 is the initial time. The initial time is often taken to be zero, as if measured with a

stopwatch; the elapsed time is then just .

• Average velocity - is defined as displacement divided by the travel time. In symbols, average velocity is

- = Δ
Δ

= f − 0

f − 0
.

• The SI unit for velocity is m/s.
• Velocity is a vector and thus has a direction.
• Instantaneous velocity is the velocity at a specific instant or the average velocity for an infinitesimal interval.
• Instantaneous speed is the magnitude of the instantaneous velocity.
• Instantaneous speed is a scalar quantity, as it has no direction specified.
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• Average speed is the total distance traveled divided by the elapsed time. (Average speed is not the magnitude of the
average velocity.) Speed is a scalar quantity; it has no direction associated with it.

2.4 Acceleration
• Acceleration is the rate at which velocity changes. In symbols, average acceleration - is

- = Δ
Δ

= f − 0

f − 0
.

• The SI unit for acceleration is m/s2 .
• Acceleration is a vector, and thus has a both a magnitude and direction.
• Acceleration can be caused by either a change in the magnitude or the direction of the velocity.
• Instantaneous acceleration is the acceleration at a specific instant in time.
• Deceleration is an acceleration with a direction opposite to that of the velocity.

2.5 Motion Equations for Constant Acceleration in One Dimension
• To simplify calculations we take acceleration to be constant, so that - = at all times.
• We also take initial time to be zero.
• Initial position and velocity are given a subscript 0; final values have no subscript. Thus,

Δ =

Δ = − 0

Δ = − 0
• The following kinematic equations for motion with constant are useful:

= 0 + -

- = 0 +

2

= 0 +

= 0 + 0 + 1
2

2

2 = 0
2 + 2 ( − 0)

• In vertical motion, is substituted for .

2.6 Problem-Solving Basics for One Dimensional Kinematics
• The six basic problem solving steps for physics are:

Step 1. Examine the situation to determine which physical principles are involved.

Step 2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).

Step 4. Find an equation or set of equations that can help you solve the problem.

Step 5. Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete
with units.

Step 6. Check the answer to see if it is reasonable: Does it make sense?

2.7 Falling Objects
• An object in free-fall experiences constant acceleration if air resistance is negligible.
• On Earth, all free-falling objects have an acceleration due to gravity , which averages

= 9.80 m/s2.
• Whether the acceleration a should be taken as + or − is determined by your choice of coordinate system. If you

choose the upward direction as positive, = − = −9.80 m/s2 is negative. In the opposite case,

= +g = 9.80 m/s2 is positive. Since acceleration is constant, the kinematic equations above can be applied with the

appropriate + or − substituted for .

• For objects in free-fall, up is normally taken as positive for displacement, velocity, and acceleration.

2.8 Graphical Analysis of One Dimensional Motion
• Graphs of motion can be used to analyze motion.
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• Graphical solutions yield identical solutions to mathematical methods for deriving motion equations.
• The slope of a graph of displacement vs. time is velocity .

• The slope of a graph of velocity vs. time graph is acceleration .

• Average velocity, instantaneous velocity, and acceleration can all be obtained by analyzing graphs.

Conceptual Questions

2.1 Displacement
1. Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement.
Specifically identify each quantity in your example.

2. Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which
magnitude of displacement and displacement are exactly the same?

3. Bacteria move back and forth by using their flagella (structures that look like little tails). Speeds of up to

50 μm/s 50×10−6 m/s have been observed. The total distance traveled by a bacterium is large for its size, while its

displacement is small. Why is this?

2.2 Vectors, Scalars, and Coordinate Systems

4. A student writes, “A bird that is diving for prey has a speed of − / .” What is wrong with the student's statement? What
has the student actually described? Explain.

5. What is the speed of the bird in Exercise 2.4?

6. Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.

7. A weather forecast states that the temperature is predicted to be −5ºC the following day. Is this temperature a vector or a
scalar quantity? Explain.

2.3 Time, Velocity, and Speed
8. Give an example (but not one from the text) of a device used to measure time and identify what change in that device
indicates a change in time.

9. There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the
difference between these two quantities.

10. Does a car's odometer measure position or displacement? Does its speedometer measure speed or velocity?

11. If you divide the total distance traveled on a car trip (as determined by the odometer) by the time for the trip, are you
calculating the average speed or the magnitude of the average velocity? Under what circumstances are these two quantities the
same?

12. How are instantaneous velocity and instantaneous speed related to one another? How do they differ?

2.4 Acceleration
13. Is it possible for speed to be constant while acceleration is not zero? Give an example of such a situation.

14. Is it possible for velocity to be constant while acceleration is not zero? Explain.

15. Give an example in which velocity is zero yet acceleration is not.

16. If a subway train is moving to the left (has a negative velocity) and then comes to a stop, what is the direction of its
acceleration? Is the acceleration positive or negative?

17. Plus and minus signs are used in one-dimensional motion to indicate direction. What is the sign of an acceleration that
reduces the magnitude of a negative velocity? Of a positive velocity?

2.6 Problem-Solving Basics for One Dimensional Kinematics
18. What information do you need in order to choose which equation or equations to use to solve a problem? Explain.

19. What is the last thing you should do when solving a problem? Explain.

2.7 Falling Objects
20. What is the acceleration of a rock thrown straight upward on the way up? At the top of its flight? On the way down?

21. An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Does
its velocity change direction? (c) Does the acceleration due to gravity have the same sign on the way up as on the way down?

22. Suppose you throw a rock nearly straight up at a coconut in a palm tree, and the rock misses on the way up but hits the
coconut on the way down. Neglecting air resistance, how does the speed of the rock when it hits the coconut on the way down
compare with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way
up or down? Explain.
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23. If an object is thrown straight up and air resistance is negligible, then its speed when it returns to the starting point is the
same as when it was released. If air resistance were not negligible, how would its speed upon return compare with its initial
speed? How would the maximum height to which it rises be affected?

24. The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration due to gravity being
the same, how many times higher could a safe fall on the Moon be than on Earth (gravitational acceleration on the Moon is about
1/6 that of the Earth)?

25. How many times higher could an astronaut jump on the Moon than on Earth if his takeoff speed is the same in both locations
(gravitational acceleration on the Moon is about 1/6 of on Earth)?

2.8 Graphical Analysis of One Dimensional Motion
26. (a) Explain how you can use the graph of position versus time in Figure 2.66 to describe the change in velocity over time.
Identify (b) the time ( a , b , c , d , or e ) at which the instantaneous velocity is greatest, (c) the time at which it is zero, and

(d) the time at which it is negative.

Figure 2.66

27. (a) Sketch a graph of velocity versus time corresponding to the graph of displacement versus time given in Figure 2.67. (b)
Identify the time or times ( a , b , c , etc.) at which the instantaneous velocity is greatest. (c) At which times is it zero? (d) At

which times is it negative?

Figure 2.67

28. (a) Explain how you can determine the acceleration over time from a velocity versus time graph such as the one in Figure
2.68. (b) Based on the graph, how does acceleration change over time?
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Figure 2.68

29. (a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in Figure 2.69. (b)
Identify the time or times ( a , b , c , etc.) at which the acceleration is greatest. (c) At which times is it zero? (d) At which times

is it negative?

Figure 2.69

30. Consider the velocity vs. time graph of a person in an elevator shown in Figure 2.70. Suppose the elevator is initially at rest.
It then accelerates for 3 seconds, maintains that velocity for 15 seconds, then decelerates for 5 seconds until it stops. The
acceleration for the entire trip is not constant so we cannot use the equations of motion from Motion Equations for Constant
Acceleration in One Dimension for the complete trip. (We could, however, use them in the three individual sections where
acceleration is a constant.) Sketch graphs of (a) position vs. time and (b) acceleration vs. time for this trip.

Figure 2.70

31. A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, velocity,
and acceleration of the cylinder vs. time as it goes up and then down the plane.

Chapter 2 | Kinematics 87



Problems & Exercises

2.1 Displacement

Figure 2.71

1. Find the following for path A in Figure 2.71: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

2. Find the following for path B in Figure 2.71: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

3. Find the following for path C in Figure 2.71: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

4. Find the following for path D in Figure 2.71: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

2.3 Time, Velocity, and Speed
5. (a) Calculate Earth's average speed relative to the Sun. (b)
What is its average velocity over a period of one year?

6. A helicopter blade spins at exactly 100 revolutions per
minute. Its tip is 5.00 m from the center of rotation. (a)
Calculate the average speed of the blade tip in the
helicopter's frame of reference. (b) What is its average
velocity over one revolution?

7. The North American and European continents are moving
apart at a rate of about 3 cm/y. At this rate how long will it
take them to drift 500 km farther apart than they are at
present?

8. Land west of the San Andreas fault in southern California is
moving at an average velocity of about 6 cm/y northwest
relative to land east of the fault. Los Angeles is west of the
fault and may thus someday be at the same latitude as San
Francisco, which is east of the fault. How far in the future will
this occur if the displacement to be made is 590 km
northwest, assuming the motion remains constant?

9. On May 26, 1934, a streamlined, stainless steel diesel train
called the Zephyr set the world's nonstop long-distance speed
record for trains. Its run from Denver to Chicago took 13
hours, 4 minutes, 58 seconds, and was witnessed by more
than a million people along the route. The total distance
traveled was 1633.8 km. What was its average speed in km/h
and m/s?

10. Tidal friction is slowing the rotation of the Earth. As a
result, the orbit of the Moon is increasing in radius at a rate of
approximately 4 cm/year. Assuming this to be a constant rate,
how many years will pass before the radius of the Moon's

orbit increases by 3.84×106 m (1%)?

11. A student drove to the university from her home and
noted that the odometer reading of her car increased by 12.0
km. The trip took 18.0 min. (a) What was her average speed?
(b) If the straight-line distance from her home to the university
is 10.3 km in a direction 25.0º south of east, what was her
average velocity? (c) If she returned home by the same path
7 h 30 min after she left, what were her average speed and
velocity for the entire trip?

12. The speed of propagation of the action potential (an
electrical signal) in a nerve cell depends (inversely) on the
diameter of the axon (nerve fiber). If the nerve cell connecting
the spinal cord to your feet is 1.1 m long, and the nerve
impulse speed is 18 m/s, how long does it take for the nerve
signal to travel this distance?

13. Conversations with astronauts on the lunar surface were
characterized by a kind of echo in which the earthbound
person's voice was so loud in the astronaut's space helmet
that it was picked up by the astronaut's microphone and
transmitted back to Earth. It is reasonable to assume that the
echo time equals the time necessary for the radio wave to
travel from the Earth to the Moon and back (that is, neglecting
any time delays in the electronic equipment). Calculate the
distance from Earth to the Moon given that the echo time was
2.56 s and that radio waves travel at the speed of light

(3.00×108 m/s) .

14. A football quarterback runs 15.0 m straight down the
playing field in 2.50 s. He is then hit and pushed 3.00 m
straight backward in 1.75 s. He breaks the tackle and runs
straight forward another 21.0 m in 5.20 s. Calculate his
average velocity (a) for each of the three intervals and (b) for
the entire motion.

15. The planetary model of the atom pictures electrons
orbiting the atomic nucleus much as planets orbit the Sun. In
this model you can view hydrogen, the simplest atom, as

having a single electron in a circular orbit 1.06×10−10 m in
diameter. (a) If the average speed of the electron in this orbit

is known to be 2.20×106 m/s , calculate the number of
revolutions per second it makes about the nucleus. (b) What
is the electron's average velocity?

2.4 Acceleration
16. A cheetah can accelerate from rest to a speed of 30.0 m/s
in 7.00 s. What is its acceleration?

17. Professional Application

Dr. John Paul Stapp was U.S. Air Force officer who studied
the effects of extreme deceleration on the human body. On
December 10, 1954, Stapp rode a rocket sled, accelerating
from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and
was brought jarringly back to rest in only 1.40 s! Calculate his
(a) acceleration and (b) deceleration. Express each in

multiples of (9.80 m/s2) by taking its ratio to the

acceleration of gravity.

18. A commuter backs her car out of her garage with an

acceleration of 1.40 m/s2 . (a) How long does it take her to
reach a speed of 2.00 m/s? (b) If she then brakes to a stop in
0.800 s, what is her deceleration?

19. Assume that an intercontinental ballistic missile goes from
rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual
speed and time are classified). What is its average

acceleration in m/s2 and in multiples of (9.80 m/s2)?
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2.5 Motion Equations for Constant
Acceleration in One Dimension
20. An Olympic-class sprinter starts a race with an

acceleration of 4.50 m/s2 . (a) What is her speed 2.40 s
later? (b) Sketch a graph of her position vs. time for this
period.

21. A well-thrown ball is caught in a well-padded mitt. If the

deceleration of the ball is 2.10×104 m/s2 , and 1.85 ms

(1 ms = 10−3 s) elapses from the time the ball first

touches the mitt until it stops, what was the initial velocity of
the ball?

22. A bullet in a gun is accelerated from the firing chamber to

the end of the barrel at an average rate of 6.20×105 m/s2

for 8.10×10−4 s . What is its muzzle velocity (that is, its
final velocity)?

23. (a) A light-rail commuter train accelerates at a rate of

1.35 m/s2 . How long does it take to reach its top speed of
80.0 km/h, starting from rest? (b) The same train ordinarily

decelerates at a rate of 1.65 m/s2 . How long does it take to
come to a stop from its top speed? (c) In emergencies the
train can decelerate more rapidly, coming to rest from 80.0

km/h in 8.30 s. What is its emergency deceleration in m/s2 ?

24. While entering a freeway, a car accelerates from rest at a

rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the
situation. (b) List the knowns in this problem. (c) How far does
the car travel in those 12.0 s? To solve this part, first identify
the unknown, and then discuss how you chose the
appropriate equation to solve for it. After choosing the
equation, show your steps in solving for the unknown, check
your units, and discuss whether the answer is reasonable. (d)
What is the car's final velocity? Solve for this unknown in the
same manner as in part (c), showing all steps explicitly.

25. At the end of a race, a runner decelerates from a velocity

of 9.00 m/s at a rate of 2.00 m/s2 . (a) How far does she
travel in the next 5.00 s? (b) What is her final velocity? (c)
Evaluate the result. Does it make sense?

26. Professional Application:

Blood is accelerated from rest to 30.0 cm/s in a distance of
1.80 cm by the left ventricle of the heart. (a) Make a sketch of
the situation. (b) List the knowns in this problem. (c) How long
does the acceleration take? To solve this part, first identify the
unknown, and then discuss how you chose the appropriate
equation to solve for it. After choosing the equation, show
your steps in solving for the unknown, checking your units. (d)
Is the answer reasonable when compared with the time for a
heartbeat?

27. In a slap shot, a hockey player accelerates the puck from
a velocity of 8.00 m/s to 40.0 m/s in the same direction. If this

shot takes 3.33×10−2 s , calculate the distance over which
the puck accelerates.

28. A powerful motorcycle can accelerate from rest to 26.8 m/
s (100 km/h) in only 3.90 s. (a) What is its average
acceleration? (b) How far does it travel in that time?

29. Freight trains can produce only relatively small
accelerations and decelerations. (a) What is the final velocity

of a freight train that accelerates at a rate of 0.0500 m/s2

for 8.00 min, starting with an initial velocity of 4.00 m/s? (b) If

the train can slow down at a rate of 0.550 m/s2 , how long
will it take to come to a stop from this velocity? (c) How far will
it travel in each case?

30. A fireworks shell is accelerated from rest to a velocity of
65.0 m/s over a distance of 0.250 m. (a) How long did the
acceleration last? (b) Calculate the acceleration.

31. A swan on a lake gets airborne by flapping its wings and
running on top of the water. (a) If the swan must reach a
velocity of 6.00 m/s to take off and it accelerates from rest at

an average rate of 0.350 m/s2 , how far will it travel before
becoming airborne? (b) How long does this take?

32. Professional Application:

A woodpecker's brain is specially protected from large
decelerations by tendon-like attachments inside the skull.
While pecking on a tree, the woodpecker's head comes to a
stop from an initial velocity of 0.600 m/s in a distance of only

2.00 mm. (a) Find the acceleration in m/s2 and in multiples

of = 9.80 m/s2 . (b) Calculate the stopping time. (c)

The tendons cradling the brain stretch, making its stopping
distance 4.50 mm (greater than the head and, hence, less
deceleration of the brain). What is the brain's deceleration,
expressed in multiples of ?

33. An unwary football player collides with a padded goalpost
while running at a velocity of 7.50 m/s and comes to a full
stop after compressing the padding and his body 0.350 m. (a)
What is his deceleration? (b) How long does the collision
last?

34. In World War II, there were several reported cases of
airmen who jumped from their flaming airplanes with no
parachute to escape certain death. Some fell about 20,000
feet (6000 m), and some of them survived, with few life-
threatening injuries. For these lucky pilots, the tree branches
and snow drifts on the ground allowed their deceleration to be
relatively small. If we assume that a pilot's speed upon impact
was 123 mph (54 m/s), then what was his deceleration?
Assume that the trees and snow stopped him over a distance
of 3.0 m.

35. Consider a grey squirrel falling out of a tree to the ground.
(a) If we ignore air resistance in this case (only for the sake of
this problem), determine a squirrel's velocity just before hitting
the ground, assuming it fell from a height of 3.0 m. (b) If the
squirrel stops in a distance of 2.0 cm through bending its
limbs, compare its deceleration with that of the airman in the
previous problem.

36. An express train passes through a station. It enters with
an initial velocity of 22.0 m/s and decelerates at a rate of

0.150 m/s2 as it goes through. The station is 210 m long.
(a) How long is the nose of the train in the station? (b) How
fast is it going when the nose leaves the station? (c) If the
train is 130 m long, when does the end of the train leave the
station? (d) What is the velocity of the end of the train as it
leaves?

37. Dragsters can actually reach a top speed of 145 m/s in
only 4.45 s—considerably less time than given in Example
2.10 and Example 2.11. (a) Calculate the average
acceleration for such a dragster. (b) Find the final velocity of
this dragster starting from rest and accelerating at the rate
found in (a) for 402 m (a quarter mile) without using any
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information on time. (c) Why is the final velocity greater than
that used to find the average acceleration? Hint: Consider
whether the assumption of constant acceleration is valid for a
dragster. If not, discuss whether the acceleration would be
greater at the beginning or end of the run and what effect that
would have on the final velocity.

38. A bicycle racer sprints at the end of a race to clinch a
victory. The racer has an initial velocity of 11.5 m/s and

accelerates at the rate of 0.500 m/s2 for 7.00 s. (a) What is
his final velocity? (b) The racer continues at this velocity to
the finish line. If he was 300 m from the finish line when he
started to accelerate, how much time did he save? (c) One
other racer was 5.00 m ahead when the winner started to
accelerate, but he was unable to accelerate, and traveled at
11.8 m/s until the finish line. How far ahead of him (in meters
and in seconds) did the winner finish?

39. In 1967, New Zealander Burt Munro set the world record
for an Indian motorcycle, on the Bonneville Salt Flats in Utah,
with a maximum speed of 183.58 mi/h. The one-way course
was 5.00 mi long. Acceleration rates are often described by
the time it takes to reach 60.0 mi/h from rest. If this time was
4.00 s, and Burt accelerated at this rate until he reached his
maximum speed, how long did it take Burt to complete the
course?

40. (a) A world record was set for the men's 100-m dash in
the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica.
Bolt “coasted” across the finish line with a time of 9.69 s. If we
assume that Bolt accelerated for 3.00 s to reach his maximum
speed, and maintained that speed for the rest of the race,
calculate his maximum speed and his acceleration. (b) During
the same Olympics, Bolt also set the world record in the
200-m dash with a time of 19.30 s. Using the same
assumptions as for the 100-m dash, what was his maximum
speed for this race?

2.7 Falling Objects
Assume air resistance is negligible unless otherwise stated.

41. Calculate the displacement and velocity at times of (a)
0.500, (b) 1.00, (c) 1.50, and (d) 2.00 s for a ball thrown
straight up with an initial velocity of 15.0 m/s. Take the point of
release to be 0 = 0 .

42. Calculate the displacement and velocity at times of (a)
0.500, (b) 1.00, (c) 1.50, (d) 2.00, and (e) 2.50 s for a rock
thrown straight down with an initial velocity of 14.0 m/s from
the Verrazano Narrows Bridge in New York City. The roadway
of this bridge is 70.0 m above the water.

43. A basketball referee tosses the ball straight up for the
starting tip-off. At what velocity must a basketball player leave
the ground to rise 1.25 m above the floor in an attempt to get
the ball?

44. A rescue helicopter is hovering over a person whose boat
has sunk. One of the rescuers throws a life preserver straight
down to the victim with an initial velocity of 1.40 m/s and
observes that it takes 1.8 s to reach the water. (a) List the
knowns in this problem. (b) How high above the water was
the preserver released? Note that the downdraft of the
helicopter reduces the effects of air resistance on the falling
life preserver, so that an acceleration equal to that of gravity
is reasonable.

45. A dolphin in an aquatic show jumps straight up out of the
water at a velocity of 13.0 m/s. (a) List the knowns in this
problem. (b) How high does his body rise above the water?
To solve this part, first note that the final velocity is now a

known and identify its value. Then identify the unknown, and
discuss how you chose the appropriate equation to solve for
it. After choosing the equation, show your steps in solving for
the unknown, checking units, and discuss whether the answer
is reasonable. (c) How long is the dolphin in the air? Neglect
any effects due to his size or orientation.

46. A swimmer bounces straight up from a diving board and
falls feet first into a pool. She starts with a velocity of 4.00 m/
s, and her takeoff point is 1.80 m above the pool. (a) How
long are her feet in the air? (b) What is her highest point
above the board? (c) What is her velocity when her feet hit
the water?

47. (a) Calculate the height of a cliff if it takes 2.35 s for a rock
to hit the ground when it is thrown straight up from the cliff
with an initial velocity of 8.00 m/s. (b) How long would it take
to reach the ground if it is thrown straight down with the same
speed?

48. A very strong, but inept, shot putter puts the shot straight
up vertically with an initial velocity of 11.0 m/s. How long does
he have to get out of the way if the shot was released at a
height of 2.20 m, and he is 1.80 m tall?

49. You throw a ball straight up with an initial velocity of 15.0
m/s. It passes a tree branch on the way up at a height of 7.00
m. How much additional time will pass before the ball passes
the tree branch on the way back down?

50. A kangaroo can jump over an object 2.50 m high. (a)
Calculate its vertical speed when it leaves the ground. (b)
How long is it in the air?

51. Standing at the base of one of the cliffs of Mt. Arapiles in
Victoria, Australia, a hiker hears a rock break loose from a
height of 105 m. He can't see the rock right away but then
does, 1.50 s later. (a) How far above the hiker is the rock
when he can see it? (b) How much time does he have to
move before the rock hits his head?

52. An object is dropped from a height of 75.0 m above
ground level. (a) Determine the distance traveled during the
first second. (b) Determine the final velocity at which the
object hits the ground. (c) Determine the distance traveled
during the last second of motion before hitting the ground.

53. There is a 250-m-high cliff at Half Dome in Yosemite
National Park in California. Suppose a boulder breaks loose
from the top of this cliff. (a) How fast will it be going when it
strikes the ground? (b) Assuming a reaction time of 0.300 s,
how long will a tourist at the bottom have to get out of the way
after hearing the sound of the rock breaking loose (neglecting
the height of the tourist, which would become negligible
anyway if hit)? The speed of sound is 335 m/s on this day.

54. A ball is thrown straight up. It passes a 2.00-m-high
window 7.50 m off the ground on its path up and takes 1.30 s
to go past the window. What was the ball's initial velocity?

55. Suppose you drop a rock into a dark well and, using
precision equipment, you measure the time for the sound of a
splash to return. (a) Neglecting the time required for sound to
travel up the well, calculate the distance to the water if the
sound returns in 2.0000 s. (b) Now calculate the distance
taking into account the time for sound to travel up the well.
The speed of sound is 332.00 m/s in this well.

56. A steel ball is dropped onto a hard floor from a height of
1.50 m and rebounds to a height of 1.45 m. (a) Calculate its
velocity just before it strikes the floor. (b) Calculate its velocity
just after it leaves the floor on its way back up. (c) Calculate
its acceleration during contact with the floor if that contact

lasts 0.0800 ms (8.00×10−5 s) . (d) How much did the ball
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compress during its collision with the floor, assuming the floor
is absolutely rigid?

57. A coin is dropped from a hot-air balloon that is 300 m
above the ground and rising at 10.0 m/s upward. For the coin,
find (a) the maximum height reached, (b) its position and
velocity 4.00 s after being released, and (c) the time before it
hits the ground.

58. A soft tennis ball is dropped onto a hard floor from a
height of 1.50 m and rebounds to a height of 1.10 m. (a)
Calculate its velocity just before it strikes the floor. (b)
Calculate its velocity just after it leaves the floor on its way
back up. (c) Calculate its acceleration during contact with the

floor if that contact lasts 3.50 ms (3.50×10−3 s) . (d) How

much did the ball compress during its collision with the floor,
assuming the floor is absolutely rigid?

2.8 Graphical Analysis of One Dimensional
Motion
Note: There is always uncertainty in numbers taken from
graphs. If your answers differ from expected values, examine
them to see if they are within data extraction uncertainties
estimated by you.

59. (a) By taking the slope of the curve in Figure 2.72, verify
that the velocity of the jet car is 115 m/s at = 20 s . (b) By
taking the slope of the curve at any point in Figure 2.73,

verify that the jet car's acceleration is 5.0 m/s2 .

Figure 2.72

Figure 2.73

60. Using approximate values, calculate the slope of the
curve in Figure 2.74 to verify that the velocity at = 10.0 s

is 0.208 m/s. Assume all values are known to 3 significant
figures.

Figure 2.74

61. Using approximate values, calculate the slope of the
curve in Figure 2.74 to verify that the velocity at = 30.0 s

is 0.238 m/s. Assume all values are known to 3 significant
figures.

62. By taking the slope of the curve in Figure 2.75, verify that

the acceleration is 3.2 m/s2 at = 10 s .

Figure 2.75

63. Construct the displacement graph for the subway shuttle
train as shown in Figure 2.30(a). Your graph should show the
position of the train, in kilometers, from t = 0 to 20 s. You will
need to use the information on acceleration and velocity given
in the examples for this figure.

64. (a) Take the slope of the curve in Figure 2.76 to find the
jogger's velocity at = 2.5 s . (b) Repeat at 7.5 s. These
values must be consistent with the graph in Figure 2.77.

Figure 2.76
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Figure 2.77

Figure 2.78

65. A graph of ( ) is shown for a world-class track sprinter

in a 100-m race. (See Figure 2.79). (a) What is his average
velocity for the first 4 s? (b) What is his instantaneous velocity
at = 5 s ? (c) What is his average acceleration between 0
and 4 s? (d) What is his time for the race?

Figure 2.79

66. Figure 2.80 shows the displacement graph for a particle
for 5 s. Draw the corresponding velocity and acceleration
graphs.

Figure 2.80

Test Prep for AP® Courses

2.1 Displacement
1. Which of the following statements comparing position,
distance, and displacement is correct?

a. An object may record a distance of zero while recording
a non-zero displacement.

b. An object may record a non-zero distance while
recording a displacement of zero.

c. An object may record a non-zero distance while
maintaining a position of zero.
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d. An object may record a non-zero displacement while
maintaining a position of zero.

2.2 Vectors, Scalars, and Coordinate Systems
2. A student is trying to determine the acceleration of a
feather as she drops it to the ground. If the student is looking
to achieve a positive velocity and positive acceleration, what
is the most sensible way to set up her coordinate system?

a. Her hand should be a coordinate of zero and the
upward direction should be considered positive.

b. Her hand should be a coordinate of zero and the
downward direction should be considered positive.

c. The floor should be a coordinate of zero and the upward
direction should be considered positive.

d. The floor should be a coordinate of zero and the
downward direction should be considered positive.

2.3 Time, Velocity, and Speed
3. A group of students has two carts, A and B, with wheels
that turn with negligible friction. The two carts travel along a
straight horizontal track and eventually collide. Before the
collision, cart A travels to the right and cart B is initially at rest.
After the collision, the carts stick together.

a. Describe an experimental procedure to determine the
velocities of the carts before and after the collision,
including all the additional equipment you would need.
You may include a labeled diagram of your setup to help
in your description. Indicate what measurements you
would take and how you would take them. Include
enough detail so that another student could carry out
your procedure.

b. There will be sources of error in the measurements
taken in the experiment both before and after the
collision. Which velocity will be more greatly affected by
this error: the velocity prior to the collision or the velocity
after the collision? Or will both sets of data be affected
equally? Justify your answer.

2.4 Acceleration
4.

Figure 2.81 Graph showing Velocity vs. Time of a cart. A cart is
constrained to move along a straight line. A varying net force
along the direction of motion is exerted on the cart. The cart's

velocity v as a function of time t is shown in the graph. The
five labeled points divide the graph into four sections.

Which of the following correctly ranks the magnitude of the
average acceleration of the cart during the four sections of
the graph?

a. aCD > aAB > aBC > aDE

b. aBC > aAB > aCD > aDE

c. aAB > aBC > aDE > aCD

d. aCD > aAB > aDE > aBC

5. Push a book across a table and observe it slow to a stop.

Draw graphs showing the book's position vs. time and velocity
vs. time if the direction of its motion is considered positive.

Draw graphs showing the book's position vs. time and velocity
vs. time if the direction of its motion is considered negative.

2.5 Motion Equations for Constant
Acceleration in One Dimension
6. A group of students is attempting to determine the average
acceleration of a marble released from the top of a long ramp.
Below is a set of data representing the marble's position with
respect to time.

Position (cm) Time (s)

0.0 0.0

0.3 0.5

1.25 1.0

2.8 1.5

5.0 2.0

7.75 2.5

11.3 3.0

Use the data table above to construct a graph determining the
acceleration of the marble. Select a set of data points from
the table and plot those points on the graph. Fill in the blank
column in the table for any quantities you graph other than
the given data. Label the axes and indicate the scale for
each. Draw a best-fit line or curve through your data points.

Using the best-fit line, determine the value of the marble's
acceleration.

2.7 Falling Objects
7. Observing a spacecraft land on a distant asteroid,
scientists notice that the craft is falling at a rate of 5 m/s.
When it is 100 m closer to the surface of the asteroid, the
craft reports a velocity of 8 m/s. According to their data, what
is the approximate gravitational acceleration on this asteroid?

a. 0 m/s2

b. 0.03 m/s2

c. 0.20 m/s2

d. 0.65 m/s2

e. 33 m/s2
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3 TWO-DIMENSIONAL KINEMATICS

Figure 3.1 Everyday motion that we experience is, thankfully, rarely as tortuous as a rollercoaster ride like this—the Dragon Khan in Spain's Universal
Port Aventura Amusement Park. However, most motion is in curved, rather than straight-line, paths. Motion along a curved path is two- or three-
dimensional motion, and can be described in a similar fashion to one-dimensional motion. (credit: Boris23/Wikimedia Commons)

Chapter Outline
3.1. Kinematics in Two Dimensions: An Introduction

3.2. Vector Addition and Subtraction: Graphical Methods

3.3. Vector Addition and Subtraction: Analytical Methods

3.4. Projectile Motion

3.5. Addition of Velocities

Connection for AP® Courses
Most instances of motion in everyday life involve changes in displacement and velocity that occur in more than one direction. For
example, when you take a long road trip, you drive on different roads in different directions for different amounts of time at
different speeds. How can these motions all be combined to determine information about the trip such as the total displacement
and average velocity? If you kick a ball from ground level at some angle above the horizontal, how can you describe its motion?
To what maximum height does the object rise above the ground? How long is the object in the air? How much horizontal distance
is covered before the ball lands? To answer questions such as these, we need to describe motion in two dimensions.

Examining two-dimensional motion requires an understanding of both the scalar and the vector quantities associated with the
motion. You will learn how to combine vectors to incorporate both the magnitude and direction of vectors into your analysis. You
will learn strategies for simplifying the calculations involved by choosing the appropriate reference frame and by treating each
dimension of the motion separately as a one-dimensional problem, but you will also see that the motion itself occurs in the same
way regardless of your chosen reference frame (Essential Knowledge 3.A.1).
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This chapter lays a necessary foundation for examining interactions of objects described by forces (Big Idea 3). Changes in
direction result from acceleration, which necessitates force on an object. In this chapter, you will concentrate on describing
motion that involves changes in direction. In later chapters, you will apply this understanding as you learn about how forces
cause these motions (Enduring Understanding 3.A). The concepts in this chapter support:

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.1 An observer in a particular reference frame can describe the motion of an object using such
quantities as position, displacement, distance, velocity, speed, and acceleration.

3.1 Kinematics in Two Dimensions: An Introduction

Learning Objectives
By the end of this section, you will be able to:

• Observe that motion in two dimensions consists of horizontal and vertical components.
• Understand the independence of horizontal and vertical vectors in two-dimensional motion.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.2 The student is able to design an experimental investigation of the motion of an object. (S.P. 4.2)
• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the

results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Figure 3.2 Walkers and drivers in a city like New York are rarely able to travel in straight lines to reach their destinations. Instead, they must follow
roads and sidewalks, making two-dimensional, zigzagged paths. (credit: Margaret W. Carruthers)

Two-Dimensional Motion: Walking in a City
Suppose you want to walk from one point to another in a city with uniform square blocks, as pictured in Figure 3.3.

Figure 3.3 A pedestrian walks a two-dimensional path between two points in a city. In this scene, all blocks are square and are the same size.
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The straight-line path that a helicopter might fly is blocked to you as a pedestrian, and so you are forced to take a two-
dimensional path, such as the one shown. You walk 14 blocks in all, 9 east followed by 5 north. What is the straight-line
distance?

An old adage states that the shortest distance between two points is a straight line. The two legs of the trip and the straight-line

path form a right triangle, and so the Pythagorean theorem, 2  + 2  = 2 , can be used to find the straight-line distance.

Figure 3.4 The Pythagorean theorem relates the length of the legs of a right triangle, labeled and , with the hypotenuse, labeled . The

relationship is given by: 2 + 2 = 2 . This can be rewritten, solving for :  = 2 + 2 .

The hypotenuse of the triangle is the straight-line path, and so in this case its length in units of city blocks is

(9 blocks)2+ (5 blocks)2= 10.3 blocks , considerably shorter than the 14 blocks you walked. (Note that we are using three

significant figures in the answer. Although it appears that “9” and “5” have only one significant digit, they are discrete numbers. In
this case “9 blocks” is the same as “9.0 or 9.00 blocks.” We have decided to use three significant figures in the answer in order to
show the result more precisely.)

Figure 3.5 The straight-line path followed by a helicopter between the two points is shorter than the 14 blocks walked by the pedestrian. All blocks are
square and the same size.

The fact that the straight-line distance (10.3 blocks) in Figure 3.5 is less than the total distance walked (14 blocks) is one
example of a general characteristic of vectors. (Recall that vectors are quantities that have both magnitude and direction.)

As for one-dimensional kinematics, we use arrows to represent vectors. The length of the arrow is proportional to the vector's
magnitude. The arrow's length is indicated by hash marks in Figure 3.3 and Figure 3.5. The arrow points in the same direction
as the vector. For two-dimensional motion, the path of an object can be represented with three vectors: one vector shows the
straight-line path between the initial and final points of the motion, one vector shows the horizontal component of the motion, and
one vector shows the vertical component of the motion. The horizontal and vertical components of the motion add together to
give the straight-line path. For example, observe the three vectors in Figure 3.5. The first represents a 9-block displacement
east. The second represents a 5-block displacement north. These vectors are added to give the third vector, with a 10.3-block
total displacement. The third vector is the straight-line path between the two points. Note that in this example, the vectors that we
are adding are perpendicular to each other and thus form a right triangle. This means that we can use the Pythagorean theorem
to calculate the magnitude of the total displacement. (Note that we cannot use the Pythagorean theorem to add vectors that are
not perpendicular. We will develop techniques for adding vectors having any direction, not just those perpendicular to one
another, in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical
Methods.)

The Independence of Perpendicular Motions
The person taking the path shown in Figure 3.5 walks east and then north (two perpendicular directions). How far he or she
walks east is only affected by his or her motion eastward. Similarly, how far he or she walks north is only affected by his or her
motion northward.

Independence of Motion

The horizontal and vertical components of two-dimensional motion are independent of each other. Any motion in the
horizontal direction does not affect motion in the vertical direction, and vice versa.
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This is true in a simple scenario like that of walking in one direction first, followed by another. It is also true of more complicated
motion involving movement in two directions at once. For example, let's compare the motions of two baseballs. One baseball is
dropped from rest. At the same instant, another is thrown horizontally from the same height and follows a curved path. A
stroboscope has captured the positions of the balls at fixed time intervals as they fall.

Figure 3.6 This shows the motions of two identical balls—one falls from rest, the other has an initial horizontal velocity. Each subsequent position is an
equal time interval. Arrows represent horizontal and vertical velocities at each position. The ball on the right has an initial horizontal velocity, while the
ball on the left has no horizontal velocity. Despite the difference in horizontal velocities, the vertical velocities and positions are identical for both balls.
This shows that the vertical and horizontal motions are independent.

Applying the Science Practices: Independence of Horizontal and Vertical Motion or Maximum Height and Flight Time

Choose one of the following experiments to design:

Design an experiment to confirm what is shown in Figure 3.6, that the vertical motion of the two balls is independent of the
horizontal motion. As you think about your experiment, consider the following questions:

• How will you measure the horizontal and vertical positions of each ball over time? What equipment will this require?
• How will you measure the time interval between each of your position measurements? What equipment will this

require?
• If you were to create separate graphs of the horizontal velocity for each ball versus time, what do you predict it would

look like? Explain.
• If you were to compare graphs of the vertical velocity for each ball versus time, what do you predict it would look like?

Explain.
• If there is a significant amount of air resistance, how will that affect each of your graphs?

Design a two-dimensional ballistic motion experiment that demonstrates the relationship between the maximum height
reached by an object and the object's time of flight. As you think about your experiment, consider the following questions:

• How will you measure the maximum height reached by your object?
• How can you take advantage of the symmetry of an object in ballistic motion launched from ground level, reaching

maximum height, and returning to ground level?
• Will it make a difference if your object has no horizontal component to its velocity? Explain.
• Will you need to measure the time at multiple different positions? Why or why not?
• Predict what a graph of travel time versus maximum height will look like. Will it be linear? Parabolic? Horizontal?

Explain the shape of your predicted graph qualitatively or quantitatively.
• If there is a significant amount of air resistance, how will that affect your measurements and your results?

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This similarity implies that
the vertical motion is independent of whether or not the ball is moving horizontally. (Assuming no air resistance, the vertical
motion of a falling object is influenced by gravity only, and not by any horizontal forces.) Careful examination of the ball thrown
horizontally shows that it travels the same horizontal distance between flashes. This is due to the fact that there are no additional
forces on the ball in the horizontal direction after it is thrown. This result means that the horizontal velocity is constant, and
affected neither by vertical motion nor by gravity (which is vertical). Note that this case is true only for ideal conditions. In the real
world, air resistance will affect the speed of the balls in both directions.

The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional motions
(horizontal and vertical). The key to analyzing such motion, called projectile motion, is to resolve (break) it into motions along
perpendicular directions. Resolving two-dimensional motion into perpendicular components is possible because the components
are independent. We shall see how to resolve vectors in Vector Addition and Subtraction: Graphical Methods and Vector
Addition and Subtraction: Analytical Methods. We will find such techniques to be useful in many areas of physics.

98 Chapter 3 | Two-Dimensional Kinematics

This content is available for free at http://cnx.org/content/col11844/1.13



PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration,
and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze
the behavior.

Figure 3.7 Ladybug Motion 2D (http://cnx.org/content/m54779/1.2/ladybug-motion-2d_en.jar)

3.2 Vector Addition and Subtraction: Graphical Methods

Learning Objectives
By the end of this section, you will be able to:

• Understand the rules of vector addition, subtraction, and multiplication.
• Apply graphical methods of vector addition and subtraction to determine the displacement of moving objects.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Figure 3.8 Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai'i to
Moloka'i has a number of legs, or journey segments. These segments can be added graphically with a ruler to determine the total two-dimensional
displacement of the journey. (credit: US Geological Survey)

Vectors in Two Dimensions
A vector is a quantity that has magnitude and direction. Displacement, velocity, acceleration, and force, for example, are all
vectors. In one-dimensional, or straight-line, motion, the direction of a vector can be given simply by a plus or minus sign. In two
dimensions (2-d), however, we specify the direction of a vector relative to some reference frame (i.e., coordinate system), using
an arrow having length proportional to the vector's magnitude and pointing in the direction of the vector.

Figure 3.9 shows such a graphical representation of a vector, using as an example the total displacement for the person walking
in a city considered in Kinematics in Two Dimensions: An Introduction. We shall use the notation that a boldface symbol,
such as D , stands for a vector. Its magnitude is represented by the symbol in italics, , and its direction by .
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Vectors in this Text

In this text, we will represent a vector with a boldface variable. For example, we will represent the quantity force with the
vector F , which has both magnitude and direction. The magnitude of the vector will be represented by a variable in italics,

such as , and the direction of the variable will be given by an angle .

Figure 3.9 A person walks 9 blocks east and 5 blocks north. The displacement is 10.3 blocks at an angle 29.1° north of east.

Figure 3.10 To describe the resultant vector for the person walking in a city considered in Figure 3.9 graphically, draw an arrow to represent the total
displacement vector D . Using a protractor, draw a line at an angle relative to the east-west axis. The length of the arrow is proportional to the

vector's magnitude and is measured along the line with a ruler. In this example, the magnitude of the vector is 10.3 units, and the direction is

29.1° north of east.

Vector Addition: Head-to-Tail Method
The head-to-tail method is a graphical way to add vectors, described in Figure 3.11 below and in the steps following. The tail
of the vector is the starting point of the vector, and the head (or tip) of a vector is the final, pointed end of the arrow.
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Figure 3.11 Head-to-Tail Method: The head-to-tail method of graphically adding vectors is illustrated for the two displacements of the person walking
in a city considered in Figure 3.9. (a) Draw a vector representing the displacement to the east. (b) Draw a vector representing the displacement to the
north. The tail of this vector should originate from the head of the first, east-pointing vector. (c) Draw a line from the tail of the east-pointing vector to the
head of the north-pointing vector to form the sum or resultant vector D . The length of the arrow D is proportional to the vector's magnitude and is

measured to be 10.3 units . Its direction, described as the angle with respect to the east (or horizontal axis) is measured with a protractor to be

29.1° .

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor.

Figure 3.12

Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). Place the tail of the second vector at the head

of the first vector.

Figure 3.13

Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our example, we have

only two vectors, so we have finished placing arrows tip to tail.

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector. This is the resultant, or the sum, of the other
vectors.
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Figure 3.14

Step 5. To get the magnitude of the resultant, measure its length with a ruler. (Note that in most calculations, we will use the

Pythagorean theorem to determine this length.)

Step 6. To get the direction of the resultant, measure the angle it makes with the reference frame using a protractor. (Note that

in most calculations, we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made and the
precision of the measuring tools. It is valid for any number of vectors.

Example 3.1 Adding Vectors Graphically Using the Head-to-Tail Method: A Woman Takes a
Walk

Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths
(displacements) on a flat field. First, she walks 25.0 m in a direction 49.0° north of east. Then, she walks 23.0 m heading

15.0° north of east. Finally, she turns and walks 32.0 m in a direction 68.0° south of east.

Strategy

Represent each displacement vector graphically with an arrow, labeling the first A , the second B , and the third C ,
making the lengths proportional to the distance and the directions as specified relative to an east-west line. The head-to-tail
method outlined above will give a way to determine the magnitude and direction of the resultant displacement, denoted R .

Solution

(1) Draw the three displacement vectors.

Figure 3.15

(2) Place the vectors head to tail retaining both their initial magnitude and direction.
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Figure 3.16

(3) Draw the resultant vector, R .

Figure 3.17

(4) Use a ruler to measure the magnitude of R , and a protractor to measure the direction of R . While the direction of the
vector can be specified in many ways, the easiest way is to measure the angle between the vector and the nearest
horizontal or vertical axis. Since the resultant vector is south of the eastward pointing axis, we flip the protractor upside down
and measure the angle between the eastward axis and the vector.

Figure 3.18

In this case, the total displacement R is seen to have a magnitude of 50.0 m and to lie in a direction 7.0° south of east. By

using its magnitude and direction, this vector can be expressed as = 50.0 m and = 7.0° south of east.

Discussion

The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note that the
resultant is independent of the order in which the vectors are added. Therefore, we could add the vectors in any order as
illustrated in Figure 3.19 and we will still get the same solution.
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Figure 3.19

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is true in
every case and is an important characteristic of vectors. Vector addition is commutative. Vectors can be added in any order.

(3.1)A + B = B + A.

(This is true for the addition of ordinary numbers as well—you get the same result whether you add 2 + 3 or 3 + 2 , for
example).

Vector Subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract B from A ,

written A – B , we must first define what we mean by subtraction. The negative of a vector B is defined to be –B ; that is,
graphically the negative of any vector has the same magnitude but the opposite direction, as shown in Figure 3.20. In other
words, B has the same length as –B , but points in the opposite direction. Essentially, we just flip the vector so it points in the
opposite direction.

Figure 3.20 The negative of a vector is just another vector of the same magnitude but pointing in the opposite direction. So B is the negative of –B ;
it has the same length but opposite direction.

The subtraction of vector B from vector A is then simply defined to be the addition of –B to A . Note that vector subtraction
is the addition of a negative vector. The order of subtraction does not affect the results.

(3.2)A – B = A + (–B).

This is analogous to the subtraction of scalars (where, for example, 5 – 2 = 5 + (–2) ). Again, the result is independent of the

order in which the subtraction is made. When vectors are subtracted graphically, the techniques outlined above are used, as the
following example illustrates.

Example 3.2 Subtracting Vectors Graphically: A Woman Sailing a Boat

A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction
66.0° north of east from her current location, and then travel 30.0 m in a direction 112° north of east (or 22.0° west of
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north). If the woman makes a mistake and travels in the opposite direction for the second leg of the trip, where will she end
up? Compare this location with the location of the dock.

Figure 3.21

Strategy

We can represent the first leg of the trip with a vector A , and the second leg of the trip with a vector B . The dock is

located at a location A + B . If the woman mistakenly travels in the opposite direction for the second leg of the journey, she

will travel a distance (30.0 m) in the direction 180° – 112° = 68° south of east. We represent this as –B , as shown

below. The vector –B has the same magnitude as B but is in the opposite direction. Thus, she will end up at a location

A + (–B) , or A – B .

Figure 3.22

We will perform vector addition to compare the location of the dock, A + B , with the location at which the woman

mistakenly arrives, A + (–B) .

Solution

(1) To determine the location at which the woman arrives by accident, draw vectors A and –B .

(2) Place the vectors head to tail.

(3) Draw the resultant vector R .

(4) Use a ruler and protractor to measure the magnitude and direction of R .

Figure 3.23

In this case, = 23.0 m and = 7.5° south of east.
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(5) To determine the location of the dock, we repeat this method to add vectors A and B . We obtain the resultant vector

R ' :

Figure 3.24

In this case  = 52.9 m and = 90.1° north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction for the
second leg of the trip.

Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method of
subtracting vectors works the same as for addition.

Multiplication of Vectors and Scalars
If we decided to walk three times as far on the first leg of the trip considered in the preceding example, then we would walk
3 × 27.5 m , or 82.5 m, in a direction 66.0° north of east. This is an example of multiplying a vector by a positive scalar.
Notice that the magnitude changes, but the direction stays the same.

If the scalar is negative, then multiplying a vector by it changes the vector's magnitude and gives the new vector the opposite

direction. For example, if you multiply by –2, the magnitude doubles but the direction changes. We can summarize these rules in
the following way: When vector A is multiplied by a scalar ,

• the magnitude of the vector becomes the absolute value of ,
• if is positive, the direction of the vector does not change,
• if is negative, the direction is reversed.

In our case, = 3 and = 27.5 m . Vectors are multiplied by scalars in many situations. Note that division is the inverse of
multiplication. For example, dividing by 2 is the same as multiplying by the value (1/2). The rules for multiplication of vectors by
scalars are the same for division; simply treat the divisor as a scalar between 0 and 1.

Resolving a Vector into Components
In the examples above, we have been adding vectors to determine the resultant vector. In many cases, however, we will need to
do the opposite. We will need to take a single vector and find what other vectors added together produce it. In most cases, this
involves determining the perpendicular components of a single vector, for example the x- and y-components, or the north-south
and east-west components.

For example, we may know that the total displacement of a person walking in a city is 10.3 blocks in a direction 29.0° north of
east and want to find out how many blocks east and north had to be walked. This method is called finding the components (or

parts) of the displacement in the east and north directions, and it is the inverse of the process followed to find the total
displacement. It is one example of finding the components of a vector. There are many applications in physics where this is a
useful thing to do. We will see this soon in Projectile Motion, and much more when we cover forces in Dynamics: Newton's
Laws of Motion. Most of these involve finding components along perpendicular axes (such as north and east), so that right
triangles are involved. The analytical techniques presented in Vector Addition and Subtraction: Analytical Methods are ideal
for finding vector components.

PhET Explorations: Maze Game

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls
to the arena to make the game more difficult. Try to make a goal as fast as you can.
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Figure 3.25 Maze Game (http://cnx.org/content/m54781/1.2/maze-game_en.jar)

3.3 Vector Addition and Subtraction: Analytical Methods

Learning Objectives
By the end of this section, you will be able to:

• Understand the rules of vector addition and subtraction using analytical methods.
• Apply analytical methods to determine vertical and horizontal component vectors.
• Apply analytical methods to determine the magnitude and direction of a resultant vector.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the ruler and
protractor of graphical methods. Part of the graphical technique is retained, because vectors are still represented by arrows for
easy visualization. However, analytical methods are more concise, accurate, and precise than graphical methods, which are
limited by the accuracy with which a drawing can be made. Analytical methods are limited only by the accuracy and precision
with which physical quantities are known.

Resolving a Vector into Perpendicular Components
Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along perpendicular
directions are independent. We very often need to separate a vector into perpendicular components. For example, given a vector
like A in Figure 3.26, we may wish to find which two perpendicular vectors, A and A , add to produce it.

Figure 3.26 The vector A , with its tail at the origin of an x, y-coordinate system, is shown together with its x- and y-components, A and A .

These vectors form a right triangle. The analytical relationships among these vectors are summarized below.

A and A are defined to be the components of A along the x- and y-axes. The three vectors A , A , and A form a right

triangle:

(3.3)A  + Ay = A.

Note that this relationship between vector components and the resultant vector holds only for vector quantities (which include
both magnitude and direction). The relationship does not apply for the magnitudes alone. For example, if A = 3 m east,

A = 4 m north, and A = 5 m north-east, then it is true that the vectors A  + Ay = A . However, it is not true that the sum

of the magnitudes of the vectors is also equal. That is,

(3.4)3 m + 4 m ≠  5 m

Thus,
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(3.5)+ ≠

If the vector A is known, then its magnitude (its length) and its angle (its direction) are known. To find and , its x-

and y-components, we use the following relationships for a right triangle.

(3.6)= cos

and

(3.7)= sin .

Figure 3.27 The magnitudes of the vector components A and A can be related to the resultant vector A and the angle with trigonometric

identities. Here we see that = cos and = sin .

Suppose, for example, that A is the vector representing the total displacement of the person walking in a city considered in
Kinematics in Two Dimensions: An Introduction and Vector Addition and Subtraction: Graphical Methods.

Figure 3.28 We can use the relationships = cos and = sin to determine the magnitude of the horizontal and vertical

component vectors in this example.

Then = 10.3 blocks and = 29.1º , so that

(3.8)= cos = 10.3 blocks cos 29.1º = 9.0 blocks

(3.9)= sin = 10.3 blocks sin 29.1º = 5.0 blocks.

Calculating a Resultant Vector

If the perpendicular components A and A of a vector A are known, then A can also be found analytically. To find the

magnitude and direction of a vector from its perpendicular components A and A , we use the following relationships:

(3.10)= 2 + 2

(3.11)= tan−1( / ).
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Figure 3.29 The magnitude and direction of the resultant vector can be determined once the horizontal and vertical components and have

been determined.

Note that the equation = 2 + 2 is just the Pythagorean theorem relating the legs of a right triangle to the length of the

hypotenuse. For example, if and are 9 and 5 blocks, respectively, then = 92 +52=10.3 blocks, again consistent

with the example of the person walking in a city. Finally, the direction is = tan–1(5/9)=29.1º , as before.

Determining Vectors and Vector Components with Analytical Methods

Equations = cos and = sin are used to find the perpendicular components of a vector—that is, to go

from and to and . Equations = 2 + 2 and = tan–1( / ) are used to find a vector from its

perpendicular components—that is, to go from and to and . Both processes are crucial to analytical methods

of vector addition and subtraction.

Adding Vectors Using Analytical Methods

To see how to add vectors using perpendicular components, consider Figure 3.30, in which the vectors A and B are added to

produce the resultant R .

Figure 3.30 Vectors A and B are two legs of a walk, and R is the resultant or total displacement. You can use analytical methods to determine

the magnitude and direction of R .

If A and B represent two legs of a walk (two displacements), then R is the total displacement. The person taking the walk

ends up at the tip of R. There are many ways to arrive at the same point. In particular, the person could have walked first in the

x-direction and then in the y-direction. Those paths are the x- and y-components of the resultant, R and R . If we know R

and R , we can find and using the equations = 2 + 2 and = tan–1( / ) . When you use the analytical

method of vector addition, you can determine the components or the magnitude and direction of a vector.

Step 1. Identify the x- and y-axes that will be used in the problem. Then, find the components of each vector to be added along

the chosen perpendicular axes. Use the equations = cos and = sin to find the components. In Figure 3.31,
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these components are , , , and . The angles that vectors A and B make with the x-axis are A and B ,

respectively.

Figure 3.31 To add vectors A and B , first determine the horizontal and vertical components of each vector. These are the dotted vectors A ,

A , B and B shown in the image.

Step 2. Find the components of the resultant along each axis by adding the components of the individual vectors along that axis.

That is, as shown in Figure 3.32,

(3.12)= +

and

(3.13)= + .

Figure 3.32 The magnitude of the vectors A and B add to give the magnitude of the resultant vector in the horizontal direction. Similarly,

the magnitudes of the vectors A and B add to give the magnitude of the resultant vector in the vertical direction.

Components along the same axis, say the x-axis, are vectors along the same line and, thus, can be added to one another like
ordinary numbers. The same is true for components along the y-axis. (For example, a 9-block eastward walk could be taken in
two legs, the first 3 blocks east and the second 6 blocks east, for a total of 9, because they are along the same direction.) So
resolving vectors into components along common axes makes it easier to add them. Now that the components of R are known,
its magnitude and direction can be found.

Step 3. To get the magnitude of the resultant, use the Pythagorean theorem:

(3.14)
= 2 + 2.

Step 4. To get the direction of the resultant:

(3.15)= tan−1( / ).

The following example illustrates this technique for adding vectors using perpendicular components.
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Example 3.3 Adding Vectors Using Analytical Methods

Add the vector A to the vector B shown in Figure 3.33, using perpendicular components along the x- and y-axes. The x-

and y-axes are along the east–west and north–south directions, respectively. Vector A represents the first leg of a walk in

which a person walks 53.0 m in a direction 20.0º north of east. Vector B represents the second leg, a displacement of

34.0 m in a direction 63.0º north of east.

Figure 3.33 Vector A has magnitude 53.0 m and direction 20.0 º north of the x-axis. Vector B has magnitude 34.0 m and direction

63.0º north of the x-axis. You can use analytical methods to determine the magnitude and direction of R .

Strategy

The components of A and B along the x- and y-axes represent walking due east and due north to get to the same ending
point. Once found, they are combined to produce the resultant.

Solution

Following the method outlined above, we first find the components of A and B along the x- and y-axes. Note that

= 53.0 m , A = 20.0º , = 34.0 m , and B = 63.0º . We find the x-components by using = cos , which

gives

(3.16)= cos A = (53.0 m)(cos 20.0º)

= (53.0 m)(0.940) = 49.8 m

and

(3.17)= cos B = (34.0 m)(cos 63.0º)

= (34.0 m)(0.454) = 15.4 m.

Similarly, the y-components are found using = sin A :

(3.18)= sin A = (53.0 m)(sin 20.0º)

= (53.0 m)(0.342) = 18.1 m

and

(3.19)= sin B = (34.0 m)(sin 63.0 º )

= (34.0 m)(0.891) = 30.3 m.

The x- and y-components of the resultant are thus

(3.20)= + = 49.8 m + 15.4 m = 65.2 m

and

(3.21)= + = 18.1 m+30.3 m = 48.4 m.

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

(3.22)
= 2 + 2 = (65.2)2 + (48.4)2 m

so that

(3.23)= 81.2 m.
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Finally, we find the direction of the resultant:

(3.24)= tan−1( / )=+tan−1(48.4 / 65.2).

Thus,

(3.25)= tan−1(0.742) = 36.6 º .

Figure 3.34 Using analytical methods, we see that the magnitude of R is 81.2 m and its direction is 36.6º north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using perpendicular
components is very similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. That is, A − B ≡ A + (–B) . Thus, the method

for the subtraction of vectors using perpendicular components is identical to that for addition. The components of –B are

the negatives of the components of B . The x- and y-components of the resultant A − B = R are thus

(3.26)= + –

and

(3.27)= + –

and the rest of the method outlined above is identical to that for addition. (See Figure 3.35.)

Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular quantities are
often independent of one another. The next module, Projectile Motion, is one of many in which using perpendicular components
helps make the picture clear and simplifies the physics.

Figure 3.35 The subtraction of the two vectors shown in Figure 3.30. The components of –B are the negatives of the components of B . The
method of subtraction is the same as that for addition.
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PhET Explorations: Vector Addition

Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The
magnitude, angle, and components of each vector can be displayed in several formats.

Figure 3.36 Vector Addition (http://cnx.org/content/m54783/1.2/vector-addition_en.jar)

3.4 Projectile Motion

Learning Objectives
By the end of this section, you will be able to:

• Identify and explain the properties of a projectile, such as acceleration due to gravity, range, maximum height, and
trajectory.

• Determine the location and velocity of a projectile at different points in its trajectory.
• Apply the principle of independence of motion to solve projectile motion problems.

The information presented in this section supports the following AP® learning objectives:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The
object is called a projectile, and its path is called its trajectory. The motion of falling objects, as covered in Problem-Solving
Basics for One-Dimensional Kinematics, is a simple one-dimensional type of projectile motion in which there is no horizontal
movement. In this section, we consider two-dimensional projectile motion, such as that of a football or other object for which air
resistance is negligible.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be analyzed
separately. This fact was discussed in Kinematics in Two Dimensions: An Introduction, where vertical and horizontal motions
were seen to be independent. The key to analyzing two-dimensional projectile motion is to break it into two motions, one along
the horizontal axis and the other along the vertical. (This choice of axes is the most sensible, because acceleration due to gravity
is vertical—thus, there will be no acceleration along the horizontal axis when air resistance is negligible.) As is customary, we call
the horizontal axis the x-axis and the vertical axis the y-axis. Figure 3.37 illustrates the notation for displacement, where s is
defined to be the total displacement and x and y are its components along the horizontal and vertical axes, respectively. The

magnitudes of these vectors are s, x, and y. (Note that in the last section we used the notation A to represent a vector with

components A and A . If we continued this format, we would call displacement s with components s and s . However, to

simplify the notation, we will simply represent the component vectors as x and y .)

Of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their
components along the x- and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for

example) are negligible. The components of acceleration are then very simple: = – = – 9.80 m/s2 . (Note that this

definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead
such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical,

= 0 . Both accelerations are constant, so the kinematic equations can be used.

Review of Kinematic Equations (constant )

(3.28)= 0 + -

(3.29)- = 0 +

2

(3.30)= 0 +

(3.31)
= 0 + 0 + 1

2
2

(3.32)2 = 0
2 + 2 ( − 0).
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Figure 3.37 The total displacement s of a soccer ball at a point along its path. The vector s has components x and y along the horizontal and

vertical axes. Its magnitude is , and it makes an angle with the horizontal.

Given these assumptions, the following steps are then used to analyze projectile motion:

Step 1. Resolve or break the motion into horizontal and vertical components along the x- and y-axes. These axes are
perpendicular, so = cos and = sin are used. The magnitude of the components of displacement s along

these axes are and The magnitudes of the components of the velocity v are = cos and = sin θ, where

is the magnitude of the velocity and is its direction, as shown in Figure 3.38. Initial values are denoted with a subscript 0, as
usual.

Step 2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic
equations for horizontal and vertical motion take the following forms:

(3.33)Horizontal Motion( = 0)

(3.34)= 0 +

(3.35)= 0 = = velocity is a constant.

(3.36)Vertical Motion(assuming positive is up = − = −9.80m/s2)

(3.37)
= 0 + 1

2
( 0 + )

(3.38)= 0 −

(3.39)
= 0 + 0 − 1

2
2

(3.40)2 = 0
2 − 2 ( − 0).

Step 3. Solve for the unknowns in the two separate motions—one horizontal and one vertical. Note that the only common
variable between the motions is time . The problem solving procedures here are the same as for one-dimensional kinematics
and are illustrated in the solved examples below.

Step 4. Recombine the two motions to find the total displacement s and velocity v . Because the x - and y -motions are
perpendicular, we determine these vectors by using the techniques outlined in the Vector Addition and Subtraction: Analytical

Methods and employing = 2 + 2 and = tan−1( / ) in the following form, where is the direction of the

displacement s and is the direction of the velocity v :

Total displacement and velocity

(3.41)
= 2 + 2

(3.42)= tan−1( / )

(3.43)
= 2 + 2

(3.44)= tan−1( / ).
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Figure 3.38 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the vertical and
horizontal axes. (b) The horizontal motion is simple, because = 0 and is thus constant. (c) The velocity in the vertical direction begins to

decrease as the object rises; at its highest point, the vertical velocity is zero. As the object falls towards the Earth again, the vertical velocity increases
again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The x - and y -motions are recombined to give the total velocity
at any given point on the trajectory.

Example 3.4 A Fireworks Projectile Explodes High and Away

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above the
horizontal, as illustrated in Figure 3.39. The fuse is timed to ignite the shell just as it reaches its highest point above the
ground. (a) Calculate the height at which the shell explodes. (b) How much time passed between the launch of the shell and
the explosion? (c) What is the horizontal displacement of the shell when it explodes?

Strategy

Because air resistance is negligible for the unexploded shell, the analysis method outlined above can be used. The motion
can be broken into horizontal and vertical motions in which = 0 and = – . We can then define 0 and 0 to be

zero and solve for the desired quantities.

Solution for (a)
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By “height” we mean the altitude or vertical position above the starting point. The highest point in any trajectory, called the

apex, is reached when = 0 . Since we know the initial and final velocities as well as the initial position, we use the

following equation to find :

(3.45)2 = 0
2 − 2 ( − 0).

Figure 3.39 The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which is found to be at a
height of 233 m and 125 m away horizontally.

Because 0 and are both zero, the equation simplifies to

(3.46)0 = 0
2 − 2

Solving for gives

(3.47)
=

0
2

2
.

Now we must find 0 , the component of the initial velocity in the y-direction. It is given by 0 = 0 sin , where 0 is

the initial velocity of 70.0 m/s, and 0 = 75.0° is the initial angle. Thus,

(3.48)
0 = 0 sin 0 = (70.0 m/s)(sin 75°) = 67.6 m/s.

and is

(3.49)
=

(67.6 m/s)2

2(9.80 m/s2)
,

so that

(3.50)= 233m.

Discussion for (a)

Note that because up is positive, the initial velocity is positive, as is the maximum height, but the acceleration due to gravity
is negative. Note also that the maximum height depends only on the vertical component of the initial velocity, so that any
projectile with a 67.6 m/s initial vertical component of velocity will reach a maximum height of 233 m (neglecting air
resistance). The numbers in this example are reasonable for large fireworks displays, the shells of which do reach such
heights before exploding. In practice, air resistance is not completely negligible, and so the initial velocity would have to be
somewhat larger than that given to reach the same height.

Solution for (b)

As in many physics problems, there is more than one way to solve for the time to the highest point. In this case, the easiest

method is to use = 0 + 1
2

( 0 + ) . Because 0 is zero, this equation reduces to simply
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(3.51)
= 1

2
( 0 + ) .

Note that the final vertical velocity, , at the highest point is zero. Thus,

(3.52)
=

2

( 0y + )
=

2(233 m)
(67.6 m/s)

= 6.90 s.

Discussion for (b)

This time is also reasonable for large fireworks. When you are able to see the launch of fireworks, you will notice several

seconds pass before the shell explodes. (Another way of finding the time is by using = 0 + 0 − 1
2

2 , and solving

the quadratic equation for .)

Solution for (c)

Because air resistance is negligible, = 0 and the horizontal velocity is constant, as discussed above. The horizontal

displacement is horizontal velocity multiplied by time as given by = 0 + , where 0 is equal to zero:

(3.53)= ,

where is the x-component of the velocity, which is given by = 0 cos 0 . Now,

(3.54)= 0 cos 0 = (70.0 m/s)(cos 75.0°) = 18.1 m/s.

The time for both motions is the same, and so is

(3.55)= (18.1 m/s)(6.90 s) = 125 m.

Discussion for (c)

The horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could
be useful in keeping the fireworks fragments from falling on spectators. Once the shell explodes, air resistance has a major
effect, and many fragments will land directly below.

In solving part (a) of the preceding example, the expression we found for is valid for any projectile motion where air resistance

is negligible. Call the maximum height = ; then,

(3.56)
=

0
2

2
.

This equation defines the maximum height of a projectile and depends only on the vertical component of the initial velocity.

Defining a Coordinate System

It is important to set up a coordinate system when analyzing projectile motion. One part of defining the coordinate system is
to define an origin for the and positions. Often, it is convenient to choose the initial position of the object as the origin

such that 0 = 0 and 0 = 0 . It is also important to define the positive and negative directions in the and directions.

Typically, we define the positive vertical direction as upwards, and the positive horizontal direction is usually the direction of
the object's motion. When this is the case, the vertical acceleration, , takes a negative value (since it is directed

downwards towards the Earth). However, it is occasionally useful to define the coordinates differently. For example, if you
are analyzing the motion of a ball thrown downwards from the top of a cliff, it may make sense to define the positive direction
downwards since the motion of the ball is solely in the downwards direction. If this is the case, takes a positive value.

Example 3.5 Calculating Projectile Motion: Hot Rock Projectile

Kilauea in Hawaii is the world's most continuously active volcano. Very active volcanoes characteristically eject red-hot rocks
and lava rather than smoke and ash. Suppose a large rock is ejected from the volcano with a speed of 25.0 m/s and at an
angle 35.0° above the horizontal, as shown in Figure 3.40. The rock strikes the side of the volcano at an altitude 20.0 m
lower than its starting point. (a) Calculate the time it takes the rock to follow this path. (b) What are the magnitude and
direction of the rock's velocity at impact?
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Figure 3.40 The trajectory of a rock ejected from the Kilauea volcano.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions will allow us to solve for the
desired quantities. The time a projectile is in the air is governed by its vertical motion alone. We will solve for first. While
the rock is rising and falling vertically, the horizontal motion continues at a constant velocity. This example asks for the final
velocity. Thus, the vertical and horizontal results will be recombined to obtain and at the final time determined in

the first part of the example.

Solution for (a)

While the rock is in the air, it rises and then falls to a final position 20.0 m lower than its starting altitude. We can find the time
for this by using

(3.57)
= 0 + 0 − 1

2
2.

If we take the initial position 0 to be zero, then the final position is = −20.0 m. Now the initial vertical velocity is the

vertical component of the initial velocity, found from 0 = 0 sin 0 = ( 25.0 m/s )( sin 35.0° ) = 14.3 m/s . Substituting

known values yields

(3.58)−20.0 m = (14.3 m/s) − 4.90 m/s2 2.

Rearranging terms gives a quadratic equation in :

(3.59)4.90 m/s2 2 − (14.3 m/s) − (20.0 m) = 0.

This expression is a quadratic equation of the form 2 + + = 0 , where the constants are = 4.90 , = – 14.3 ,

and = – 20.0. Its solutions are given by the quadratic formula:

(3.60)
= − ± 2 − 4

2
.

This equation yields two solutions: = 3.96 and = – 1.03 . (It is left as an exercise for the reader to verify these

solutions.) The time is = 3.96 s or – 1.03 s . The negative value of time implies an event before the start of motion, and
so we discard it. Thus,

(3.61)= 3.96 s.

Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical
velocity of 14.3 m/s and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)

From the information now in hand, we can find the final horizontal and vertical velocities and and combine them to

find the total velocity and the angle 0 it makes with the horizontal. Of course, is constant so we can solve for it at

any horizontal location. In this case, we chose the starting point since we know both the initial velocity and initial angle.
Therefore:

(3.62)= 0 cos 0 = (25.0 m/s)(cos 35°) = 20.5 m/s.

The final vertical velocity is given by the following equation:

(3.63)= 0 −
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where 0y was found in part (a) to be 14.3 m/s . Thus,

(3.64)= 14.3 m/s − (9.80 m/s2)(3.96 s)

so that

(3.65)= −24.5 m/s.

To find the magnitude of the final velocity we combine its perpendicular components, using the following equation:

(3.66)
= 2 + 2 = (20.5 m/s)2 + ( − 24.5 m/s)2,

which gives

(3.67)= 31.9 m/s.

The direction is found from the equation:

(3.68)= tan−1( / )

so that

(3.69)= tan−1( − 24.5 / 20.5) = tan−1( − 1.19).

Thus,

(3.70)= −50.1 ° .

Discussion for (b)

The negative angle means that the velocity is 50.1° below the horizontal. This result is consistent with the fact that the final
vertical velocity is negative and hence downward—as you would expect because the final altitude is 20.0 m lower than the
initial altitude. (See Figure 3.40.)

One of the most important things illustrated by projectile motion is that vertical and horizontal motions are independent of each
other. Galileo was the first person to fully comprehend this characteristic. He used it to predict the range of a projectile. On level
ground, we define range to be the horizontal distance traveled by a projectile. Galileo and many others were interested in the
range of projectiles primarily for military purposes—such as aiming cannons. However, investigating the range of projectiles can
shed light on other interesting phenomena, such as the orbits of satellites around the Earth. Let us consider projectile range
further.

Figure 3.41 Trajectories of projectiles on level ground. (a) The greater the initial speed 0 , the greater the range for a given initial angle. (b) The

effect of initial angle 0 on the range of a projectile with a given initial speed. Note that the range is the same for 15° and 75° , although the

maximum heights of those paths are different.
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How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed 0 , the greater the range, as

shown in Figure 3.41(a). The initial angle 0 also has a dramatic effect on the range, as illustrated in Figure 3.41(b). For a fixed

initial speed, such as might be produced by a cannon, the maximum range is obtained with 0 = 45° . This is true only for

conditions neglecting air resistance. If air resistance is considered, the maximum angle is approximately 38° . Interestingly, for

every initial angle except 45° , there are two angles that give the same range—the sum of those angles is 90° . The range also
depends on the value of the acceleration of gravity . The lunar astronaut Alan Shepherd was able to drive a golf ball a great

distance on the Moon because gravity is weaker there. The range of a projectile on level ground for which air resistance is
negligible is given by

(3.71)
= 0

2 sin 2 0,

where 0 is the initial speed and 0 is the initial angle relative to the horizontal. The proof of this equation is left as an end-of-

chapter problem (hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that is very small compared with the circumference of
the Earth. If, however, the range is large, the Earth curves away below the projectile and acceleration of gravity changes
direction along the path. The range is larger than predicted by the range equation given above because the projectile has farther
to fall than it would on level ground. (See Figure 3.42.) If the initial speed is great enough, the projectile goes into orbit. This
possibility was recognized centuries before it could be accomplished. When an object is in orbit, the Earth curves away from
underneath the object at the same rate as it falls. The object thus falls continuously but never hits the surface. These and other
aspects of orbital motion, such as the rotation of the Earth, will be covered analytically and in greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the Earth
orbits. In Addition of Velocities, we will examine the addition of velocities, which is another important aspect of two-dimensional
kinematics and will also yield insights beyond the immediate topic.

Figure 3.42 Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance. With increasing
initial speed, the range increases and becomes longer than it would be on level ground because the Earth curves away underneath its path. With a
large enough initial speed, orbit is achieved.

PhET Explorations: Projectile Motion

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass.
Add air resistance. Make a game out of this simulation by trying to hit a target.

Figure 3.43 Projectile Motion (http://cnx.org/content/m54787/1.2/projectile-motion_en.jar)
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3.5 Addition of Velocities

Learning Objectives
By the end of this section, you will be able to:

• Apply principles of vector addition to determine relative velocity.
• Explain the significance of the observer in the measurement of velocity.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

• 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Relative Velocity
If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves
diagonally relative to the shore, as in Figure 3.44. The boat does not move in the direction in which it is pointed. The reason, of
course, is that the river carries the boat downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can
sometimes see that the plane is not moving in the direction in which it is pointed, as illustrated in Figure 3.45. The plane is
moving straight ahead relative to the air, but the movement of the air mass relative to the ground carries it sideways.

Figure 3.44 A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity (solid arrow)
relative to the shore is the sum of its velocity relative to the river plus the velocity of the river relative to the shore.
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Figure 3.45 An airplane heading straight north is instead carried to the west and slowed down by wind. The plane does not move relative to the ground
in the direction it points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a velocity relative to a medium (such as a river) and that medium has a velocity
relative to an observer on solid ground. The velocity of the object relative to the observer is the sum of these velocity vectors, as
indicated in Figure 3.44 and Figure 3.45. These situations are only two of many in which it is useful to add velocities. In this
module, we first re-examine how to add velocities and then consider certain aspects of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of vector addition discussed in
Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods apply to
the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the addition of velocities is
simple—they add like ordinary numbers. For example, if a field hockey player is moving at 5 m/s straight toward the goal and

drives the ball in the same direction with a velocity of 30 m/s relative to her body, then the velocity of the ball is 35 m/s relative
to the stationary, profusely sweating goalkeeper standing in front of the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will concentrate on
analytical techniques. The following equations give the relationships between the magnitude and direction of velocity ( and )
and its components ( and ) along the x- and y-axes of an appropriately chosen coordinate system:

(3.72)= cos

(3.73)= sin

(3.74)
= 2 + 2

(3.75)= tan−1( / ).

Figure 3.46 The velocity, , of an object traveling at an angle to the horizontal axis is the sum of component vectors v and v .

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used to find the
components of a velocity when its magnitude and direction are known. The last two are used to find the magnitude and direction
of velocity when its components are known.
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Take-Home Experiment: Relative Velocity of a Boat

Fill a bathtub half-full of water. Take a toy boat or some other object that floats in water. Unplug the drain so water starts to
drain. Try pushing the boat from one side of the tub to the other and perpendicular to the flow of water. Which way do you
need to push the boat so that it ends up immediately opposite? Compare the directions of the flow of water, heading of the
boat, and actual velocity of the boat.

Example 3.6 Adding Velocities: A Boat on a River

Figure 3.47 A boat attempts to travel straight across a river at a speed 0.75 m/s. The current in the river, however, flows at a speed of 1.20 m/s to
the right. What is the total displacement of the boat relative to the shore?

Refer to Figure 3.47, which shows a boat trying to go straight across the river. Let us calculate the magnitude and direction
of the boat's velocity relative to an observer on the shore, vtot . The velocity of the boat, vboat , is 0.75 m/s in the -

direction relative to the river and the velocity of the river, vriver , is 1.20 m/s to the right.

Strategy

We start by choosing a coordinate system with its -axis parallel to the velocity of the river, as shown in Figure 3.47.
Because the boat is directed straight toward the other shore, its velocity relative to the water is parallel to the -axis and

perpendicular to the velocity of the river. Thus, we can add the two velocities by using the equations tot = 2 + 2 and

= tan−1( / ) directly.

Solution

The magnitude of the total velocity is

(3.76)
tot = 2 + 2,

where

(3.77)= river = 1.20 m/s

and

(3.78)= boat = 0.750 m/s.

Thus,

(3.79)
tot = (1.20 m/s)2 + (0.750 m/s)2

yielding

(3.80)tot = 1.42 m/s.

The direction of the total velocity is given by:
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(3.81)= tan−1( / ) = tan−1(0.750 / 1.20).

This equation gives

(3.82)= 32.0º.

Discussion

Both the magnitude and the direction of the total velocity are consistent with Figure 3.47. Note that because the
velocity of the river is large compared with the velocity of the boat, it is swept rapidly downstream. This result is evidenced
by the small angle (only 32.0º ) the total velocity has relative to the riverbank.

Example 3.7 Calculating Velocity: Wind Velocity Causes an Airplane to Drift

Calculate the wind velocity for the situation shown in Figure 3.48. The plane is known to be moving at 45.0 m/s due north
relative to the air mass, while its velocity relative to the ground (its total velocity) is 38.0 m/s in a direction 20.0º west of
north.

Figure 3.48 An airplane is known to be heading north at 45.0 m/s, though its velocity relative to the ground is 38.0 m/s at an angle west of north.
What is the speed and direction of the wind?

Strategy

In this problem, somewhat different from the previous example, we know the total velocity vtot and that it is the sum of two

other velocities, vw (the wind) and vp (the plane relative to the air mass). The quantity vp is known, and we are asked to

find vw . None of the velocities are perpendicular, but it is possible to find their components along a common set of

perpendicular axes. If we can find the components of vw , then we can combine them to solve for its magnitude and

direction. As shown in Figure 3.48, we choose a coordinate system with its x-axis due east and its y-axis due north (parallel
to vp ). (You may wish to look back at the discussion of the addition of vectors using perpendicular components in Vector

Addition and Subtraction: Analytical Methods.)

Solution

Because vtot is the vector sum of the vw and vp , its x- and y-components are the sums of the x- and y-components of

the wind and plane velocities. Note that the plane only has vertical component of velocity so p = 0 and p = p . That

is,

(3.83)tot = w

and
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(3.84)tot = w + p.

We can use the first of these two equations to find w :

(3.85)w = tot = totcos 110º.

Because tot = 38.0 m / s and cos 110º = – 0.342 we have

(3.86)w = (38.0 m/s)(–0.342)=–13.0 m/s.

The minus sign indicates motion west which is consistent with the diagram.

Now, to find w we note that

(3.87)tot = w + p

Here tot = totsin 110º ; thus,

(3.88)w = (38.0 m/s)(0.940) − 45.0 m/s = −9.29 m/s.

This minus sign indicates motion south which is consistent with the diagram.

Now that the perpendicular components of the wind velocity w and w are known, we can find the magnitude and

direction of vw . First, the magnitude is

(3.89)
w = w

2 + w
2

= ( − 13.0 m/s)2 + ( − 9.29 m/s)2

so that

(3.90)w = 16.0 m/s.

The direction is:

(3.91)= tan−1( w / w ) = tan−1( − 9.29 / −13.0)

giving

(3.92)= 35.6º.

Discussion

The wind's speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as
seen in Figure 3.48. Because the plane is fighting a strong combination of crosswind and head-wind, it ends up with a total
velocity significantly less than its velocity relative to the air mass as well as heading in a different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with
one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem
solving easier. For example, in projectile motion we always use a coordinate system with one axis parallel to gravity.

Relative Velocities and Classical Relativity
When adding velocities, we have been careful to specify that the velocity is relative to some reference frame. These velocities
are called relative velocities. For example, the velocity of an airplane relative to an air mass is different from its velocity relative
to the ground. Both are quite different from the velocity of an airplane relative to its passengers (which should be close to zero).
Relative velocities are one aspect of relativity, which is defined to be the study of how different observers moving relative to
each other measure the same phenomenon.

Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest physicist of
the 20th century. Einstein revolutionized our view of nature with his modern theory of relativity, which we shall study in later
chapters. The relative velocities in this section are actually aspects of classical relativity, first discussed correctly by Galileo and
Isaac Newton. Classical relativity is limited to situations where speeds are less than about 1% of the speed of light—that is,
less than 3,000 km/s . Most things we encounter in daily life move slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose a sailor at
the top of a mast on a moving ship drops his binoculars. Where will it hit the deck? Will it hit at the base of the mast, or will it hit
behind the mast because the ship is moving forward? The answer is that if air resistance is negligible, the binoculars will hit at
the base of the mast at a point directly below its point of release. Now let us consider what two different observers see when the
binoculars drop. One observer is on the ship and the other on shore. The binoculars have no horizontal velocity relative to the
observer on the ship, and so he sees them fall straight down the mast. (See Figure 3.49.) To the observer on shore, the
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binoculars and the ship have the same horizontal velocity, so both move the same distance forward while the binoculars are
falling. This observer sees the curved path shown in Figure 3.49. Although the paths look different to the different observers,
each sees the same result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial
to correctly specify the velocities relative to the observer.

Figure 3.49 Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the binoculars dropped
from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path, moving forward with the ship. Both observers
see the binoculars strike the deck at the base of the mast. The initial horizontal velocity is different relative to the two observers. (The ship is shown
moving rather fast to emphasize the effect.)

Example 3.8 Calculating Relative Velocity: An Airline Passenger Drops a Coin

An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it strikes the
floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the Earth?

Figure 3.50 The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the coin fall
straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of the coin
is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial velocity is 260 m/
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s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In both parts, it is best to use a
coordinate system with vertical and horizontal axes.

Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m. The final
velocity can be found using the equation:

(3.93)2 = 0
2 − 2 ( − 0).

Substituting known values into the equation, we get

(3.94)2 = 02 − 2(9.80 m/s2)( − 1.50 m − 0 m) = 29.4 m2 /s2

yielding

(3.95)= −5.42 m/s.

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know that the
velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial horizontal
velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal motion, the
final vertical velocity for the coin relative to the ground is = − 5.42 m/s , the same as found in part (a). In contrast to

part (a), there now is a horizontal component of the velocity. However, since there is no horizontal acceleration, the initial
and final horizontal velocities are the same and = 260 m/s . The x- and y-components of velocity can be combined to

find the magnitude of the final velocity:

(3.96)
= 2 + 2.

Thus,

(3.97)
= (260 m/s)2 + ( − 5.42 m/s)2

yielding

(3.98)= 260.06 m/s.

The direction is given by:

(3.99)= tan−1( / ) = tan−1( − 5.42 / 260)

so that

(3.100)= tan−1( − 0.0208) = −1.19º.

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the Earth
and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying horizontally as
when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the ground sees a much
different motion for the coin. The plane is moving so fast horizontally to begin with that its final velocity is barely greater than
the initial velocity. Once again, we see that in two dimensions, vectors do not add like ordinary numbers—the final velocity v
in part (b) is not (260 – 5.42) m/s ; rather, it is 260.06 m/s . The velocity's magnitude had to be calculated to five digits to

see any difference from that of the airplane. The motions as seen by different observers (one in the plane and one on the
ground) in this example are analogous to those discussed for the binoculars dropped from the mast of a moving ship, except
that the velocity of the plane is much larger, so that the two observers see very different paths. (See Figure 3.50.) In
addition, both observers see the coin fall 1.50 m vertically, but the one on the ground also sees it move forward 144 m (this
calculation is left for the reader). Thus, one observer sees a vertical path, the other a nearly horizontal path.

Making Connections: Relativity and Einstein

Because Einstein was able to clearly define how measurements are made (some involve light) and because the speed
of light is the same for all observers, the outcomes are spectacularly unexpected. Time varies with observer, energy is
stored as increased mass, and more surprises await.
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air resistance:

analytical method:

classical relativity:

commutative:

component (of a 2-d vector):

direction (of a vector):

head (of a vector):

head-to-tail method:

kinematics:

magnitude (of a vector):

motion:

projectile:

projectile motion:

range:

relative velocity:

relativity:

resultant:

resultant vector:

scalar:

tail:

trajectory:

vector:

vector addition:

velocity:

PhET Explorations: Motion in 2D

Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration
vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple
harmonic, circle).

Figure 3.51 Motion in 2D (http://cnx.org/content/m54798/1.2/motion-2d_en.jar)

Glossary
a frictional force that slows the motion of objects as they travel through the air; when solving basic physics

problems, air resistance is assumed to be zero

the method of determining the magnitude and direction of a resultant vector using the Pythagorean
theorem and trigonometric identities

the study of relative velocities in situations where speeds are less than about 1% of the speed of
light—that is, less than 3000 km/s

refers to the interchangeability of order in a function; vector addition is commutative because the order in which
vectors are added together does not affect the final sum

a piece of a vector that points in either the vertical or the horizontal direction; every 2-d vector
can be expressed as a sum of two vertical and horizontal vector components

the orientation of a vector in space

the end point of a vector; the location of the tip of the vector's arrowhead; also referred to as the “tip”

a method of adding vectors in which the tail of each vector is placed at the head of the previous vector

the study of motion without regard to mass or force

the length or size of a vector; magnitude is a scalar quantity

displacement of an object as a function of time

an object that travels through the air and experiences only acceleration due to gravity

the motion of an object that is subject only to the acceleration of gravity

the maximum horizontal distance that a projectile travels

the velocity of an object as observed from a particular reference frame

the study of how different observers moving relative to each other measure the same phenomenon

the sum of two or more vectors

the vector sum of two or more vectors

a quantity with magnitude but no direction

the start point of a vector; opposite to the head or tip of the arrow

the path of a projectile through the air

a quantity that has both magnitude and direction; an arrow used to represent quantities with both magnitude and
direction

the rules that apply to adding vectors together

speed in a given direction
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Section Summary

3.1 Kinematics in Two Dimensions: An Introduction
• The shortest path between any two points is a straight line. In two dimensions, this path can be represented by a vector

with horizontal and vertical components.
• The horizontal and vertical components of a vector are independent of one another. Motion in the horizontal direction does

not affect motion in the vertical direction, and vice versa.

3.2 Vector Addition and Subtraction: Graphical Methods
• The graphical method of adding vectors A and B involves drawing vectors on a graph and adding them using the

head-to-tail method. The resultant vector R is defined such that A + B = R . The magnitude and direction of R are
then determined with a ruler and protractor, respectively.

• The graphical method of subtracting vector B from A involves adding the opposite of vector B , which is defined as

−B . In this case, A – B = A + (–B) = R . Then, the head-to-tail method of addition is followed in the usual way to

obtain the resultant vector R .

• Addition of vectors is commutative such that A + B = B + A .

• The head-to-tail method of adding vectors involves drawing the first vector on a graph and then placing the tail of each
subsequent vector at the head of the previous vector. The resultant vector is then drawn from the tail of the first vector to
the head of the final vector.

• If a vector A is multiplied by a scalar quantity , the magnitude of the product is given by . If is positive, the

direction of the product points in the same direction as A ; if is negative, the direction of the product points in the

opposite direction as A .

3.3 Vector Addition and Subtraction: Analytical Methods
• The analytical method of vector addition and subtraction involves using the Pythagorean theorem and trigonometric

identities to determine the magnitude and direction of a resultant vector.
• The steps to add vectors A and B using the analytical method are as follows:

Step 1: Determine the coordinate system for the vectors. Then, determine the horizontal and vertical components of each
vector using the equations

= cos

= cos

and

= sin

= sin .

Step 2: Add the horizontal and vertical components of each vector to determine the components and of the

resultant vector, R :

= +

and

= + .

Step 3: Use the Pythagorean theorem to determine the magnitude, , of the resultant vector R :

= 2 + 2.

Step 4: Use a trigonometric identity to determine the direction, , of R :

= tan−1( / ).

3.4 Projectile Motion
• Projectile motion is the motion of an object through the air that is subject only to the acceleration of gravity.
• To solve projectile motion problems, perform the following steps:

1. Determine a coordinate system. Then, resolve the position and/or velocity of the object in the horizontal and vertical
components. The components of position s are given by the quantities and , and the components of the velocity

v are given by = cos and = sin , where is the magnitude of the velocity and is its direction.

2. Analyze the motion of the projectile in the horizontal direction using the following equations:
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Horizontal motion( = 0)

= 0 +

= 0 = vx = velocity is a constant.
3. Analyze the motion of the projectile in the vertical direction using the following equations:

Vertical motion(Assuming positive direction is up; = − = −9.80 m/s2)

= 0 + 1
2

( 0 + )

= 0 −

= 0 + 0 − 1
2

2

2 = 0
2 − 2 ( − 0).

4. Recombine the horizontal and vertical components of location and/or velocity using the following equations:

= 2 + 2

= tan−1( / )

= 2 + 2

v = tan−1( / ).

• The maximum height of a projectile launched with initial vertical velocity 0 is given by

=
0
2

2
.

• The maximum horizontal distance traveled by a projectile is called the range. The range of a projectile on level ground

launched at an angle 0 above the horizontal with initial speed 0 is given by

= 0
2 sin 2 0.

3.5 Addition of Velocities
• Velocities in two dimensions are added using the same analytical vector techniques, which are rewritten as

= cos

= sin

= 2 + 2

= tan−1( / ).

• Relative velocity is the velocity of an object as observed from a particular reference frame, and it varies dramatically with
reference frame.

• Relativity is the study of how different observers measure the same phenomenon, particularly when the observers move
relative to one another. Classical relativity is limited to situations where speed is less than about 1% of the speed of light
(3000 km/s).

Conceptual Questions

3.2 Vector Addition and Subtraction: Graphical Methods
1. Which of the following is a vector: a person's height, the altitude on Mt. Everest, the age of the Earth, the boiling point of water,
the cost of this book, the Earth's population, the acceleration of gravity?

2. Give a specific example of a vector, stating its magnitude, units, and direction.

3. What do vectors and scalars have in common? How do they differ?

4. Two campers in a national park hike from their cabin to the same spot on a lake, each taking a different path, as illustrated
below. The total distance traveled along Path 1 is 7.5 km, and that along Path 2 is 8.2 km. What is the final displacement of each
camper?
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Figure 3.52

5. If an airplane pilot is told to fly 123 km in a straight line to get from San Francisco to Sacramento, explain why he could end up
anywhere on the circle shown in Figure 3.53. What other information would he need to get to Sacramento?

Figure 3.53

6. Suppose you take two steps A and B (that is, two nonzero displacements). Under what circumstances can you end up at
your starting point? More generally, under what circumstances can two nonzero vectors add to give zero? Is the maximum
distance you can end up from the starting point A + B the sum of the lengths of the two steps?

7. Explain why it is not possible to add a scalar to a vector.

8. If you take two steps of different sizes, can you end up at your starting point? More generally, can two vectors with different
magnitudes ever add to zero? Can three or more?

3.3 Vector Addition and Subtraction: Analytical Methods

9. Suppose you add two vectors A and B . What relative direction between them produces the resultant with the greatest
magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the smallest
magnitude? What is the minimum magnitude?

10. Give an example of a nonzero vector that has a component of zero.

11. Explain why a vector cannot have a component greater than its own magnitude.

12. If the vectors A and B are perpendicular, what is the component of A along the direction of B ? What is the component

of B along the direction of A ?

3.4 Projectile Motion
13. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being
neither 0° nor 90° ): (a) Is the velocity ever zero? (b) When is the velocity a minimum? A maximum? (c) Can the velocity ever

be the same as the initial velocity at a time other than at = 0 ? (d) Can the speed ever be the same as the initial speed at a

time other than at = 0 ?
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14. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being
neither 0° nor 90° ): (a) Is the acceleration ever zero? (b) Is the acceleration ever in the same direction as a component of
velocity? (c) Is the acceleration ever opposite in direction to a component of velocity?

15. For a fixed initial speed, the range of a projectile is determined by the angle at which it is fired. For all but the maximum, there
are two angles that give the same range. Considering factors that might affect the ability of an archer to hit a target, such as
wind, explain why the smaller angle (closer to the horizontal) is preferable. When would it be necessary for the archer to use the
larger angle? Why does the punter in a football game use the higher trajectory?

16. During a lecture demonstration, a professor places two coins on the edge of a table. She then flicks one of the coins
horizontally off the table, simultaneously nudging the other over the edge. Describe the subsequent motion of the two coins, in
particular discussing whether they hit the floor at the same time.

3.5 Addition of Velocities
17. What frame or frames of reference do you instinctively use when driving a car? When flying in a commercial jet airplane?

18. A basketball player dribbling down the court usually keeps his eyes fixed on the players around him. He is moving fast. Why
doesn't he need to keep his eyes on the ball?

19. If someone is riding in the back of a pickup truck and throws a softball straight backward, is it possible for the ball to fall
straight down as viewed by a person standing at the side of the road? Under what condition would this occur? How would the
motion of the ball appear to the person who threw it?

20. The hat of a jogger running at constant velocity falls off the back of his head. Draw a sketch showing the path of the hat in the
jogger's frame of reference. Draw its path as viewed by a stationary observer.

21. A clod of dirt falls from the bed of a moving truck. It strikes the ground directly below the end of the truck. What is the
direction of its velocity relative to the truck just before it hits? Is this the same as the direction of its velocity relative to ground just
before it hits? Explain your answers.
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Problems & Exercises

3.2 Vector Addition and Subtraction: Graphical
Methods
Use graphical methods to solve these problems. You may
assume data taken from graphs is accurate to three
digits.

1. Find the following for path A in Figure 3.54: (a) the total
distance traveled, and (b) the magnitude and direction of the
displacement from start to finish.

Figure 3.54 The various lines represent paths taken by different people
walking in a city. All blocks are 120 m on a side.

2. Find the following for path B in Figure 3.54: (a) the total
distance traveled, and (b) the magnitude and direction of the
displacement from start to finish.

3. Find the north and east components of the displacement
for the hikers shown in Figure 3.52.

4. Suppose you walk 18.0 m straight west and then 25.0 m
straight north. How far are you from your starting point, and
what is the compass direction of a line connecting your
starting point to your final position? (If you represent the two
legs of the walk as vector displacements A and B , as in
Figure 3.55, then this problem asks you to find their sum
R = A + B .)

Figure 3.55 The two displacements A and B add to give a total

displacement R having magnitude and direction .

5. Suppose you first walk 12.0 m in a direction 20° west of

north and then 20.0 m in a direction 40.0° south of west.
How far are you from your starting point, and what is the
compass direction of a line connecting your starting point to
your final position? (If you represent the two legs of the walk
as vector displacements A and B , as in Figure 3.56, then

this problem finds their sum R = A + B .)

Figure 3.56

6. Repeat the problem above, but reverse the order of the two
legs of the walk; show that you get the same final result. That
is, you first walk leg B , which is 20.0 m in a direction exactly

40° south of west, and then leg A , which is 12.0 m in a

direction exactly 20° west of north. (This problem shows that

A + B = B + A .)

7. (a) Repeat the problem two problems prior, but for the
second leg you walk 20.0 m in a direction 40.0° north of

east (which is equivalent to subtracting B from A —that is,

to finding R′ = A − B ). (b) Repeat the problem two
problems prior, but now you first walk 20.0 m in a direction
40.0° south of west and then 12.0 m in a direction 20.0°

east of south (which is equivalent to subtracting A from B

—that is, to finding R′′ = B - A = - R′ ). Show that this is
the case.

8. Show that the order of addition of three vectors does not
affect their sum. Show this property by choosing any three
vectors A , B , and C , all having different lengths and

directions. Find the sum A + B + C then find their sum
when added in a different order and show the result is the
same. (There are five other orders in which A , B , and C

can be added; choose only one.)

9. Show that the sum of the vectors discussed in Example
3.2 gives the result shown in Figure 3.24.

10. Find the magnitudes of velocities A and B in Figure

3.57

Figure 3.57 The two velocities vA and vB add to give a total vtot .

11. Find the components of tot along the x- and y-axes in

Figure 3.57.
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12. Find the components of tot along a set of perpendicular

axes rotated 30° counterclockwise relative to those in
Figure 3.57.

3.3 Vector Addition and Subtraction: Analytical
Methods
13. Find the following for path C in Figure 3.58: (a) the total
distance traveled and (b) the magnitude and direction of the
displacement from start to finish. In this part of the problem,
explicitly show how you follow the steps of the analytical
method of vector addition.

Figure 3.58 The various lines represent paths taken by different people
walking in a city. All blocks are 120 m on a side.

14. Find the following for path D in Figure 3.58: (a) the total
distance traveled and (b) the magnitude and direction of the
displacement from start to finish. In this part of the problem,
explicitly show how you follow the steps of the analytical
method of vector addition.

15. Find the north and east components of the displacement
from San Francisco to Sacramento shown in Figure 3.59.

Figure 3.59

16. Solve the following problem using analytical techniques:
Suppose you walk 18.0 m straight west and then 25.0 m
straight north. How far are you from your starting point, and
what is the compass direction of a line connecting your
starting point to your final position? (If you represent the two
legs of the walk as vector displacements A and B , as in
Figure 3.60, then this problem asks you to find their sum
R = A + B .)

Figure 3.60 The two displacements A and B add to give a total

displacement R having magnitude and direction .

Note that you can also solve this graphically. Discuss why the
analytical technique for solving this problem is potentially
more accurate than the graphical technique.

17. Repeat Exercise 3.16 using analytical techniques, but
reverse the order of the two legs of the walk and show that
you get the same final result. (This problem shows that
adding them in reverse order gives the same result—that is,
B + A = A + B .) Discuss how taking another path to
reach the same point might help to overcome an obstacle
blocking you other path.

18. You drive 7.50 km in a straight line in a direction 15º

east of north. (a) Find the distances you would have to drive
straight east and then straight north to arrive at the same
point. (This determination is equivalent to find the
components of the displacement along the east and north
directions.) (b) Show that you still arrive at the same point if
the east and north legs are reversed in order.

19. Do Exercise 3.16 again using analytical techniques and
change the second leg of the walk to 25.0 m straight south.

(This is equivalent to subtracting B from A —that is, finding

R′ = A – B ) (b) Repeat again, but now you first walk

25.0 m north and then 18.0 m east. (This is equivalent to

subtract A from B —that is, to find A = B + C . Is that
consistent with your result?)

20. A new landowner has a triangular piece of flat land she
wishes to fence. Starting at the west corner, she measures
the first side to be 80.0 m long and the next to be 105 m.
These sides are represented as displacement vectors A

from B in Figure 3.61. She then correctly calculates the

length and orientation of the third side C . What is her
result?
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Figure 3.61

21. You fly 32.0 km in a straight line in still air in the

direction 35.0º south of west. (a) Find the distances you
would have to fly straight south and then straight west to
arrive at the same point. (This determination is equivalent to
finding the components of the displacement along the south
and west directions.) (b) Find the distances you would have to
fly first in a direction 45.0º south of west and then in a

direction 45.0º west of north. These are the components of
the displacement along a different set of axes—one rotated
45º .

22. A farmer wants to fence off his four-sided plot of flat land.
He measures the first three sides, shown as A B and C

in Figure 3.62, and then correctly calculates the length and
orientation of the fourth side D . What is his result?

Figure 3.62

23. In an attempt to escape his island, Gilligan builds a raft
and sets to sea. The wind shifts a great deal during the day,
and he is blown along the following straight lines: 2.50 km

45.0º north of west; then 4.70 km 60.0º south of east;

then 1.30 km 25.0º south of west; then 5.10 km straight

east; then 1.70 km 5.00º east of north; then 7.20 km

55.0º south of west; and finally 2.80 km 10.0º north of
east. What is his final position relative to the island?

24. Suppose a pilot flies 40.0 km in a direction 60º north of

east and then flies 30.0 km in a direction 15º north of east

as shown in Figure 3.63. Find her total distance from the

starting point and the direction of the straight-line path to
the final position. Discuss qualitatively how this flight would be
altered by a wind from the north and how the effect of the
wind would depend on both wind speed and the speed of the
plane relative to the air mass.

Figure 3.63

3.4 Projectile Motion
25. A projectile is launched at ground level with an initial
speed of 50.0 m/s at an angle of 30.0° above the horizontal.
It strikes a target above the ground 3.00 seconds later. What
are the and distances from where the projectile was

launched to where it lands?

26. A ball is kicked with an initial velocity of 16 m/s in the
horizontal direction and 12 m/s in the vertical direction. (a) At
what speed does the ball hit the ground? (b) For how long
does the ball remain in the air? (c)What maximum height is
attained by the ball?

27. A ball is thrown horizontally from the top of a 60.0-m
building and lands 100.0 m from the base of the building.
Ignore air resistance. (a) How long is the ball in the air? (b)
What must have been the initial horizontal component of the
velocity? (c) What is the vertical component of the velocity
just before the ball hits the ground? (d) What is the velocity
(including both the horizontal and vertical components) of the
ball just before it hits the ground?

28. (a) A daredevil is attempting to jump his motorcycle over a
line of buses parked end to end by driving up a 32° ramp at

a speed of 40.0 m/s (144 km/h) . How many buses can he

clear if the top of the takeoff ramp is at the same height as the
bus tops and the buses are 20.0 m long? (b) Discuss what
your answer implies about the margin of error in this act—that
is, consider how much greater the range is than the horizontal
distance he must travel to miss the end of the last bus.
(Neglect air resistance.)

29. An archer shoots an arrow at a 75.0 m distant target; the
bull's-eye of the target is at same height as the release height
of the arrow. (a) At what angle must the arrow be released to
hit the bull's-eye if its initial speed is 35.0 m/s? In this part of
the problem, explicitly show how you follow the steps involved
in solving projectile motion problems. (b) There is a large tree
halfway between the archer and the target with an
overhanging horizontal branch 3.50 m above the release
height of the arrow. Will the arrow go over or under the
branch?

30. A rugby player passes the ball 7.00 m across the field,
where it is caught at the same height as it left his hand. (a) At
what angle was the ball thrown if its initial speed was 12.0 m/
s, assuming that the smaller of the two possible angles was
used? (b) What other angle gives the same range, and why
would it not be used? (c) How long did this pass take?

31. Verify the ranges for the projectiles in Figure 3.41(a) for
= 45° and the given initial velocities.

32. Verify the ranges shown for the projectiles in Figure
3.41(b) for an initial velocity of 50 m/s at the given initial
angles.

33. The cannon on a battleship can fire a shell a maximum
distance of 32.0 km. (a) Calculate the initial velocity of the
shell. (b) What maximum height does it reach? (At its highest,
the shell is above 60% of the atmosphere—but air resistance
is not really negligible as assumed to make this problem
easier.) (c) The ocean is not flat, because the Earth is curved.

Assume that the radius of the Earth is 6.37×103 km . How
many meters lower will its surface be 32.0 km from the ship
along a horizontal line parallel to the surface at the ship?
Does your answer imply that error introduced by the
assumption of a flat Earth in projectile motion is significant
here?
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34. An arrow is shot from a height of 1.5 m toward a cliff of
height . It is shot with a velocity of 30 m/s at an angle of

60° above the horizontal. It lands on the top edge of the cliff
4.0 s later. (a) What is the height of the cliff? (b) What is the
maximum height reached by the arrow along its trajectory? (c)
What is the arrow's impact speed just before hitting the cliff?

35. In the standing broad jump, one squats and then pushes
off with the legs to see how far one can jump. Suppose the
extension of the legs from the crouch position is 0.600 m and
the acceleration achieved from this position is 1.25 times the
acceleration due to gravity, . How far can they jump? State

your assumptions. (Increased range can be achieved by
swinging the arms in the direction of the jump.)

36. The world long jump record is 8.95 m (Mike Powell, USA,
1991). Treated as a projectile, what is the maximum range
obtainable by a person if he has a take-off speed of 9.5 m/s?
State your assumptions.

37. Serving at a speed of 170 km/h, a tennis player hits the
ball at a height of 2.5 m and an angle below the horizontal.
The service line is 11.9 m from the net, which is 0.91 m high.
What is the angle such that the ball just crosses the net?
Will the ball land in the service box, whose out line is 6.40 m
from the net?

38. A football quarterback is moving straight backward at a
speed of 2.00 m/s when he throws a pass to a player 18.0 m
straight downfield. (a) If the ball is thrown at an angle of 25°

relative to the ground and is caught at the same height as it is
released, what is its initial speed relative to the ground? (b)
How long does it take to get to the receiver? (c) What is its
maximum height above its point of release?

39. Gun sights are adjusted to aim high to compensate for the
effect of gravity, effectively making the gun accurate only for a
specific range. (a) If a gun is sighted to hit targets that are at
the same height as the gun and 100.0 m away, how low will
the bullet hit if aimed directly at a target 150.0 m away? The
muzzle velocity of the bullet is 275 m/s. (b) Discuss
qualitatively how a larger muzzle velocity would affect this
problem and what would be the effect of air resistance.

40. An eagle is flying horizontally at a speed of 3.00 m/s when
the fish in her talons wiggles loose and falls into the lake 5.00
m below. Calculate the velocity of the fish relative to the water
when it hits the water.

41. An owl is carrying a mouse to the chicks in its nest. Its
position at that time is 4.00 m west and 12.0 m above the
center of the 30.0 cm diameter nest. The owl is flying east at
3.50 m/s at an angle 30.0° below the horizontal when it
accidentally drops the mouse. Is the owl lucky enough to
have the mouse hit the nest? To answer this question,
calculate the horizontal position of the mouse when it has
fallen 12.0 m.

42. Suppose a soccer player kicks the ball from a distance 30
m toward the goal. Find the initial speed of the ball if it just
passes over the goal, 2.4 m above the ground, given the
initial direction to be 40° above the horizontal.

43. Can a goalkeeper at her/ his goal kick a soccer ball into
the opponent's goal without the ball touching the ground? The
distance will be about 95 m. A goalkeeper can give the ball a
speed of 30 m/s.

44. The free throw line in basketball is 4.57 m (15 ft) from the
basket, which is 3.05 m (10 ft) above the floor. A player
standing on the free throw line throws the ball with an initial

speed of 7.15 m/s, releasing it at a height of 2.44 m (8 ft)
above the floor. At what angle above the horizontal must the
ball be thrown to exactly hit the basket? Note that most
players will use a large initial angle rather than a flat shot
because it allows for a larger margin of error. Explicitly show
how you follow the steps involved in solving projectile motion
problems.

45. In 2007, Michael Carter (U.S.) set a world record in the
shot put with a throw of 24.77 m. What was the initial speed
of the shot if he released it at a height of 2.10 m and threw it
at an angle of 38.0° above the horizontal? (Although the
maximum distance for a projectile on level ground is achieved
at 45° when air resistance is neglected, the actual angle to

achieve maximum range is smaller; thus, 38° will give a

longer range than 45° in the shot put.)

46. A basketball player is running at 5.00 m/s directly
toward the basket when he jumps into the air to dunk the ball.
He maintains his horizontal velocity. (a) What vertical velocity
does he need to rise 0.750 m above the floor? (b) How far
from the basket (measured in the horizontal direction) must
he start his jump to reach his maximum height at the same
time as he reaches the basket?

47. A football player punts the ball at a 45.0° angle. Without
an effect from the wind, the ball would travel 60.0 m
horizontally. (a) What is the initial speed of the ball? (b) When
the ball is near its maximum height it experiences a brief gust
of wind that reduces its horizontal velocity by 1.50 m/s. What
distance does the ball travel horizontally?

48. Prove that the trajectory of a projectile is parabolic, having

the form = + 2 . To obtain this expression, solve the

equation = 0 for and substitute it into the expression

for = 0 – (1 / 2) 2 (These equations describe the

and positions of a projectile that starts at the origin.) You

should obtain an equation of the form = + 2 where

and are constants.

49. Derive = 0
2 sin 2θ0 for the range of a projectile on

level ground by finding the time at which becomes zero

and substituting this value of into the expression for

− 0 , noting that = − 0

50. Unreasonable Results (a) Find the maximum range of a
super cannon that has a muzzle velocity of 4.0 km/s. (b) What
is unreasonable about the range you found? (c) Is the
premise unreasonable or is the available equation
inapplicable? Explain your answer. (d) If such a muzzle
velocity could be obtained, discuss the effects of air
resistance, thinning air with altitude, and the curvature of the
Earth on the range of the super cannon.

51. Construct Your Own Problem Consider a ball tossed
over a fence. Construct a problem in which you calculate the
ball's needed initial velocity to just clear the fence. Among the
things to determine are; the height of the fence, the distance
to the fence from the point of release of the ball, and the
height at which the ball is released. You should also consider
whether it is possible to choose the initial speed for the ball
and just calculate the angle at which it is thrown. Also
examine the possibility of multiple solutions given the
distances and heights you have chosen.
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3.5 Addition of Velocities
52. Bryan Allen pedaled a human-powered aircraft across the
English Channel from the cliffs of Dover to Cap Gris-Nez on
June 12, 1979. (a) He flew for 169 min at an average velocity
of 3.53 m/s in a direction 45º south of east. What was his
total displacement? (b) Allen encountered a headwind
averaging 2.00 m/s almost precisely in the opposite direction
of his motion relative to the Earth. What was his average
velocity relative to the air? (c) What was his total
displacement relative to the air mass?

53. A seagull flies at a velocity of 9.00 m/s straight into the
wind. (a) If it takes the bird 20.0 min to travel 6.00 km relative
to the Earth, what is the velocity of the wind? (b) If the bird
turns around and flies with the wind, how long will he take to
return 6.00 km? (c) Discuss how the wind affects the total
round-trip time compared to what it would be with no wind.

54. Near the end of a marathon race, the first two runners are
separated by a distance of 45.0 m. The front runner has a
velocity of 3.50 m/s, and the second a velocity of 4.20 m/s. (a)
What is the velocity of the second runner relative to the first?
(b) If the front runner is 250 m from the finish line, who will
win the race, assuming they run at constant velocity? (c)
What distance ahead will the winner be when she crosses the
finish line?

55. Verify that the coin dropped by the airline passenger in
the Example 3.8 travels 144 m horizontally while falling 1.50
m in the frame of reference of the Earth.

56. A football quarterback is moving straight backward at a
speed of 2.00 m/s when he throws a pass to a player 18.0 m
straight downfield. The ball is thrown at an angle of 25.0º

relative to the ground and is caught at the same height as it is
released. What is the initial velocity of the ball relative to the

quarterback ?

57. A ship sets sail from Rotterdam, The Netherlands,
heading due north at 7.00 m/s relative to the water. The local
ocean current is 1.50 m/s in a direction 40.0º north of east.
What is the velocity of the ship relative to the Earth?

58. (a) A jet airplane flying from Darwin, Australia, has an air
speed of 260 m/s in a direction 5.0º south of west. It is in the

jet stream, which is blowing at 35.0 m/s in a direction 15º

south of east. What is the velocity of the airplane relative to
the Earth? (b) Discuss whether your answers are consistent
with your expectations for the effect of the wind on the plane's
path.

59. (a) In what direction would the ship in Exercise 3.57 have
to travel in order to have a velocity straight north relative to
the Earth, assuming its speed relative to the water remains
7.00 m/s ? (b) What would its speed be relative to the Earth?

60. (a) Another airplane is flying in a jet stream that is blowing
at 45.0 m/s in a direction 20º south of east (as in Exercise

3.58). Its direction of motion relative to the Earth is 45.0º

south of west, while its direction of travel relative to the air is
5.00º south of west. What is the airplane's speed relative to
the air mass? (b) What is the airplane's speed relative to the
Earth?

61. A sandal is dropped from the top of a 15.0-m-high mast
on a ship moving at 1.75 m/s due south. Calculate the
velocity of the sandal when it hits the deck of the ship: (a)
relative to the ship and (b) relative to a stationary observer on

shore. (c) Discuss how the answers give a consistent result
for the position at which the sandal hits the deck.

62. The velocity of the wind relative to the water is crucial to
sailboats. Suppose a sailboat is in an ocean current that has
a velocity of 2.20 m/s in a direction 30.0º east of north
relative to the Earth. It encounters a wind that has a velocity
of 4.50 m/s in a direction of 50.0º south of west relative to
the Earth. What is the velocity of the wind relative to the
water?

63. The great astronomer Edwin Hubble discovered that all
distant galaxies are receding from our Milky Way Galaxy with
velocities proportional to their distances. It appears to an
observer on the Earth that we are at the center of an
expanding universe. Figure 3.64 illustrates this for five
galaxies lying along a straight line, with the Milky Way Galaxy
at the center. Using the data from the figure, calculate the
velocities: (a) relative to galaxy 2 and (b) relative to galaxy 5.
The results mean that observers on all galaxies will see
themselves at the center of the expanding universe, and they
would likely be aware of relative velocities, concluding that it
is not possible to locate the center of expansion with the
given information.

Figure 3.64 Five galaxies on a straight line, showing their distances and
velocities relative to the Milky Way (MW) Galaxy. The distances are in
millions of light years (Mly), where a light year is the distance light
travels in one year. The velocities are nearly proportional to the
distances. The sizes of the galaxies are greatly exaggerated; an
average galaxy is about 0.1 Mly across.

64. (a) Use the distance and velocity data in Figure 3.64 to
find the rate of expansion as a function of distance.

(b) If you extrapolate back in time, how long ago would all of
the galaxies have been at approximately the same position?
The two parts of this problem give you some idea of how the
Hubble constant for universal expansion and the time back to
the Big Bang are determined, respectively.

65. An athlete crosses a 25-m-wide river by swimming
perpendicular to the water current at a speed of 0.5 m/s
relative to the water. He reaches the opposite side at a
distance 40 m downstream from his starting point. How fast is
the water in the river flowing with respect to the ground? What
is the speed of the swimmer with respect to a friend at rest on
the ground?

66. A ship sailing in the Gulf Stream is heading 25.0º west
of north at a speed of 4.00 m/s relative to the water. Its
velocity relative to the Earth is 4.80 m/s 5.00º west of
north. What is the velocity of the Gulf Stream? (The velocity
obtained is typical for the Gulf Stream a few hundred
kilometers off the east coast of the United States.)

67. An ice hockey player is moving at 8.00 m/s when he hits
the puck toward the goal. The speed of the puck relative to
the player is 29.0 m/s. The line between the center of the goal
and the player makes a 90.0º angle relative to his path as
shown in Figure 3.65. What angle must the puck's velocity
make relative to the player (in his frame of reference) to hit
the center of the goal?
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Figure 3.65 An ice hockey player moving across the rink must shoot
backward to give the puck a velocity toward the goal.

68. Unreasonable Results Suppose you wish to shoot
supplies straight up to astronauts in an orbit 36,000 km above
the surface of the Earth. (a) At what velocity must the
supplies be launched? (b) What is unreasonable about this
velocity? (c) Is there a problem with the relative velocity
between the supplies and the astronauts when the supplies
reach their maximum height? (d) Is the premise unreasonable
or is the available equation inapplicable? Explain your
answer.

69. Unreasonable Results A commercial airplane has an air
speed of 280 m/s due east and flies with a strong tailwind. It

travels 3000 km in a direction 5º south of east in 1.50 h. (a)
What was the velocity of the plane relative to the ground? (b)
Calculate the magnitude and direction of the tailwind's
velocity. (c) What is unreasonable about both of these
velocities? (d) Which premise is unreasonable?

70. Construct Your Own Problem Consider an airplane
headed for a runway in a cross wind. Construct a problem in
which you calculate the angle the airplane must fly relative to
the air mass in order to have a velocity parallel to the runway.
Among the things to consider are the direction of the runway,
the wind speed and direction (its velocity) and the speed of
the plane relative to the air mass. Also calculate the speed of
the airplane relative to the ground. Discuss any last minute
maneuvers the pilot might have to perform in order for the
plane to land with its wheels pointing straight down the
runway.

Test Prep for AP® Courses

3.1 Kinematics in Two Dimensions: An
Introduction
1. A ball is thrown at an angle of 45 degrees above the
horizontal. Which of the following best describes the
acceleration of the ball from the instant after it leaves the
thrower's hand until the time it hits the ground?

a. Always in the same direction as the motion, initially
positive and gradually dropping to zero by the time it hits
the ground

b. Initially positive in the upward direction, then zero at
maximum height, then negative from there until it hits
the ground

c. Always in the opposite direction as the motion, initially
positive and gradually dropping to zero by the time it hits
the ground

d. Always in the downward direction with the same
constant value

2. In an experiment, a student launches a ball with an initial
horizontal velocity at an elevation 2 meters above ground.
The ball follows a parabolic trajectory until it hits the ground.
Which of the following accurately describes the graph of the
ball's vertical acceleration versus time (taking the downward
direction to be negative)?

a. A negative value that does not change with time
b. A gradually increasing negative value (straight line)

c. An increasing rate of negative values over time
(parabolic curve)

d. Zero at all times since the initial motion is horizontal

3. A student wishes to design an experiment to show that the
acceleration of an object is independent of the object's
velocity. To do this, ball A is launched horizontally with some
initial speed at an elevation 1.5 meters above the ground, ball
B is dropped from rest 1.5 meters above the ground, and ball
C is launched vertically with some initial speed at an elevation
1.5 meters above the ground. What information would the
student need to collect about each ball in order to test the
hypothesis?

3.2 Vector Addition and Subtraction: Graphical
Methods
4. A ball is launched vertically upward. The vertical position of
the ball is recorded at various points in time in the table
shown.
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Table 3.1

Height (m) Time (sec)

0.490 0.1

0.882 0.2

1.176 0.3

1.372 0.4

1.470 0.5

1.470 0.6

1.372 0.7

Which of the following correctly describes the graph of the
ball's vertical velocity versus time?

a. Always positive, steadily decreasing
b. Always positive, constant
c. Initially positive, steadily decreasing, becoming negative

at the end
d. Initially zero, steadily getting more and more negative

5.

Table 3.2

Height (m) Time (sec)

0.490 0.1

0.882 0.2

1.176 0.3

1.372 0.4

1.470 0.5

1.470 0.6

1.372 0.7

A ball is launched at an angle of 60 degrees above the
horizontal, and the vertical position of the ball is recorded at
various points in time in the table shown, assuming the ball
was at a height of 0 at time t = 0.

a. Draw a graph of the ball's vertical velocity versus time.
b. Describe the graph of the ball's horizontal velocity.
c. Draw a graph of the ball's vertical acceleration versus

time.

3.4 Projectile Motion
6. In an experiment, a student launches a ball with an initial
horizontal velocity of 5.00 meters/sec at an elevation 2.00
meters above ground. Draw and clearly label with appropriate
values and units a graph of the ball's horizontal velocity vs.
time and the ball's vertical velocity vs. time. The graph should
cover the motion from the instant after the ball is launched
until the instant before it hits the ground. Assume the
downward direction is negative for this problem.
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4 DYNAMICS: FORCE AND NEWTON'S
LAWS OF MOTION

Figure 4.1 Newton’s laws of motion describe the motion of the dolphin’s path. (credit: Jin Jang)

Chapter Outline
4.1. Development of Force Concept

4.2. Newton's First Law of Motion: Inertia

4.3. Newton's Second Law of Motion: Concept of a System

4.4. Newton's Third Law of Motion: Symmetry in Forces

4.5. Normal, Tension, and Other Examples of Force

4.6. Problem-Solving Strategies

4.7. Further Applications of Newton's Laws of Motion

4.8. Extended Topic: The Four Basic Forces—An Introduction

Connection for AP® Courses
Motion draws our attention. Motion itself can be beautiful, causing us to marvel at the forces needed to achieve spectacular
motion, such as that of a jumping dolphin, a leaping pole vaulter, a bird in flight, or an orbiting satellite. The study of motion is
kinematics, but kinematics only describes the way objects move—their velocity and their acceleration. Dynamics considers the
forces that affect the motion of moving objects and systems. Newton’s laws of motion are the foundation of dynamics. These
laws provide an example of the breadth and simplicity of principles under which nature functions. They are also universal laws in
that they apply to situations on Earth as well as in space.

Isaac Newton’s (1642–1727) laws of motion were just one part of the monumental work that has made him legendary. The
development of Newton’s laws marks the transition from the Renaissance into the modern era. This transition was characterized
by a revolutionary change in the way people thought about the physical universe. For many centuries natural philosophers had
debated the nature of the universe based largely on certain rules of logic, with great weight given to the thoughts of earlier
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classical philosophers such as Aristotle (384–322 BC). Among the many great thinkers who contributed to this change were
Newton and Galileo Galilei (1564–1647).

Figure 4.2 Isaac Newton’s monumental work, Philosophiae Naturalis Principia Mathematica, was published in 1687. It proposed scientific laws that are
still used today to describe the motion of objects. (credit: Service commun de la documentation de l'Université de Strasbourg)

Galileo was instrumental in establishing observation as the absolute determinant of truth, rather than “logical” argument. Galileo’s
use of the telescope was his most notable achievement in demonstrating the importance of observation. He discovered moons
orbiting Jupiter and made other observations that were inconsistent with certain ancient ideas and religious dogma. For this
reason, and because of the manner in which he dealt with those in authority, Galileo was tried by the Inquisition and punished.
He spent the final years of his life under a form of house arrest. Because others before Galileo had also made discoveries by
observing the nature of the universe and because repeated observations verified those of Galileo, his work could not be
suppressed or denied. After his death, his work was verified by others, and his ideas were eventually accepted by the church and
scientific communities.

Galileo also contributed to the formulation of what is now called Newton’s first law of motion. Newton made use of the work of his
predecessors, which enabled him to develop laws of motion, discover the law of gravity, invent calculus, and make great
contributions to the theories of light and color. It is amazing that many of these developments were made by Newton working
alone, without the benefit of the usual interactions that take place among scientists today.

Newton’s laws are introduced along with Big Idea 3, that interactions can be described by forces. These laws provide a
theoretical basis for studying motion depending on interactions between the objects. In particular, Newton's laws are applicable
to all forces in inertial frames of references (Enduring Understanding 3.A). We will find that all forces are vectors; that is, forces
always have both a magnitude and a direction (Essential Knowledge 3.A.2). Furthermore, we will learn that all forces are a result
of interactions between two or more objects (Essential Knowledge 3.A.3). These interactions between any two objects are
described by Newton's third law, stating that the forces exerted on these objects are equal in magnitude and opposite in direction
to each other (Essential Knowledge 3.A.4).

We will discover that there is an empirical cause-effect relationship between the net force exerted on an object of mass m and its
acceleration, with this relationship described by Newton's second law (Enduring Understanding 3.B). This supports Big Idea 1,
that inertial mass is a property of an object or a system. The mass of an object or a system is one of the factors affecting
changes in motion when an object or a system interacts with other objects or systems (Essential Knowledge 1.C.1). Another is
the net force on an object, which is the vector sum of all the forces exerted on the object (Essential Knowledge 3.B.1). To
analyze this, we use free-body diagrams to visualize the forces exerted on a given object in order to find the net force and
analyze the object's motion (Essential Knowledge 3.B.2).

Thinking of these objects as systems is a concept introduced in this chapter, where a system is a collection of elements that
could be considered as a single object without any internal structure (Essential Knowledge 5.A.1). This will support Big Idea 5,
that changes that occur to the system due to interactions are governed by conservation laws. These conservation laws will be
the focus of later chapters in this book. They explain whether quantities are conserved in the given system or change due to
transfer to or from another system due to interactions between the systems (Enduring Understanding 5.A).

Furthermore, when a situation involves more than one object, it is important to define the system and analyze the motion of a
whole system, not its elements, based on analysis of external forces on the system. This supports Big Idea 4, that interactions
between systems cause changes in those systems. All kinematics variables in this case describe the motion of the center of
mass of the system (Essential Knowledge 4.A.1, Essential Knowledge 4.A.2). The internal forces between the elements of the
system do not affect the velocity of the center of mass (Essential Knowledge 4.A.3). The velocity of the center of mass will
change only if there is a net external force exerted on the system (Enduring Understanding 4.A).

We will learn that some of these interactions can be explained by the existence of fields extending through space, supporting Big
Idea 2. For example, any object that has mass creates a gravitational field in space (Enduring Understanding 2.B). Any material
object (one that has mass) placed in the gravitational field will experience gravitational force (Essential Knowledge 2.B.1).
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Forces may be categorized as contact or long-distance (Enduring Understanding 3.C). In this chapter we will work with both. An
example of a long-distance force is gravitation (Essential Knowledge 3.C.1). Contact forces, such as tension, friction, normal
force, and the force of a spring, result from interatomic electric forces at the microscopic level (Essential Knowledge 3.C.4).

It was not until the advent of modern physics early in the twentieth century that it was discovered that Newton’s laws of motion
produce a good approximation to motion only when the objects are moving at speeds much, much less than the speed of light
and when those objects are larger than the size of most molecules (about 10–9 m in diameter). These constraints define the
realm of classical mechanics, as discussed in Introduction to the Nature of Science and Physics. At the beginning of the
twentieth century, Albert Einstein (1879–1955) developed the theory of relativity and, along with many other scientists, quantum
theory. Quantum theory does not have the constraints present in classical physics. All of the situations we consider in this
chapter, and all those preceding the introduction of relativity in Special Relativity, are in the realm of classical physics.

The development of special relativity and empirical observations at atomic scales led to the idea that there are four basic forces
that account for all known phenomena. These forces are called fundamental (Enduring Understanding 3.G). The properties of
gravitational (Essential Knowledge 3.G.1) and electromagnetic (Essential Knowledge 3.G.2) forces are explained in more detail.

Big Idea 1 Objects and systems have properties such as mass and charge. Systems may have internal structure.

Essential Knowledge 1.C.1 Inertial mass is the property of an object or a system that determines how its motion changes when it
interacts with other objects or systems.

Big Idea 2 Fields existing in space can be used to explain interactions.

Enduring Understanding 2.A A field associates a value of some physical quantity with every point in space. Field models are
useful for describing interactions that occur at a distance (long-range forces) as well as a variety of other physical phenomena.

Essential Knowledge 2.A.1 A vector field gives, as a function of position (and perhaps time), the value of a physical quantity that
is described by a vector.

Essential Knowledge 2.A.2 A scalar field gives the value of a physical quantity.

Enduring Understanding 2.B A gravitational field is caused by an object with mass.

Essential Knowledge 2.B.1 A gravitational field g at the location of an object with mass m causes a gravitational force of
magnitude mg to be exerted on the object in the direction of the field.

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.2 Forces are described by vectors.

Essential Knowledge 3.A.3 A force exerted on an object is always due to the interaction of that object with another object.

Essential Knowledge 3.A.4 If one object exerts a force on a second object, the second object always exerts a force of equal
magnitude on the first object in the opposite direction.

Enduring Understanding 3.B Classically, the acceleration of an object interacting with other objects can be predicted by using

= ∑ / .

Essential Knowledge 3.B.1 If an object of interest interacts with several other objects, the net force is the vector sum of the
individual forces.

Essential Knowledge 3.B.2 Free-body diagrams are useful tools for visualizing the forces being exerted on a single object and
writing the equations that represent a physical situation.

Enduring Understanding 3.C At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance)
forces or contact forces.

Essential Knowledge 3.C.1 Gravitational force describes the interaction of one object that has mass with another object that has
mass.

Essential Knowledge 3.C.4 Contact forces result from the interaction of one object touching another object, and they arise from
interatomic electric forces. These forces include tension, friction, normal, spring (Physics 1), and buoyant (Physics 2).

Enduring Understanding 3.G Certain types of forces are considered fundamental.

Essential Knowledge 3.G.1 Gravitational forces are exerted at all scales and dominate at the largest distance and mass scales.

Essential Knowledge 3.G.2 Electromagnetic forces are exerted at all scales and can dominate at the human scale.

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.A The acceleration of the center of mass of a system is related to the net force exerted on the system,

where = ∑ / .

Essential Knowledge 4.A.1 The linear motion of a system can be described by the displacement, velocity, and acceleration of its
center of mass.

Essential Knowledge 4.A.2 The acceleration is equal to the rate of change of velocity with time, and velocity is equal to the rate
of change of position with time.
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Essential Knowledge 4.A.3 Forces that systems exert on each other are due to interactions between objects in the systems. If
the interacting objects are parts of the same system, there will be no change in the center-of-mass velocity of that system.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.A Certain quantities are conserved, in the sense that the changes of those quantities in a given
system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.

Essential Knowledge 5.A.1 A system is an object or a collection of objects. The objects are treated as having no internal
structure.

4.1 Development of Force Concept

Learning Objectives
By the end of this section, you will be able to:

• Understand the definition of force.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

• 3.A.3.2 The student is able to challenge a claim that an object can exert a force on itself. (S.P. 6.1)
• 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any

force. (S.P. 1.4)
• 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with

motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a working definition of
force. Our intuitive definition of force—that is, a push or a pull—is a good place to start. We know that a push or pull has both
magnitude and direction (therefore, it is a vector quantity) and can vary considerably in each regard. For example, a cannon
exerts a strong force on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny downward pull on a flea.
Our everyday experiences also give us a good idea of how multiple forces add. If two people push in different directions on a
third person, as illustrated in Figure 4.3, we might expect the total force to be in the direction shown. Since force is a vector, it
adds just like other vectors, as illustrated in Figure 4.3(a) for two ice skaters. Forces, like other vectors, are represented by
arrows and can be added using the familiar head-to-tail method or by trigonometric methods. These ideas were developed in
Two-Dimensional Kinematics.

By definition, force is always the result of an interaction of two or more objects. No object possesses force on its own. For
example, a cannon does not possess force, but it can exert force on a cannonball. Earth does not possess force on its own, but
exerts force on a football or on any other massive object. The skaters in Figure 4.3 exert force on one another as they interact.

No object can exert force on itself. When you clap your hands, one hand exerts force on the other. When a train accelerates, it
exerts force on the track and vice versa. A bowling ball is accelerated by the hand throwing it; once the hand is no longer in
contact with the bowling ball, it is no longer accelerating the bowling ball or exerting force on it. The ball continues moving
forward due to inertia.

Figure 4.3 Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on
the third skater is in the direction shown. In part (b), we see a free-body diagram representing the forces acting on the third skater.

Figure 4.3(b) is our first example of a free-body diagram, which is a technique used to illustrate all the external forces acting
on a body. The body is represented by a single isolated point (or free body), and only those forces acting on the body from the
outside (external forces) are shown. (These forces are the only ones shown, because only external forces acting on the body
affect its motion. We can ignore any internal forces within the body.) Free-body diagrams are very useful in analyzing forces
acting on a system and are employed extensively in the study and application of Newton’s laws of motion.
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A more quantitative definition of force can be based on some standard force, just as distance is measured in units relative to a
standard distance. One possibility is to stretch a spring a certain fixed distance, as illustrated in Figure 4.4, and use the force it
exerts to pull itself back to its relaxed shape—called a restoring force—as a standard. The magnitude of all other forces can be
stated as multiples of this standard unit of force. Many other possibilities exist for standard forces. (One that we will encounter in
Magnetism is the magnetic force between two wires carrying electric current.) Some alternative definitions of force will be given
later in this chapter.

Figure 4.4 The force exerted by a stretched spring can be used as a standard unit of force. (a) This spring has a length when undistorted. (b) When

stretched a distance Δ , the spring exerts a restoring force, Frestore , which is reproducible. (c) A spring scale is one device that uses a spring to

measure force. The force Frestore is exerted on whatever is attached to the hook. Here Frestore has a magnitude of 6 units in the force standard

being employed.

Take-Home Experiment: Force Standards

To investigate force standards and cause and effect, get two identical rubber bands. Hang one rubber band vertically on a
hook. Find a small household item that could be attached to the rubber band using a paper clip, and use this item as a
weight to investigate the stretch of the rubber band. Measure the amount of stretch produced in the rubber band with one,
two, and four of these (identical) items suspended from the rubber band. What is the relationship between the number of
items and the amount of stretch? How large a stretch would you expect for the same number of items suspended from two
rubber bands? What happens to the amount of stretch of the rubber band (with the weights attached) if the weights are also
pushed to the side with a pencil?

4.2 Newton's First Law of Motion: Inertia

Learning Objectives
By the end of this section, you will be able to:

• Define mass and inertia.
• Understand Newton's first law of motion.

Experience suggests that an object at rest will remain at rest if left alone, and that an object in motion tends to slow down and
stop unless some effort is made to keep it moving. What Newton’s first law of motion states, however, is the following:

Newton’s First Law of Motion

There exists an inertial frame of reference such that a body at rest remains at rest, or, if in motion, remains in motion at a
constant velocity unless acted on by a net external force.

Note the repeated use of the verb “remains.” We can think of this law as preserving the status quo of motion.

The first law of motion postulates the existence of at least one frame of reference which we call an inertial reference frame,
relative to which the motion of an object not subject to forces is a straight line at a constant speed. An inertial reference frame is
any reference frame that is not itself accelerating. A car traveling at constant velocity is an inertial reference frame. A car slowing
down for a stoplight, or speeding up after the light turns green, will be accelerating and is not an inertial reference frame. Finally,
when the car goes around a turn, which is due to an acceleration changing the direction of the velocity vector, it is not an inertial
reference frame. Note that Newton’s laws of motion are only valid for inertial reference frames.

Rather than contradicting our experience, Newton’s first law of motion states that there must be a cause (which is a net
external force) for there to be any change in velocity (either a change in magnitude or direction) in an inertial reference frame.
We will define net external force in the next section. An object sliding across a table or floor slows down due to the net force of
friction acting on the object. If friction disappeared, would the object still slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For example, consider what
happens to an object sliding along a rough horizontal surface. The object quickly grinds to a halt. If we spray the surface with
talcum powder to make the surface smoother, the object slides farther. If we make the surface even smoother by rubbing
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lubricating oil on it, the object slides farther yet. Extrapolating to a frictionless surface, we can imagine the object sliding in a
straight line indefinitely. Friction is thus the cause of the slowing (consistent with Newton’s first law). The object would not slow
down at all if friction were completely eliminated. Consider an air hockey table. When the air is turned off, the puck slides only a
short distance before friction slows it to a stop. However, when the air is turned on, it creates a nearly frictionless surface, and
the puck glides long distances without slowing down. Additionally, if we know enough about the friction, we can accurately predict
how quickly the object will slow down. Friction is an external force.

Newton’s first law is completely general and can be applied to anything from an object sliding on a table to a satellite in orbit to
blood pumped from the heart. Experiments have thoroughly verified that any change in velocity (speed or direction) must be
caused by an external force. The idea of generally applicable or universal laws is important not only here—it is a basic feature of
all laws of physics. Identifying these laws is like recognizing patterns in nature from which further patterns can be discovered.
The genius of Galileo, who first developed the idea for the first law, and Newton, who clarified it, was to ask the fundamental
question, “What is the cause?” Thinking in terms of cause and effect is a worldview fundamentally different from the typical
ancient Greek approach when questions such as “Why does a tiger have stripes?” would have been answered in Aristotelian
fashion, “That is the nature of the beast.” True perhaps, but not a useful insight.

Mass
The property of a body to remain at rest or to remain in motion with constant velocity is called inertia. Newton’s first law is often
called the law of inertia. As we know from experience, some objects have more inertia than others. It is obviously more difficult
to change the motion of a large boulder than that of a basketball, for example. The inertia of an object is measured by its mass.

An object with a small mass will exhibit less inertia and be more affected by other objects. An object with a large mass will exhibit
greater inertia and be less affected by other objects. This inertial mass of an object is a measure of how difficult it is to alter the
uniform motion of the object by an external force.

Roughly speaking, mass is a measure of the amount of “stuff” (or matter) in something. The quantity or amount of matter in an
object is determined by the numbers of atoms and molecules of various types it contains. Unlike weight, mass does not vary with
location. The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. In practice, it is very difficult to count
and identify all of the atoms and molecules in an object, so masses are not often determined in this manner. Operationally, the
masses of objects are determined by comparison with the standard kilogram.

Check Your Understanding

Which has more mass: a kilogram of cotton balls or a kilogram of gold?

Solution

They are equal. A kilogram of one substance is equal in mass to a kilogram of another substance. The quantities that might
differ between them are volume and density.

4.3 Newton's Second Law of Motion: Concept of a System

Learning Objectives
By the end of this section, you will be able to:

• Define net force, external force, and system.
• Understand Newton’s second law of motion.
• Apply Newton’s second law to determine the weight of an object.

Newton’s second law of motion is closely related to Newton’s first law of motion. It mathematically states the cause and effect
relationship between force and changes in motion. Newton’s second law of motion is more quantitative and is used extensively to
calculate what happens in situations involving a force. Before we can write down Newton’s second law as a simple equation
giving the exact relationship of force, mass, and acceleration, we need to sharpen some ideas that have already been
mentioned.

First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A
change in velocity means, by definition, that there is an acceleration. Newton’s first law says that a net external force causes a
change in motion; thus, we see that a net external force causes acceleration.

Another question immediately arises. What do we mean by an external force? An intuitive notion of external is correct—an
external force acts from outside the system of interest. For example, in Figure 4.5(a) the system of interest is the wagon plus
the child in it. The two forces exerted by the other children are external forces. An internal force acts between elements of the
system. Again looking at Figure 4.5(a), the force the child in the wagon exerts to hang onto the wagon is an internal force
between elements of the system of interest. Only external forces affect the motion of a system, according to Newton’s first law.
(The internal forces actually cancel, as we shall see in the next section.) You must define the boundaries of the system before

you can determine which forces are external. Sometimes the system is obvious, whereas other times identifying the boundaries
of a system is more subtle. The concept of a system is fundamental to many areas of physics, as is the correct application of
Newton’s laws. This concept will be revisited many times on our journey through physics.
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When we describe the acceleration of a system, we are modeling the system as a single point which contains all of the mass of
that system. The point we choose for this is the point about which the system’s mass is evenly distributed. For example, in a rigid
object, this center of mass is the point where the object will stay balanced even if only supported at this point. For a sphere or
disk made of homogenous material, this point is of course at the center. Similarly, for a rod made of homogenous material, the
center of mass will be at the midpoint.

For the rider in the wagon in Figure 4.5, the center of mass is probably between the rider’s hips. Due to internal forces, the
rider’s hand or hair may accelerate slightly differently, but it is the acceleration of the system’s center of mass that interests us.
This is true whether the system is a vehicle carrying passengers, a bowl of grapes, or a planet. When we draw a free-body
diagram of a system, we represent the system’s center of mass with a single point and use vectors to indicate the forces exerted
on that center of mass. (See Figure 4.5.)

Figure 4.5 Different forces exerted on the same mass produce different accelerations. (a) Two children push a wagon with a child in it. Arrows
representing all external forces are shown. The system of interest is the wagon and its rider. The weight w of the system and the support of the

ground N are also shown for completeness and are assumed to cancel. The vector f represents the friction acting on the wagon, and it acts to the

left, opposing the motion of the wagon. (b) All of the external forces acting on the system add together to produce a net force, Fnet . The free-body

diagram shows all of the forces acting on the system of interest. The dot represents the center of mass of the system. Each force vector extends from
this dot. Because there are two forces acting to the right, we draw the vectors collinearly. (c) A larger net external force produces a larger acceleration (

a′ > a ) when an adult pushes the child.

Now, it seems reasonable that acceleration should be directly proportional to and in the same direction as the net (total) external
force acting on a system. This assumption has been verified experimentally and is illustrated in Figure 4.5. In part (a), a smaller
force causes a smaller acceleration than the larger force illustrated in part (c). For completeness, the vertical forces are also
shown; they are assumed to cancel since there is no acceleration in the vertical direction. The vertical forces are the weight w

and the support of the ground N , and the horizontal force f represents the force of friction. These will be discussed in more
detail in later sections. For now, we will define friction as a force that opposes the motion past each other of objects that are
touching. Figure 4.5(b) shows how vectors representing the external forces add together to produce a net force, Fnet .

To obtain an equation for Newton’s second law, we first write the relationship of acceleration and net external force as the
proportionality

(4.1)a ∝ Fnet

where the symbol ∝ means “proportional to,” and Fnet is the net external force. (The net external force is the vector sum of

all external forces and can be determined graphically, using the head-to-tail method, or analytically, using components. The
techniques are the same as for the addition of other vectors, and are covered in Two-Dimensional Kinematics.) This
proportionality states what we have said in words—acceleration is directly proportional to the net external force. Once the system
of interest is chosen, it is important to identify the external forces and ignore the internal ones. It is a tremendous simplification
not to have to consider the numerous internal forces acting between objects within the system, such as muscular forces within
the child’s body, let alone the myriad of forces between atoms in the objects, but by doing so, we can easily solve some very
complex problems with only minimal error due to our simplification
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Now, it also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other words, the
larger the mass (the inertia), the smaller the acceleration produced by a given force. And indeed, as illustrated in Figure 4.6, the
same net external force applied to a car produces a much smaller acceleration than when applied to a basketball. The
proportionality is written as

(4.2)
a ∝ 1

where is the mass of the system. Experiments have shown that acceleration is exactly inversely proportional to mass, just as
it is exactly linearly proportional to the net external force.

Figure 4.6 The same force exerted on systems of different masses produces different accelerations. (a) A basketball player pushes on a basketball to
make a pass. (The effect of gravity on the ball is ignored.) (b) The same player exerts an identical force on a stalled SUV and produces a far smaller
acceleration (even if friction is negligible). (c) The free-body diagrams are identical, permitting direct comparison of the two situations. A series of
patterns for the free-body diagram will emerge as you do more problems.

Both of these proportionalities have been experimentally verified repeatedly and consistently, for a broad range of systems and
scales. Thus, it has been experimentally found that the acceleration of an object depends only on the net external force and the
mass of the object. Combining the two proportionalities just given yields Newton's second law of motion.

Applying the Science Practices: Testing the Relationship Between Mass, Acceleration, and Force

Plan three simple experiments using objects you have at home to test relationships between mass, acceleration, and force.

(a) Design an experiment to test the relationship between mass and acceleration. What will be the independent variable in
your experiment? What will be the dependent variable? What controls will you put in place to ensure force is constant?

(b) Design a similar experiment to test the relationship between mass and force. What will be the independent variable in
your experiment? What will be the dependent variable? What controls will you put in place to ensure acceleration is
constant?

(c) Design a similar experiment to test the relationship between force and acceleration. What will be the independent
variable in your experiment? What will be the dependent variable? Will you have any trouble ensuring that the mass is
constant?

What did you learn?

Newton’s Second Law of Motion

The acceleration of a system is directly proportional to and in the same direction as the net external force acting on the
system, and inversely proportional to its mass.

In equation form, Newton’s second law of motion is

(4.3)
a =

Fnet.

This is often written in the more familiar form

(4.4)Fnet = a.

When only the magnitude of force and acceleration are considered, this equation is simply

(4.5)net = .

Although these last two equations are really the same, the first gives more insight into what Newton’s second law means. The
law is a cause and effect relationship among three quantities that is not simply based on their definitions. The validity of the
second law is completely based on experimental verification.
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Applying the Science Practices: Systems and Free-Body Diagrams

First, consider a person on a sled sliding downhill. What is the system in this situation? Try to draw a free-body diagram
describing this system, labeling all the forces and their directions. Which of the forces are internal? Which are external?

Next, consider a person on a sled being pushed along level ground by a friend. What is the system in this situation? Try to
draw a free-body diagram describing this system, labelling all the forces and their directions. Which of the forces are
internal? Which are external?

Units of Force

Fnet = a is used to define the units of force in terms of the three basic units for mass, length, and time. The SI unit of force is

called the newton (abbreviated N) and is the force needed to accelerate a 1-kg system at the rate of 1m/s2 . That is, since

Fnet = a ,

(4.6)1 N = 1 kg ⋅ m/s2.

While almost the entire world uses the newton for the unit of force, in the United States the most familiar unit of force is the
pound (lb), where 1 N = 0.225 lb.

Weight and the Gravitational Force
When an object is dropped, it accelerates toward the center of Earth. Newton’s second law states that a net force on an object is
responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly
called its weight w . Weight can be denoted as a vector w because it has a direction; down is, by definition, the direction of
gravity, and hence weight is a downward force. The magnitude of weight is denoted as . Galileo was instrumental in showing
that, in the absence of air resistance, all objects fall with the same acceleration . Using Galileo’s result and Newton’s second

law, we can derive an equation for weight.

Consider an object with mass falling downward toward Earth. It experiences only the downward force of gravity, which has

magnitude . Newton’s second law states that the magnitude of the net external force on an object is net = .

Since the object experiences only the downward force of gravity, net = . We know that the acceleration of an object due to

gravity is , or = . Substituting these into Newton’s second law gives

Weight

This is the equation for weight—the gravitational force on a mass :

(4.7)= .

Since = 9.80 m/s2 on Earth, the weight of a 1.0 kg object on Earth is 9.8 N, as we see:

(4.8)= = (1.0 kg)(9.80 m/s2 ) = 9.8 N.

Recall that can take a positive or negative value, depending on the positive direction in the coordinate system. Be sure to

take this into consideration when solving problems with weight.

When the net external force on an object is its weight, we say that it is in free-fall. That is, the only force acting on the object is
the force of gravity. In the real world, when objects fall downward toward Earth, they are never truly in free-fall because there is
always some upward force from the air acting on the object.

The acceleration due to gravity varies slightly over the surface of Earth, so that the weight of an object depends on location

and is not an intrinsic property of the object. Weight varies dramatically if one leaves Earth’s surface. On the Moon, for example,

the acceleration due to gravity is only 1.67 m/s2 . A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on
the Moon.

The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it from the nearest large

body, such as Earth, the Moon, the Sun, and so on. This is the most common and useful definition of weight in physics. It differs
dramatically, however, from the definition of weight used by NASA and the popular media in relation to space travel and
exploration. When they speak of “weightlessness” and “microgravity,” they are really referring to the phenomenon we call “free-
fall” in physics. We shall use the above definition of weight, and we will make careful distinctions between free-fall and actual
weightlessness.

It is important to be aware that weight and mass are very different physical quantities, although they are closely related. Mass is
the quantity of matter (how much “stuff”) and does not vary in classical physics, whereas weight is the gravitational force and
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does vary depending on gravity. It is tempting to equate the two, since most of our examples take place on Earth, where the
weight of an object only varies a little with the location of the object. Furthermore, the terms mass and weight are used
interchangeably in everyday language; for example, our medical records often show our “weight” in kilograms, but never in the
correct units of newtons.

Common Misconceptions: Mass vs. Weight

Mass and weight are often used interchangeably in everyday language. However, in science, these terms are distinctly
different from one another. Mass is a measure of how much matter is in an object. The typical measure of mass is the
kilogram (or the “slug” in English units). Weight, on the other hand, is a measure of the force of gravity acting on an object.
Weight is equal to the mass of an object ( ) multiplied by the acceleration due to gravity ( ). Like any other force, weight

is measured in terms of newtons (or pounds in English units).

Assuming the mass of an object is kept intact, it will remain the same, regardless of its location. However, because weight
depends on the acceleration due to gravity, the weight of an object can change when the object enters into a region with

stronger or weaker gravity. For example, the acceleration due to gravity on the Moon is 1.67 m/s2 (which is much less than

the acceleration due to gravity on Earth, 9.80 m/s2 ). If you measured your weight on Earth and then measured your weight
on the Moon, you would find that you “weigh” much less, even though you do not look any skinnier. This is because the force
of gravity is weaker on the Moon. In fact, when people say that they are “losing weight,” they really mean that they are losing
“mass” (which in turn causes them to weigh less).

Take-Home Experiment: Mass and Weight

What do bathroom scales measure? When you stand on a bathroom scale, what happens to the scale? It depresses slightly.
The scale contains springs that compress in proportion to your weight—similar to rubber bands expanding when pulled. The
springs provide a measure of your weight (for an object which is not accelerating). This is a force in newtons (or pounds). In
most countries, the measurement is divided by 9.80 to give a reading in mass units of kilograms. The scale measures weight
but is calibrated to provide information about mass. While standing on a bathroom scale, push down on a table next to you.
What happens to the reading? Why? Would your scale measure the same “mass” on Earth as on the Moon?

Example 4.1 What Acceleration Can a Person Produce when Pushing a Lawn Mower?

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 lb) parallel to the
ground. The mass of the mower is 24 kg. What is its acceleration?

Figure 4.7 The net force on a lawn mower is 51 N to the right. At what rate does the lawn mower accelerate to the right?

Strategy

Since Fnet and are given, the acceleration can be calculated directly from Newton’s second law as stated in

Fnet = a .

Solution

The magnitude of the acceleration is = net . Entering known values gives

(4.9)
= 51 N

24 kg
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Substituting the units kg ⋅ m/s2 for N yields

(4.10)
=

51 kg ⋅ m/s2

24 kg
= 2.1 m/s2.

Discussion

The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground. There is no
information given in this example about the individual external forces acting on the system, but we can say something about
their relative magnitudes. For example, the force exerted by the person pushing the mower must be greater than the friction
opposing the motion (since we know the mower moves forward), and the vertical forces must cancel if there is to be no
acceleration in the vertical direction (the mower is moving only horizontally). The acceleration found is small enough to be
reasonable for a person pushing a mower. Such an effort would not last too long because the person’s top speed would
soon be reached.

Example 4.2 What Rocket Thrust Accelerates This Sled?

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human
subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several
rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion system

shown in Figure 4.8. The sled’s initial acceleration is 49 m/s2, the mass of the system is 2100 kg, and the force of friction

opposing the motion is known to be 650 N.

Figure 4.8 A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T . As in other situations

where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in
magnitude and opposite in direction to its weight, w . The system here is the sled, its rockets, and rider, so none of the forces between these

objects are considered. The arrow representing friction ( f ) is drawn larger than scale.

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical
acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with
plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the
thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to
consider only the magnitudes of these quantities in the calculations. Hence we begin with

(4.11)net = ,

where net is the net force along the horizontal direction. We can see from Figure 4.8 that the engine thrusts add, while

friction opposes the thrust. In equation form, the net external force is

(4.12)net = 4 − .
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Substituting this into Newton’s second law gives

(4.13)net = = 4 − .

Using a little algebra, we solve for the total thrust 4T:

(4.14)4 = + .

Substituting known values yields

(4.15)4 = + = (2100 kg)(49 m/s2 ) + 650 N.

So the total thrust is

(4.16)4 = 1.0×105 N,

and the individual thrusts are

(4.17)
= 1.0×105 N

4
= 2.6×104 N.

Discussion

The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s
to test the limits of human endurance and the setup designed to protect human subjects in jet fighter emergency ejections.
Speeds of 1000 km/h were obtained, with accelerations of 45 's. (Recall that , the acceleration due to gravity, is

9.80 m/s2 . When we say that an acceleration is 45 's, it is 45 9.80 m/s2 , which is approximately 440 m/s2 .) While

living subjects are not used any more, land speeds of 10,000 km/h have been obtained with rocket sleds. In this example, as
in the preceding one, the system of interest is obvious. We will see in later examples that choosing the system of interest is
crucial—and the choice is not always obvious.

Newton’s second law of motion is more than a definition; it is a relationship among acceleration, force, and mass. It can help
us make predictions. Each of those physical quantities can be defined independently, so the second law tells us something
basic and universal about nature. The next section introduces the third and final law of motion.

Applying the Science Practices: Sums of Forces

Recall that forces are vector quantities, and therefore the net force acting on a system should be the vector sum of the
forces.

(a) Design an experiment to test this hypothesis. What sort of a system would be appropriate and convenient to have
multiple forces applied to it? What features of the system should be held constant? What could be varied? Can forces be
arranged in multiple directions so that, while the hypothesis is still tested, the resulting calculations are not too inconvenient?

(b) Another group of students has done such an experiment, using a motion capture system looking down at an air hockey
table to measure the motion of the 0.10-kg puck. The table was aligned with the cardinal directions, and a compressed air
hose was placed in the center of each side, capable of varying levels of force output and fixed so that it was aimed at the
center of the table.

Table 4.1

Forces Measured acceleration (magnitudes)

3 N north, 4 N west 48 ± 4 m/s2

5 N south, 12 N east 132 ± 6 m/s2

6 N north, 12 N east, 4 N west 99 ± 3 m/s2

Given the data in the table, is the hypothesis confirmed? What were the directions of the accelerations?

4.4 Newton's Third Law of Motion: Symmetry in Forces

Learning Objectives
By the end of this section, you will be able to:

• Understand Newton's third law of motion.
• Apply Newton's third law to define systems and solve problems of motion.
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The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

• 3.A.3.1 The student is able to analyze a scenario and make claims (develop arguments, justify assertions) about the
forces exerted on an object by other objects for different types of forces or components of forces. (S.P. 6.4, 7.2)

• 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

• 3.A.4.1 The student is able to construct explanations of physical situations involving the interaction of bodies using
Newton's third law and the representation of action-reaction pairs of forces. (S.P. 1.4, 6.2)

• 3.A.4.2 The student is able to use Newton's third law to make claims and predictions about the action-reaction pairs of
forces when two objects interact. (S.P. 6.4, 7.2)

• 3.A.4.3 The student is able to analyze situations involving interactions among several objects by using free-body
diagrams that include the application of Newton's third law to identify forces. (S.P. 1.4)

• 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with
motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

• 4.A.2.1 The student is able to make predictions about the motion of a system based on the fact that acceleration is
equal to the change in velocity per unit time, and velocity is equal to the change in position per unit time. (S.P. 6.4)

• 4.A.2.2 The student is able to evaluate using given data whether all the forces on a system or whether all the parts of a
system have been identified. (S.P. 5.3)

• 4.A.3.1 The student is able to apply Newton's second law to systems to calculate the change in the center-of-mass
velocity when an external force is exerted on the system. (S.P. 2.2)

There is a passage in the musical Man of la Mancha that relates to Newton’s third law of motion. Sancho, in describing a fight
with his wife to Don Quixote, says, “Of course I hit her back, Your Grace, but she’s a lot harder than me and you know what they
say, ‘Whether the stone hits the pitcher or the pitcher hits the stone, it’s going to be bad for the pitcher.’” This is exactly what
happens whenever one body exerts a force on another—the first also experiences a force (equal in magnitude and opposite in
direction). Numerous common experiences, such as stubbing a toe or throwing a ball, confirm this. It is precisely stated in
Newton’s third law of motion.

Newton’s Third Law of Motion

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and
opposite in direction to the force that it exerts.

This law represents a certain symmetry in nature: Forces always occur in pairs, and one body cannot exert a force on another
without experiencing a force itself. We sometimes refer to this law loosely as “action-reaction,” where the force exerted is the
action and the force experienced as a consequence is the reaction. Newton’s third law has practical uses in analyzing the origin
of forces and understanding which forces are external to a system.

We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off from
the side of a pool, as illustrated in Figure 4.9. She pushes against the pool wall with her feet and accelerates in the direction
opposite to that of her push. The wall has exerted an equal and opposite force back on the swimmer. You might think that two
equal and opposite forces would cancel, but they do not because they act on different systems. In this case, there are two
systems that we could investigate: the swimmer or the wall. If we select the swimmer to be the system of interest, as in the
figure, then Fwall on feet is an external force on this system and affects its motion. The swimmer moves in the direction of

Fwall on feet . In contrast, the force Ffeet on wall acts on the wall and not on our system of interest. Thus Ffeet on wall does not

directly affect the motion of the system and does not cancel Fwall on feet . Note that the swimmer pushes in the direction

opposite to that in which she wishes to move. The reaction to her push is thus in the desired direction.
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Figure 4.9 When the swimmer exerts a force Ffeet on wall on the wall, she accelerates in the direction opposite to that of her push. This means the

net external force on her is in the direction opposite to Ffeet on wall . This opposition occurs because, in accordance with Newton’s third law of

motion, the wall exerts a force Fwall on feet on her, equal in magnitude but in the direction opposite to the one she exerts on it. The line around the

swimmer indicates the system of interest. Note that Ffeet on wall does not act on this system (the swimmer) and, thus, does not cancel

Fwall on feet . Thus the free-body diagram shows only Fwall on feet , w , the gravitational force, and BF , the buoyant force of the water

supporting the swimmer’s weight. The vertical forces w and BF cancel since there is no vertical motion.

Similarly, when a person stands on Earth, the Earth exerts a force on the person, pulling the person toward the Earth. As stated
by Newton’s third law of motion, the person also exerts a force that is equal in magnitude, but opposite in direction, pulling the
Earth up toward the person. Since the mass of the Earth is so great, however, and = , the acceleration of the Earth
toward the person is not noticeable.

Other examples of Newton’s third law are easy to find. As a professor paces in front of a whiteboard, she exerts a force
backward on the floor. The floor exerts a reaction force forward on the professor that causes her to accelerate forward. Similarly,
a car accelerates because the ground pushes forward on the drive wheels in reaction to the drive wheels pushing backward on
the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw rocks backward.
In another example, rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large
backward force on the gas in the rocket combustion chamber, and the gas therefore exerts a large reaction force forward on the
rocket. This reaction force is called thrust. It is a common misconception that rockets propel themselves by pushing on the
ground or on the air behind them. They actually work better in a vacuum, where they can more readily expel the exhaust gases.
Helicopters similarly create lift by pushing air down, thereby experiencing an upward reaction force. Birds and airplanes also fly
by exerting force on air in a direction opposite to that of whatever force they need. For example, the wings of a bird force air
downward and backward in order to get lift and move forward. An octopus propels itself in the water by ejecting water through a
funnel from its body, similar to a jet ski. In a situation similar to Sancho’s, professional cage fighters experience reaction forces
when they punch, sometimes breaking their hand by hitting an opponent’s body.

Example 4.3 Getting Up To Speed: Choosing the Correct System

A physics professor pushes a cart of demonstration equipment to a lecture hall, as seen in Figure 4.10. Her mass is 65.0
kg, the cart’s is 12.0 kg, and the equipment’s is 7.0 kg. Calculate the acceleration produced when the professor exerts a
backward force of 150 N on the floor. All forces opposing the motion, such as friction on the cart’s wheels and air resistance,
total 24.0 N.
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Figure 4.10 A professor pushes a cart of demonstration equipment. The lengths of the arrows are proportional to the magnitudes of the forces

(except for f , since it is too small to draw to scale). Different questions are asked in each example; thus, the system of interest must be defined

differently for each. System 1 is appropriate for Example 4.4, since it asks for the acceleration of the entire group of objects. Only Ffloor and f

are external forces acting on System 1 along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for
this example so that Fprof will be an external force and enter into Newton’s second law. Note that the free-body diagrams, which allow us to

apply Newton’s second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in Figure
4.10. The professor pushes backward with a force Ffoot of 150 N. According to Newton’s third law, the floor exerts a

forward reaction force Ffloor of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force

in the vertical direction. The problem is therefore one-dimensional along the horizontal direction. As noted, f opposes the

motion and is thus in the opposite direction of Ffloor . Note that we do not include the forces Fprof or Fcart because

these are internal forces, and we do not include Ffoot because it acts on the floor, not on the system. There are no other

significant forces acting on System 1. If the net external force can be found from all this information, we can use Newton’s
second law to find the acceleration as requested. See the free-body diagram in the figure.

Solution

Newton’s second law is given by

(4.18)
= net.

The net external force on System 1 is deduced from Figure 4.10 and the discussion above to be

(4.19)net = floor − = 150 N − 24.0 N = 126 N.

The mass of System 1 is

(4.20)= (65.0 + 12.0 + 7.0) kg = 84 kg.

These values of net and produce an acceleration of

(4.21)
= net

= 126 N
84 kg

= 1.5 m/s2 .

Discussion
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None of the forces between components of System 1, such as between the professor’s hands and the cart, contribute to the
net external force because they are internal to System 1. Another way to look at this is to note that forces between
components of a system cancel because they are equal in magnitude and opposite in direction. For example, the force
exerted by the professor on the cart results in an equal and opposite force back on her. In this case both forces act on the
same system and, therefore, cancel. Thus internal forces (between components of a system) cancel. Choosing System 1
was crucial to solving this problem.

Example 4.4 Force on the Cart—Choosing a New System

Calculate the force the professor exerts on the cart in Figure 4.10 using data from the previous example if needed.

Strategy

If we now define the system of interest to be the cart plus equipment (System 2 in Figure 4.10), then the net external force
on System 2 is the force the professor exerts on the cart minus friction. The force she exerts on the cart, Fprof , is an

external force acting on System 2. Fprof was internal to System 1, but it is external to System 2 and will enter Newton’s

second law for System 2.

Solution

Newton’s second law can be used to find Fprof . Starting with

(4.22)
= net

and noting that the magnitude of the net external force on System 2 is

(4.23)net = prof − ,

we solve for prof , the desired quantity:

(4.24)
prof = net + .

The value of is given, so we must calculate net net . That can be done since both the acceleration and mass of System

2 are known. Using Newton’s second law we see that

(4.25)net = ,

where the mass of System 2 is 19.0 kg ( = 12.0 kg + 7.0 kg) and its acceleration was found to be = 1.5 m/s2 in the
previous example. Thus,

(4.26)net = ,

(4.27)
net = (19.0 kg)(1.5 m/s2 ) = 29 N.

Now we can find the desired force:

(4.28)
prof = net + ,

(4.29)
prof = 29 N+24.0 N = 53 N.

Discussion

It is interesting that this force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of
that 150-N force is transmitted to the cart; some of it accelerates the professor.

The choice of a system is an important analytical step both in solving problems and in thoroughly understanding the physics
of the situation (which is not necessarily the same thing).

PhET Explorations: Gravity Force Lab

Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it
changes the gravity force.
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Figure 4.11 Gravity Force Lab (http://cnx.org/content/m54849/1.2/gravity-force-lab_en.jar)

4.5 Normal, Tension, and Other Examples of Force

Learning Objectives
By the end of this section, you will be able to:

• Define normal and tension forces.
• Apply Newton's laws of motion to solve problems involving a variety of forces.
• Use trigonometric identities to resolve weight into components.

The information presented in this section supports the following AP® learning objectives and science practices:

• 2.B.1.1 The student is able to apply = to calculate the gravitational force on an object with mass m in a

gravitational field of strength g in the context of the effects of a net force on objects and systems. (S.P. 2.2, 7.2)
• 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with

magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)
• 3.A.3.1 The student is able to analyze a scenario and make claims (develop arguments, justify assertions) about the

forces exerted on an object by other objects for different types of forces or components of forces. (S.P. 6.4, 7.2)
• 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any

force. (S.P. 1.4)
• 3.A.4.1 The student is able to construct explanations of physical situations involving the interaction of bodies using

Newton's third law and the representation of action-reaction pairs of forces. (S.P. 1.4, 6.2)
• 3.A.4.2 The student is able to use Newton's third law to make claims and predictions about the action-reaction pairs of

forces when two objects interact. (S.P. 6.4, 7.2)
• 3.A.4.3 The student is able to analyze situations involving interactions among several objects by using free-body

diagrams that include the application of Newton's third law to identify forces. (S.P. 1.4)
• 3.B.1.3 The student is able to re-express a free-body diagram representation into a mathematical representation and

solve the mathematical representation for the acceleration of the object. (S.P. 1.5, 2.2)
• 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with

motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

Forces are given many names, such as push, pull, thrust, lift, weight, friction, and tension. Traditionally, forces have been
grouped into several categories and given names relating to their source, how they are transmitted, or their effects. The most
important of these categories are discussed in this section, together with some interesting applications. Further examples of
forces are discussed later in this text.

Normal Force
Weight (also called force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an object from
falling. You definitely notice that you must support the weight of a heavy object by pushing up on it when you hold it stationary, as
illustrated in Figure 4.12(a). But how do inanimate objects like a table support the weight of a mass placed on them, such as
shown in Figure 4.12(b)? When the bag of dog food is placed on the table, the table actually sags slightly under the load. This
would be noticeable if the load were placed on a card table, but even rigid objects deform when a force is applied to them.
Unless the object is deformed beyond its limit, it will exert a restoring force much like a deformed spring (or trampoline or diving
board). The greater the deformation, the greater the restoring force. So when the load is placed on the table, the table sags until
the restoring force becomes as large as the weight of the load. At this point the net external force on the load is zero. That is the
situation when the load is stationary on the table. The table sags quickly, and the sag is slight so we do not notice it. But it is
similar to the sagging of a trampoline when you climb onto it.
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Figure 4.12 (a) The person holding the bag of dog food must supply an upward force Fhand equal in magnitude and opposite in direction to the

weight of the food w . (b) The card table sags when the dog food is placed on it, much like a stiff trampoline. Elastic restoring forces in the table grow

as it sags until they supply a force N equal in magnitude and opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the weight of the
load, as we assumed in a few of the previous examples. If the force supporting a load is perpendicular to the surface of contact
between the load and its support, this force is defined to be a normal force and here is given the symbol N . (This is not the unit
for force N.) The word normal means perpendicular to a surface. The normal force can be less than the object’s weight if the
object is on an incline, as you will see in the next example.

Common Misconception: Normal Force (N) vs. Newton (N)

In this section we have introduced the quantity normal force, which is represented by the variable N . This should not be
confused with the symbol for the newton, which is also represented by the letter N. These symbols are particularly important
to distinguish because the units of a normal force ( N ) happen to be newtons (N). For example, the normal force N that the

floor exerts on a chair might be N = 100 N . One important difference is that normal force is a vector, while the newton is
simply a unit. Be careful not to confuse these letters in your calculations! You will encounter more similarities among
variables and units as you proceed in physics. Another example of this is the quantity work ( ) and the unit watts (W).

Example 4.5 Weight on an Incline, a Two-Dimensional Problem

Consider the skier on a slope shown in Figure 4.13. Her mass including equipment is 60.0 kg. (a) What is her acceleration if
friction is negligible? (b) What is her acceleration if friction is known to be 45.0 N?
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Figure 4.13 Since motion and friction are parallel to the slope, it is most convenient to project all forces onto a coordinate system where one axis
is parallel to the slope and the other is perpendicular (axes shown to left of skier). N is perpendicular to the slope and f is parallel to the slope,

but w has components along both axes, namely w⊥ and w ∥ . N is equal in magnitude to w⊥ , so that there is no motion

perpendicular to the slope, but is less than ∥ , so that there is a downslope acceleration (along the parallel axis).

Strategy

This is a two-dimensional problem, since the forces on the skier (the system of interest) are not parallel. The approach we
have used in two-dimensional kinematics also works very well here. Choose a convenient coordinate system and project the
vectors onto its axes, creating two connected one-dimensional problems to solve. The most convenient coordinate system
for motion on an incline is one that has one coordinate parallel to the slope and one perpendicular to the slope. (Remember
that motions along mutually perpendicular axes are independent.) We use the symbols ⊥ and ∥ to represent

perpendicular and parallel, respectively. This choice of axes simplifies this type of problem, because there is no motion
perpendicular to the slope and because friction is always parallel to the surface between two objects. The only external
forces acting on the system are the skier’s weight, friction, and the support of the slope, respectively labeled w , f , and N

in Figure 4.13. N is always perpendicular to the slope, and f is parallel to it. But w is not in the direction of either axis,
and so the first step we take is to project it into components along the chosen axes, defining ∥ to be the component of

weight parallel to the slope and ⊥ the component of weight perpendicular to the slope. Once this is done, we can

consider the two separate problems of forces parallel to the slope and forces perpendicular to the slope.

Solution

The magnitude of the component of the weight parallel to the slope is ∥ = sin (25º) = sin (25º) , and the

magnitude of the component of the weight perpendicular to the slope is ⊥ = cos (25º) = cos (25º) .

(a) Neglecting friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the slope.
(Forces perpendicular to the slope add to zero, since there is no acceleration in that direction.) The forces parallel to the
slope are the amount of the skier’s weight parallel to the slope ∥ and friction . Using Newton’s second law, with

subscripts to denote quantities parallel to the slope,

(4.30)
∥ =

net ∥

where net ∥ = ∥ = sin (25º) , assuming no friction for this part, so that

(4.31)
∥ =

net ∥
=

sin (25º)
= sin (25º)

(4.32)(9.80 m/s2)(0.4226) = 4.14 m/s2

is the acceleration.

(b) Including friction. We now have a given value for friction, and we know its direction is parallel to the slope and it opposes
motion between surfaces in contact. So the net external force is now

(4.33)
net ∥ = ∥ − ,

and substituting this into Newton’s second law, ∥ =
net ∥

, gives
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(4.34)
∥ =

net ∣ ∣
=

∥ −
=

sin (25º) −
.

We substitute known values to obtain

(4.35)
∥ =

(60.0 kg)(9.80 m/s2)(0.4226) − 45.0 N

60.0 kg
,

which yields

(4.36)
∥ = 3.39 m/s2,

which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Discussion

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is
none. In fact, it is a general result that if friction on an incline is negligible, then the acceleration down the incline is

= sin , regardless of mass. This is related to the previously discussed fact that all objects fall with the same

acceleration in the absence of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless incline with
the same acceleration (if the angle is the same).

Resolving Weight into Components

Figure 4.14 An object rests on an incline that makes an angle θ with the horizontal.

When an object rests on an incline that makes an angle with the horizontal, the force of gravity acting on the object is
divided into two components: a force acting perpendicular to the plane, w⊥ , and a force acting parallel to the plane, w ∥

. The perpendicular force of weight, w⊥ , is typically equal in magnitude and opposite in direction to the normal force, N .

The force acting parallel to the plane, w ∥ , causes the object to accelerate down the incline. The force of friction, f ,

opposes the motion of the object, so it acts upward along the plane.

It is important to be careful when resolving the weight of the object into components. If the angle of the incline is at an angle
to the horizontal, then the magnitudes of the weight components are

(4.37)
∥ = sin ( ) = sin ( )

and

(4.38)
⊥ = cos ( ) = cos ( ).

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw the right
triangle formed by the three weight vectors. Notice that the angle of the incline is the same as the angle formed between
w and w⊥ . Knowing this property, you can use trigonometry to determine the magnitude of the weight components:

(4.39)
cos ( ) = ⊥

⊥ = cos ( ) = cos ( )

(4.40)
sin ( ) =

∥

∥ = sin ( ) = sin ( )
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Take-Home Experiment: Force Parallel

To investigate how a force parallel to an inclined plane changes, find a rubber band, some objects to hang from the end of
the rubber band, and a board you can position at different angles. How much does the rubber band stretch when you hang
the object from the end of the board? Now place the board at an angle so that the object slides off when placed on the
board. How much does the rubber band extend if it is lined up parallel to the board and used to hold the object stationary on
the board? Try two more angles. What does this show?

Tension
A tension is a force along the length of a medium, especially a force carried by a flexible medium, such as a rope or cable. The
word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that carry muscle forces to
other parts of the body are called tendons. Any flexible connector, such as a string, rope, chain, wire, or cable, can exert pulls
only parallel to its length; thus, a force carried by a flexible connector is a tension with direction parallel to the connector. It is
important to understand that tension is a pull in a connector. In contrast, consider the phrase: “You can’t push a rope.” The
tension force pulls outward along the two ends of a rope.

Consider a person holding a mass on a rope as shown in Figure 4.15.

Figure 4.15 When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force T , that force must be parallel to
the length of the rope, as shown. The pull such a flexible connector exerts is a tension. Note that the rope pulls with equal force but in opposite
directions on the hand and the supported mass (neglecting the weight of the rope). This is an example of Newton’s third law. The rope is the medium
that carries the equal and opposite forces between the two objects. The tension anywhere in the rope between the hand and the mass is equal. Once
you have determined the tension in one location, you have determined the tension at all locations along the rope.

Tension in the rope must equal the weight of the supported mass, as we can prove using Newton’s second law. If the 5.00-kg
mass in the figure is stationary, then its acceleration is zero, and thus Fnet = 0 . The only external forces acting on the mass are

its weight w and the tension T supplied by the rope. Thus,

(4.41)net = − = 0,

where and are the magnitudes of the tension and weight and their signs indicate direction, with up being positive here.
Thus, just as you would expect, the tension equals the weight of the supported mass:

(4.42)= = .

For a 5.00-kg mass, then (neglecting the mass of the rope) we see that

(4.43)= = (5.00 kg)(9.80 m/s2 ) = 49.0 N.

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct
observation and measure of the tension force in the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a finger joint, or a
bicycle brake cable. If there is no friction, the tension is transmitted undiminished. Only its direction changes, and it is always
parallel to the flexible connector. This is illustrated in Figure 4.16 (a) and (b).
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Figure 4.16 (a) Tendons in the finger carry force T from the muscles to other parts of the finger, usually changing the force’s direction, but not its

magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension T from the handlebars to the brake

mechanism. Again, the direction but not the magnitude of T is changed.

Example 4.6 What Is the Tension in a Tightrope?

Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure 4.17.

Figure 4.17 The weight of a tightrope walker causes a wire to sag by 5.0 degrees. The system of interest here is the point in the wire at which the
tightrope walker is standing.

Strategy

As you can see in the figure, the wire is not perfectly horizontal (it cannot be!), but is bent under the person’s weight. Thus,
the tension on either side of the person has an upward component that can support his weight. As usual, forces are vectors
represented pictorially by arrows having the same directions as the forces and lengths proportional to their magnitudes. The
system is the tightrope walker, and the only external forces acting on him are his weight w and the two tensions TL (left

tension) and TR (right tension), as illustrated. It is reasonable to neglect the weight of the wire itself. The net external force

is zero since the system is stationary. A little trigonometry can now be used to find the tensions. One conclusion is possible
at the outset—we can see from part (b) of the figure that the magnitudes of the tensions L and R must be equal. This is

because there is no horizontal acceleration in the rope, and the only forces acting to the left and right are L and .

Thus, the magnitude of those forces must be equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is
to pick a convenient coordinate system and project the vectors onto its axes. In this case the best coordinate system has
one axis horizontal and the other vertical. We call the horizontal the -axis and the vertical the -axis.
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Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to draw a new free-body
diagram showing all of the horizontal and vertical components of each force acting on the system.

Figure 4.18 When the vectors are projected onto vertical and horizontal axes, their components along those axes must add to zero, since the
tightrope walker is stationary. The small angle results in being much greater than .

Consider the horizontal components of the forces (denoted with a subscript ):

(4.44)net = L − R .

The net external horizontal force net = 0 , since the person is stationary. Thus,

(4.45)net = 0 = L − R

L = R .

Now, observe Figure 4.18. You can use trigonometry to determine the magnitude of L and R . Notice that:

(4.46)
cos (5.0º) = L

L

L = L cos (5.0º)

cos (5.0º) = R

R

R = R cos (5.0º).

Equating L and R :

(4.47)
L cos (5.0º) = R cos (5.0º).

Thus,

(4.48)L = R = ,

as predicted. Now, considering the vertical components (denoted by a subscript ), we can solve for . Again, since the

person is stationary, Newton’s second law implies that net = 0 . Thus, as illustrated in the free-body diagram in Figure

4.18,

(4.49)net = L + R − = 0.

Observing Figure 4.18, we can use trigonometry to determine the relationship between L , R , and . As we

determined from the analysis in the horizontal direction, L = R = :

(4.50)
sin (5.0º) =

L

L

L = L sin (5.0º) = sin (5.0º)

sin (5.0º) =
R

R

R = R sin (5.0º) = sin (5.0º).
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Now, we can substitute the values for L and R , into the net force equation in the vertical direction:

(4.51)net = L + R − = 0

net = sin (5.0º) + sin (5.0º) − = 0

2 sin (5.0º) − = 0

2 sin (5.0º) =

and

(4.52)=
2 sin (5.0º)

=
2 sin (5.0º)

,

so that

(4.53)
=

(70.0 kg)(9.80 m/s2)

2(0.0872)
,

and the tension is

(4.54)= 3900 N.

Discussion

Note that the vertical tension in the wire acts as a normal force that supports the weight of the tightrope walker. The tension
is almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical component of its
tension is only a small fraction of the tension in the wire. The large horizontal components are in opposite directions and
cancel, and so most of the tension in the wire is not used to support the weight of the tightrope walker.

If we wish to create a very large tension, all we have to do is exert a force perpendicular to a flexible connector, as illustrated in
Figure 4.19. As we saw in the last example, the weight of the tightrope walker acted as a force perpendicular to the rope. We
saw that the tension in the roped related to the weight of the tightrope walker in the following way:

(4.55)=
2 sin ( )

.

We can extend this expression to describe the tension created when a perpendicular force ( F⊥ ) is exerted at the middle of

a flexible connector:

(4.56)
= ⊥

2 sin ( )
.

Note that is the angle between the horizontal and the bent connector. In this case, becomes very large as approaches
zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were
horizontal (i.e., = 0 and sin = 0 ). (See Figure 4.19.)

Figure 4.19 We can create a very large tension in the chain by pushing on it perpendicular to its length, as shown. Suppose we wish to pull a car out of
the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as nearly straight as possible. The tension in

the chain is given by = ⊥

2 sin ( )
; since is small, is very large. This situation is analogous to the tightrope walker shown in Figure 4.17,

except that the tensions shown here are those transmitted to the car and the tree rather than those acting at the point where F⊥ is applied.
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Figure 4.20 Unless an infinite tension is exerted, any flexible connector—such as the chain at the bottom of the picture—will sag under its own weight,
giving a characteristic curve when the weight is evenly distributed along the length. Suspension bridges—such as the Golden Gate Bridge shown in
this image—are essentially very heavy flexible connectors. The weight of the bridge is evenly distributed along the length of flexible connectors, usually
cables, which take on the characteristic shape. (credit: Leaflet, Wikimedia Commons)

Extended Topic: Real Forces and Inertial Frames
There is another distinction among forces in addition to the types already mentioned. Some forces are real, whereas others are
not. Real forces are those that have some physical origin, such as the gravitational pull. Contrastingly, fictitious forces are those
that arise simply because an observer is in an accelerating frame of reference, such as one that rotates (like a merry-go-round)
or undergoes linear acceleration (like a car slowing down). For example, if a satellite is heading due north above Earth’s northern
hemisphere, then to an observer on Earth it will appear to experience a force to the west that has no physical origin. Of course,
what is happening here is that Earth is rotating toward the east and moves east under the satellite. In Earth’s frame this looks like
a westward force on the satellite, or it can be interpreted as a violation of Newton’s first law (the law of inertia). An inertial frame
of reference is one in which all forces are real and, equivalently, one in which Newton’s laws have the simple forms given in this
chapter.

Earth’s rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise experiments to observe
fictitious forces and the slight departures from Newton’s laws, such as the effect just described. On the large scale, such as for
the rotation of weather systems and ocean currents, the effects can be easily observed.

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates relative to a known
inertial frame. Unless stated otherwise, all phenomena discussed in this text are considered in inertial frames.

All the forces discussed in this section are real forces, but there are a number of other real forces, such as lift and thrust, that are
not discussed in this section. They are more specialized, and it is not necessary to discuss every type of force. It is natural,
however, to ask where the basic simplicity we seek to find in physics is in the long list of forces. Are some more basic than
others? Are some different manifestations of the same underlying force? The answer to both questions is yes, as will be seen in
the next (extended) section and in the treatment of modern physics later in the text.

PhET Explorations: Forces in 1 Dimension

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force
and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body
diagram of all the forces (including gravitational and normal forces).

Figure 4.21 Forces in 1 Dimension (http://cnx.org/content/m54857/1.4/forces-1d_en.jar)

4.6 Problem-Solving Strategies

Learning Objectives
By the end of this section, you will be able to:
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• Apply a problem-solving procedure to solve problems using Newton's laws of motion

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

• 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

• 3.B.1.1 The student is able to predict the motion of an object subject to forces exerted by several objects using an
application of Newton's second law in a variety of physical situations with acceleration in one dimension. (S.P. 6.4, 7.2)

• 3.B.1.3 The student is able to re-express a free-body diagram representation into a mathematical representation and
solve the mathematical representation for the acceleration of the object. (S.P. 1.5, 2.2)

• 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with
motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the more
immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed here, but specific
strategies useful in applying Newton’s laws of motion are emphasized. These techniques also reinforce concepts that are useful
in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, and so the following
techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy for Newton’s Laws of Motion
Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton’s laws of

motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a
sketch is shown in Figure 4.22(a). Then, as in Figure 4.22(b), use arrows to represent all forces, label them carefully, and make
their lengths and directions correspond to the forces they represent (whenever sufficient information exists).

Figure 4.22 (a) A sketch of Tarzan hanging from a vine. (b) Arrows are used to represent all forces. T is the tension in the vine above Tarzan, FT is

the force he exerts on the vine, and w is his weight. All other forces, such as the nudge of a breeze, are assumed negligible. (c) Suppose we are
given the ape man’s mass and asked to find the tension in the vine. We then define the system of interest as shown and draw a free-body diagram.
FT is no longer shown, because it is not a force acting on the system of interest; rather, FT acts on the outside world. (d) Showing only the arrows,

the head-to-tail method of addition is used. It is apparent that T = - w , if Tarzan is stationary.

Step 2. Identify what needs to be determined and what is known or can be inferred from the problem as stated. That is, make a
list of knowns and unknowns. Then carefully determine the system of interest. This decision is a crucial step, since Newton’s
second law involves only external forces. Once the system of interest has been identified, it becomes possible to determine
which forces are external and which are internal, a necessary step to employ Newton’s second law. (See Figure 4.22(c).)
Newton’s third law may be used to identify whether forces are exerted between components of a system (internal) or between
the system and something outside (external). As illustrated earlier in this chapter, the system of interest depends on what
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question we need to answer. This choice becomes easier with practice, eventually developing into an almost unconscious
process. Skill in clearly defining systems will be beneficial in later chapters as well.

A diagram showing the system of interest and all of the external forces is called a free-body diagram. Only forces are shown on
free-body diagrams, not acceleration or velocity. We have drawn several of these in worked examples. Figure 4.22(c) shows a
free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Step 3. Once a free-body diagram is drawn, Newton’s second law can be applied to solve the problem. This is done in Figure
4.22(d) for a particular situation. In general, once external forces are clearly identified in free-body diagrams, it should be a
straightforward task to put them into equation form and solve for the unknown, as done in all previous examples. If the problem is
one-dimensional—that is, if all forces are parallel—then they add like scalars. If the problem is two-dimensional, then it must be
broken down into a pair of one-dimensional problems. This is done by projecting the force vectors onto a set of axes chosen for
convenience. As seen in previous examples, the choice of axes can simplify the problem. For example, when an incline is
involved, a set of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always
convenient to make one axis parallel to the direction of motion, if this is known.

Applying Newton’s Second Law

Before you write net force equations, it is critical to determine whether the system is accelerating in a particular direction. If
the acceleration is zero in a particular direction, then the net force is zero in that direction. Similarly, if the acceleration is
nonzero in a particular direction, then the net force is described by the equation: net = .

For example, if the system is accelerating in the horizontal direction, but it is not accelerating in the vertical direction, then
you will have the following conclusions:

(4.57)net = ,

(4.58)net = 0.

You will need this information in order to determine unknown forces acting in a system.

Step 4. As always, check the solution to see whether it is reasonable. In some cases, this is obvious. For example, it is
reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice,
intuition develops gradually through problem solving, and with experience it becomes progressively easier to judge whether an
answer is reasonable. Another way to check your solution is to check the units. If you are solving for force and end up with units
of m/s, then you have made a mistake.

4.7 Further Applications of Newton's Laws of Motion

Learning Objectives
By the end of this section, you will be able to:

• Apply problem-solving techniques to solve for quantities in more complex systems of forces.
• Integrate concepts from kinematics to solve problems using Newton's laws of motion.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

• 3.A.3.1 The student is able to analyze a scenario and make claims (develop arguments, justify assertions) about the
forces exerted on an object by other objects for different types of forces or components of forces. (S.P. 6.4, 7.2)

• 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

• 3.B.1.1 The student is able to predict the motion of an object subject to forces exerted by several objects using an
application of Newton's second law in a variety of physical situations with acceleration in one dimension. (S.P. 6.4, 7.2)

• 3.B.1.3 The student is able to re-express a free-body diagram representation into a mathematical representation and
solve the mathematical representation for the acceleration of the object. (S.P. 1.5, 2.2)

• 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with
motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These
serve also to illustrate some further subtleties of physics and to help build problem-solving skills.
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Example 4.7 Drag Force on a Barge

Suppose two tugboats push on a barge at different angles, as shown in Figure 4.23. The first tugboat exerts a force of

2.7×105 N in the x-direction, and the second tugboat exerts a force of 3.6×105 N in the y-direction.

Figure 4.23 (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only forces acting in the
plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the water supporting it cancel and are not
shown. Since the applied forces are perpendicular, the x- and y-axes are in the same direction as F and F . The problem quickly becomes a

one-dimensional problem along the direction of Fapp , since friction is in the direction opposite to Fapp .

If the mass of the barge is 5.0×106 kg and its acceleration is observed to be 7.5×10−2 m/s2 in the direction shown,

what is the drag force of the water on the barge resisting the motion? (Note: drag force is a frictional force exerted by fluids,
such as air or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure 4.23(a). We will define the total
force of the tugboats on the barge as Fapp so that:

(4.59)Fapp =F + F

Since the barge is flat bottomed, the drag of the water FD will be in the direction opposite to Fapp , as shown in the free-

body diagram in Figure 4.23(b). The system of interest here is the barge, since the forces on it are given as well as its
acceleration. Our strategy is to find the magnitude and direction of the net applied force Fapp , and then apply Newton’s

second law to solve for the drag force FD .

Solution

Since F and F are perpendicular, the magnitude and direction of Fapp are easily found. First, the resultant magnitude

is given by the Pythagorean theorem:

(4.60)
app = F2 + F2

app = (2.7×105 N)2 + (3.6×105 N)2 = 4.5×105 N.

The angle is given by

(4.61)
= tan−1

= tan−1 3.6×105 N

2.7×105 N
= 53º

which we know, because of Newton’s first law, is the same direction as the acceleration. FD is in the opposite direction of

Fapp , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as Fapp , but its

magnitude is slightly less than Fapp . The problem is now one-dimensional. From Figure 4.23(b), we can see that

(4.62)net = app − D.

But Newton’s second law states that
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(4.63)net = .

Thus,

(4.64)app − D = .

This can be solved for the magnitude of the drag force of the water D in terms of known quantities:

(4.65)D = app − .

Substituting known values gives

(4.66)FD = (4.5×105 N) − (5.0×106 kg)(7.5×10–2 m/s2 ) = 7.5×104 N.

The direction of FD has already been determined to be in the direction opposite to Fapp , or at an angle of 53º south of

west.

Discussion

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger
accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively
small for a well-designed hull at low speeds, consistent with the answer to this example, where D is less than 1/600th of

the weight of the ship.

In the earlier example of a tightrope walker we noted that the tensions in wires supporting a mass were equal only because the
angles on either side were equal. Consider the following example, where the angles are not equal; slightly more trigonometry is
involved.

Example 4.8 Different Tensions at Different Angles

Consider the traffic light (mass 15.0 kg) suspended from two wires as shown in Figure 4.24. Find the tension in each wire,
neglecting the masses of the wires.
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Figure 4.24 A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the system are shown here. The
free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical (y) and horizontal (x) axes. The horizontal components
of the tensions must cancel, and the sum of the vertical components of the tensions must equal the weight of the traffic light. (e) The free-body
diagram shows the vertical and horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in Figure 4.24(c). The three forces involved are
not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis
vertical and one horizontal, and the vector projections on it are shown in part (d) of the figure. There are two unknowns in
this problem ( 1 and 2 ), so two equations are needed to find them. These two equations come from applying Newton’s

second law along the vertical and horizontal axes, noting that the net external force is zero along each axis because
acceleration is zero.

Solution

First consider the horizontal or x-axis:

(4.67)net = 2 − 1 = 0.

Thus, as you might expect,
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(4.68)1 = 2 .

This gives us the following relationship between 1 and 2 :

(4.69)
1 cos (30º) = 2 cos (45º).

Thus,

(4.70)
2 = (1.225) 1.

Note that 1 and 2 are not equal in this case, because the angles on either side are not equal. It is reasonable that 2

ends up being greater than 1 , because it is exerted more vertically than 1 .

Now consider the force components along the vertical or y-axis:

(4.71)net = 1 + 2 − = 0.

This implies

(4.72)1 + 2 = .

Substituting the expressions for the vertical components gives

(4.73)
1 sin (30º) + 2 sin (45º) = .

There are two unknowns in this equation, but substituting the expression for 2 in terms of 1 reduces this to one

equation with one unknown:

(4.74)
1(0.500) + (1.225 1)(0.707) = = ,

which yields

(4.75)(1.366) 1 = (15.0 kg)(9.80 m/s2).

Solving this last equation gives the magnitude of 1 to be

(4.76)
1 = 108 N.

Finally, the magnitude of 2 is determined using the relationship between them, 2 = 1.225 1 , found above. Thus we

obtain

(4.77)
2 = 132 N.

Discussion

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either
side are the same (as they were in the earlier example of a tightrope walker).

The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it
must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if
you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about
when the elevator moves upward at a constant speed: will the scale still read more than your weight at rest? Consider the
following example.

Example 4.9 What Does the Bathroom Scale Read in an Elevator?

Figure 4.25 shows a 75.0-kg man (weight of about 165 lb) standing on a bathroom scale in an elevator. Calculate the scale

reading: (a) if the elevator accelerates upward at a rate of 1.20 m/s2 , and (b) if the elevator moves upward at a constant
speed of 1 m/s.
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Figure 4.25 (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are approximately correct for
when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to scale. T is the tension in the supporting

cable, w is the weight of the person, ws is the weight of the scale, we is the weight of the elevator, Fs is the force of the scale on the

person, Fp is the force of the person on the scale, Ft is the force of the scale on the floor of the elevator, and N is the force of the floor

upward on the scale. (b) The free-body diagram shows only the external forces acting on the designated system of interest—the person.

Strategy

If the scale is accurate, its reading will equal p , the magnitude of the force the person exerts downward on it. Figure

4.25(a) shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look
much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn as in
Figure 4.25(b). Analysis of the free-body diagram using Newton’s laws can produce answers to both parts (a) and (b) of this
example, as well as some other questions that might arise. The only forces acting on the person are his weight w and the

upward force of the scale Fs . According to Newton’s third law Fp and Fs are equal in magnitude and opposite in

direction, so that we need to find s in order to find what the scale reads. We can do this, as usual, by applying Newton’s

second law,

(4.78)net = .

From the free-body diagram we see that net = s − , so that

(4.79)s − = .

Solving for s gives an equation with only one unknown:

(4.80)s = + ,

or, because = , simply

(4.81)s = + .

No assumptions were made about the acceleration, and so this solution should be valid for a variety of accelerations in
addition to the ones in this exercise.

Solution for (a)
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In this part of the problem, = 1.20 m/s2 , so that

(4.82)
s = (75.0 kg)(1.20 m/s2 ) + (75.0 kg)(9.80 m/s2),

yielding

(4.83)s = 825 N.

Discussion for (a)

This is about 185 lb. What would the scale have read if he were stationary? Since his acceleration would be zero, the force
of the scale would be equal to his weight:

(4.84)net = = 0 = s −

s = =

s = (75.0 kg)(9.80 m/s2)

s = 735 N.

So, the scale reading in the elevator is greater than his 735-N (165 lb) weight. This means that the scale is pushing up on
the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the
acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly
accelerating elevators.

Solution for (b)

Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight?

For any constant velocity—up, down, or stationary—acceleration is zero because = Δ
Δ

, and Δ = 0 .

Thus,

(4.85)s = + = 0 + .

Now

(4.86)
s = (75.0 kg)(9.80 m/s2),

which gives

(4.87)s = 735 N.

Discussion for (b)

The scale reading is 735 N, which equals the person’s weight. This will be the case whenever the elevator has a constant
velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator
accelerates downward, is negative, and the scale reading is less than the weight of the person, until a constant downward
velocity is reached, at which time the scale reading again becomes equal to the person’s weight. If the elevator is in free-fall and
accelerating downward at , then the scale reading will be zero and the person will appear to be weightless.

Integrating Concepts: Newton’s Laws of Motion and Kinematics
Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical
principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to
solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier
chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the
following steps to approach the problem:

Problem-Solving Strategy

Step 1. Identify which physical principles are involved. Listing the givens and the quantities to be calculated will allow you to
identify the principles involved.
Step 2. Solve the problem using strategies outlined in the text. If these are available for the specific topic, you should refer to
them. You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates
how these strategies are applied to an integrated concept problem.
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Example 4.10 What Force Must a Soccer Player Exert to Reach Top Speed?

A soccer player starts from rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What was his average
acceleration? (b) What average force did he exert backward on the ground to achieve this acceleration? The player’s mass
is 70.0 kg, and air resistance is negligible.

Strategy

1. To solve an integrated concept problem, we must first identify the physical principles involved and identify the chapters
in which they are found. Part (a) of this example considers acceleration along a straight line. This is a topic of
kinematics. Part (b) deals with force, a topic of dynamics found in this chapter.

2. The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied.
These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so forth.

Solution for (a)

We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is Δ = 8.00 m/s . We

are given the elapsed time, and so Δ = 2.50 s . The unknown is acceleration, which can be found from its definition:

(4.88)
= Δ

Δ
.

Substituting the known values yields

(4.89)
= 8.00 m/s

2.50 s

= 3.20 m/s2.

Discussion for (a)

This is an attainable acceleration for an athlete in good condition.

Solution for (b)

Here we are asked to find the average force the player exerts backward to achieve this forward acceleration. Neglecting air
resistance, this would be equal in magnitude to the net external force on the player, since this force causes his acceleration.
Since we now know the player’s acceleration and are given his mass, we can use Newton’s second law to find the force
exerted. That is,

(4.90)net = .

Substituting the known values of and gives

(4.91)
net = (70.0 kg)(3.20 m/s2)

= 224 N.

Discussion for (b)

This is about 50 pounds, a reasonable average force.

This worked example illustrates how to apply problem-solving strategies to situations that include topics from different
chapters. The first step is to identify the physical principles involved in the problem. The second step is to solve for the
unknown using familiar problem-solving strategies. These strategies are found throughout the text, and many worked
examples show how to use them for single topics. You will find these techniques for integrated concept problems useful in
applications of physics outside of a physics course, such as in your profession, in other science disciplines, and in everyday
life. The following problems will build your skills in the broad application of physical principles.

4.8 Extended Topic: The Four Basic Forces—An Introduction

Learning Objectives
By the end of this section, you will be able to:

• Understand the four basic forces that underlie the processes in nature.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.C.4.1 The student is able to make claims about various contact forces between objects based on the microscopic
cause of those forces. (S.P. 6.1)

• 3.C.4.2 The student is able to explain contact forces (tension, friction, normal, buoyant, spring) as arising from
interatomic electric forces and that they therefore have certain directions. (S.P. 6.2)

• 3.G.1.1 The student is able to articulate situations when the gravitational force is the dominant force and when the
electromagnetic, weak, and strong forces can be ignored. (S.P. 7.1)
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One of the most remarkable simplifications in physics is that only four distinct forces account for all known phenomena. In fact,
nearly all of the forces we experience directly are due to only one basic force, called the electromagnetic force. (The gravitational
force is the only force we experience directly that is not electromagnetic.) This is a tremendous simplification of the myriad of
apparently different forces we can list, only a few of which were discussed in the previous section. As we will see, the basic
forces are all thought to act through the exchange of microscopic carrier particles, and the characteristics of the basic forces are
determined by the types of particles exchanged. Action at a distance, such as the gravitational force of Earth on the Moon, is
explained by the existence of a force field rather than by “physical contact.”

The four basic forces are the gravitational force, the electromagnetic force, the weak nuclear force, and the strong nuclear force.
Their properties are summarized in Table 4.2. Since the weak and strong nuclear forces act over an extremely short range, the
size of a nucleus or less, we do not experience them directly, although they are crucial to the very structure of matter. These
forces determine which nuclei are stable and which decay, and they are the basis of the release of energy in certain nuclear
reactions. Nuclear forces determine not only the stability of nuclei, but also the relative abundance of elements in nature. The
properties of the nucleus of an atom determine the number of electrons it has and, thus, indirectly determine the chemistry of the
atom. More will be said of all of these topics in later chapters.

Concept Connections: The Four Basic Forces

The four basic forces will be encountered in more detail as you progress through the text. The gravitational force is defined
in Uniform Circular Motion and Gravitation, electric force in Electric Charge and Electric Field, magnetic force in
Magnetism, and nuclear forces in Radioactivity and Nuclear Physics. On a macroscopic scale, electromagnetism and
gravity are the basis for all forces. The nuclear forces are vital to the substructure of matter, but they are not directly
experienced on the macroscopic scale.

Table 4.2 Properties of the Four Basic Forces[1]

Force Approximate Relative Strengths Range Attraction/Repulsion Carrier Particle

Gravitational 10−38 ∞ attractive only Graviton

Electromagnetic 10 – 2 ∞ attractive and repulsive Photon

Weak nuclear 10 – 13 < 10–18 m attractive and repulsive W+ , W – , Z0

Strong nuclear 1 < 10–15 m attractive and repulsive gluons

The gravitational force is surprisingly weak—it is only because gravity is always attractive that we notice it at all. Our weight is
the gravitational force due to the entire Earth acting on us. On the very large scale, as in astronomical systems, the gravitational
force is the dominant force determining the motions of moons, planets, stars, and galaxies. The gravitational force also affects
the nature of space and time. As we shall see later in the study of general relativity, space is curved in the vicinity of very
massive bodies, such as the Sun, and time actually slows down near massive bodies.

Take a good look at the ranges for the four fundamental forces listed in Table 4.2. The range of the strong nuclear force, 10−15

m, is approximately the size of the nucleus of an atom; the weak nuclear force has an even shorter range. At scales on the order
of 10−10 m, approximately the size of an atom, both nuclear forces are completely dominated by the electromagnetic force.
Notice that this scale is still utterly tiny compared to our everyday experience. At scales that we do experience daily,
electromagnetism tends to be negligible, due to its attractive and repulsive properties canceling each other out. That leaves
gravity, which is usually the strongest of the forces at scales above ~10−4 m, and hence includes our everyday activities, such as
throwing, climbing stairs, and walking.

Electromagnetic forces can be either attractive or repulsive. They are long-range forces, which act over extremely large
distances, and they nearly cancel for macroscopic objects. (Remember that it is the net external force that is important.) If they
did not cancel, electromagnetic forces would completely overwhelm the gravitational force. The electromagnetic force is a
combination of electrical forces (such as those that cause static electricity) and magnetic forces (such as those that affect a
compass needle). These two forces were thought to be quite distinct until early in the 19th century, when scientists began to
discover that they are different manifestations of the same force. This discovery is a classical case of the unification of forces.
Similarly, friction, tension, and all of the other classes of forces we experience directly (except gravity, of course) are due to
electromagnetic interactions of atoms and molecules. It is still convenient to consider these forces separately in specific
applications, however, because of the ways they manifest themselves.

1. The graviton is a proposed particle, though it has not yet been observed by scientists. See the discussion of gravitational

waves later in this section. The particles W+ , W− , and Z0 are called vector bosons; these were predicted by theory and first
observed in 1983. There are eight types of gluons proposed by scientists, and their existence is indicated by meson exchange in
the nuclei of atoms.
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Concept Connections: Unifying Forces

Attempts to unify the four basic forces are discussed in relation to elementary particles later in this text. By “unify” we mean
finding connections between the forces that show that they are different manifestations of a single force. Even if such
unification is achieved, the forces will retain their separate characteristics on the macroscopic scale and may be identical
only under extreme conditions such as those existing in the early universe.

Physicists are now exploring whether the four basic forces are in some way related. Attempts to unify all forces into one come
under the rubric of Grand Unified Theories (GUTs), with which there has been some success in recent years. It is now known
that under conditions of extremely high density and temperature, such as existed in the early universe, the electromagnetic and
weak nuclear forces are indistinguishable. They can now be considered to be different manifestations of one force, called the
electroweak force. So the list of four has been reduced in a sense to only three. Further progress in unifying all forces is proving
difficult—especially the inclusion of the gravitational force, which has the special characteristics of affecting the space and time in
which the other forces exist.

While the unification of forces will not affect how we discuss forces in this text, it is fascinating that such underlying simplicity
exists in the face of the overt complexity of the universe. There is no reason that nature must be simple—it simply is.

Action at a Distance: Concept of a Field
All forces act at a distance. This is obvious for the gravitational force. Earth and the Moon, for example, interact without coming
into contact. It is also true for all other forces. Friction, for example, is an electromagnetic force between atoms that may not
actually touch. What is it that carries forces between objects? One way to answer this question is to imagine that a force field
surrounds whatever object creates the force. A second object (often called a test object) placed in this field will experience a
force that is a function of location and other variables. The field itself is the “thing” that carries the force from one object to
another. The field is defined so as to be a characteristic of the object creating it; the field does not depend on the test object
placed in it. Earth’s gravitational field, for example, is a function of the mass of Earth and the distance from its center,
independent of the presence of other masses. The concept of a field is useful because equations can be written for force fields
surrounding objects (for gravity, this yields = at Earth’s surface), and motions can be calculated from these equations.

(See Figure 4.26.)

Figure 4.26 The electric force field between a positively charged particle and a negatively charged particle. When a positive test charge is placed in the
field, the charge will experience a force in the direction of the force field lines.

Concept Connections: Force Fields

The concept of a force field is also used in connection with electric charge and is presented in Electric Charge and Electric
Field. It is also a useful idea for all the basic forces, as will be seen in Particle Physics. Fields help us to visualize forces
and how they are transmitted, as well as to describe them with precision and to link forces with subatomic carrier particles.

Making Connections: Vector and Scalar Fields

These fields may be either scalar or vector fields. Gravity and electromagnetism are examples of vector fields. A test object
placed in such a field will have both the magnitude and direction of the resulting force on the test object completely defined
by the object’s location in the field. We will later cover examples of scalar fields, which have a magnitude but no direction.

The field concept has been applied very successfully; we can calculate motions and describe nature to high precision using field
equations. As useful as the field concept is, however, it leaves unanswered the question of what carries the force. It has been
proposed in recent decades, starting in 1935 with Hideki Yukawa’s (1907–1981) work on the strong nuclear force, that all forces
are transmitted by the exchange of elementary particles. We can visualize particle exchange as analogous to macroscopic
phenomena such as two people passing a basketball back and forth, thereby exerting a repulsive force without touching one
another. (See Figure 4.27.)
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Figure 4.27 The exchange of masses resulting in repulsive forces. (a) The person throwing the basketball exerts a force Fp1 on it toward the other

person and feels a reaction force FB away from the second person. (b) The person catching the basketball exerts a force Fp2 on it to stop the ball

and feels a reaction force F′B away from the first person. (c) The analogous exchange of a meson between a proton and a neutron carries the

strong nuclear forces Fexch and F′exch between them. An attractive force can also be exerted by the exchange of a mass—if person 2 pulled the

basketball away from the first person as he tried to retain it, then the force between them would be attractive.

This idea of particle exchange deepens rather than contradicts field concepts. It is more satisfying philosophically to think of
something physical actually moving between objects acting at a distance. Table 4.2 lists the exchange or carrier particles, both
observed and proposed, that carry the four forces. But the real fruit of the particle-exchange proposal is that searches for
Yukawa’s proposed particle found it and a number of others that were completely unexpected, stimulating yet more research. All
of this research eventually led to the proposal of quarks as the underlying substructure of matter, which is a basic tenet of GUTs.
If successful, these theories will explain not only forces, but also the structure of matter itself. Yet physics is an experimental
science, so the test of these theories must lie in the domain of the real world. As of this writing, scientists at the CERN laboratory
in Switzerland are starting to test these theories using the world’s largest particle accelerator: the Large Hadron Collider. This
accelerator (27 km in circumference) allows two high-energy proton beams, traveling in opposite directions, to collide. An energy
of 14 trillion electron volts will be available. It is anticipated that some new particles, possibly force carrier particles, will be found.
(See Figure 4.28.) One of the force carriers of high interest that researchers hope to detect is the Higgs boson. The observation
of its properties might tell us why different particles have different masses.

Figure 4.28 The world’s largest particle accelerator spans the border between Switzerland and France. Two beams, traveling in opposite directions
close to the speed of light, collide in a tube similar to the central tube shown here. External magnets determine the beam’s path. Special detectors will
analyze particles created in these collisions. Questions as broad as what is the origin of mass and what was matter like the first few seconds of our
universe will be explored. This accelerator began preliminary operation in 2008. (credit: Frank Hommes)
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acceleration:

carrier particle:

dynamics:

external force:

force:

force field:

free-body diagram:

free-fall:

friction:

Tiny particles also have wave-like behavior, something we will explore more in a later chapter. To better understand force-carrier
particles from another perspective, let us consider gravity. The search for gravitational waves has been going on for a number of
years. Almost 100 years ago, Einstein predicted the existence of these waves as part of his general theory of relativity.
Gravitational waves are created during the collision of massive stars, in black holes, or in supernova explosions—like shock
waves. These gravitational waves will travel through space from such sites much like a pebble dropped into a pond sends out
ripples—except these waves move at the speed of light. A detector apparatus has been built in the U.S., consisting of two large
installations nearly 3000 km apart—one in Washington state and one in Louisiana! The facility is called the Laser Interferometer
Gravitational-Wave Observatory (LIGO). Each installation is designed to use optical lasers to examine any slight shift in the
relative positions of two masses due to the effect of gravity waves. The two sites allow simultaneous measurements of these
small effects to be separated from other natural phenomena, such as earthquakes. Initial operation of the detectors began in
2002, and work is proceeding on increasing their sensitivity. Similar installations have been built in Italy (VIRGO), Germany
(GEO600), and Japan (TAMA300) to provide a worldwide network of gravitational wave detectors.

International collaboration in this area is moving into space with the joint EU/US project LISA (Laser Interferometer Space
Antenna). Earthquakes and other Earthly noises will be no problem for these monitoring spacecraft. LISA will complement LIGO
by looking at much more massive black holes through the observation of gravitational-wave sources emitting much larger
wavelengths. Three satellites will be placed in space above Earth in an equilateral triangle (with 5,000,000-km sides) (Figure
4.29). The system will measure the relative positions of each satellite to detect passing gravitational waves. Accuracy to within
10% of the size of an atom will be needed to detect any waves. The launch of this project might be as early as 2018.

“I’m sure LIGO will tell us something about the universe that we didn’t know before. The history of science tells us that any time

you go where you haven’t been before, you usually find something that really shakes the scientific paradigms of the day. Whether

gravitational wave astrophysics will do that, only time will tell.” —David Reitze, LIGO Input Optics Manager, University of Florida

Figure 4.29 Space-based future experiments for the measurement of gravitational waves. Shown here is a drawing of LISA’s orbit. Each satellite of
LISA will consist of a laser source and a mass. The lasers will transmit a signal to measure the distance between each satellite’s test mass. The
relative motion of these masses will provide information about passing gravitational waves. (credit: NASA)

The ideas presented in this section are but a glimpse into topics of modern physics that will be covered in much greater depth in
later chapters.

Glossary
the rate at which an object’s velocity changes over a period of time

a fundamental particle of nature that is surrounded by a characteristic force field; photons are carrier particles
of the electromagnetic force

the study of how forces affect the motion of objects and systems

a force acting on an object or system that originates outside of the object or system

a push or pull on an object with a specific magnitude and direction; can be represented by vectors; can be expressed
as a multiple of a standard force

a region in which a test particle will experience a force

a sketch showing all of the external forces acting on an object or system; the system is represented by a
dot, and the forces are represented by vectors extending outward from the dot

a situation in which the only force acting on an object is the force due to gravity

a force past each other of objects that are touching; examples include rough surfaces and air resistance
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inertia:

inertial frame of reference:

law of inertia:

mass:

net external force:

Newton’s first law of motion:

Newton’s second law of motion:

Newton’s third law of motion:

normal force:

system:

tension:

thrust:

weight:

the tendency of an object to remain at rest or remain in motion

a coordinate system that is not accelerating; all forces acting in an inertial frame of reference are
real forces, as opposed to fictitious forces that are observed due to an accelerating frame of reference

see Newton’s first law of motion

the quantity of matter in a substance; measured in kilograms

the vector sum of all external forces acting on an object or system; causes a mass to accelerate

in an inertial frame of reference, a body at rest remains at rest, or, if in motion, remains in
motion at a constant velocity unless acted on by a net external force; also known as the law of inertia

the net external force Fnet on an object with mass is proportional to and in the same

direction as the acceleration of the object, a , and inversely proportional to the mass; defined mathematically as

a =
Fnet

whenever one body exerts a force on a second body, the first body experiences a force that is
equal in magnitude and opposite in direction to the force that the first body exerts

the force that a surface applies to an object to support the weight of the object; acts perpendicular to the
surface on which the object rests

defined by the boundaries of an object or collection of objects being observed; all forces originating from outside of
the system are considered external forces

the pulling force that acts along a medium, especially a stretched flexible connector, such as a rope or cable; when a
rope supports the weight of an object, the force on the object due to the rope is called a tension force

a reaction force that pushes a body forward in response to a backward force; rockets, airplanes, and cars are pushed
forward by a thrust reaction force

the force w due to gravity acting on an object of mass ; defined mathematically as: w g , where g is the

magnitude and direction of the acceleration due to gravity

Section Summary

4.1 Development of Force Concept
• Dynamics is the study of how forces affect the motion of objects.
• Force is a push or pull that can be defined in terms of various standards, and it is a vector having both magnitude and

direction.
• External forces are any outside forces that act on a body. A free-body diagram is a drawing of all external forces acting

on a body.

4.2 Newton's First Law of Motion: Inertia
• Newton’s first law of motion states that in an inertial frame of reference a body at rest remains at rest, or, if in motion,

remains in motion at a constant velocity unless acted on by a net external force. This is also known as the law of inertia.
• Inertia is the tendency of an object to remain at rest or remain in motion. Inertia is related to an object’s mass.
• Mass is the quantity of matter in a substance.

4.3 Newton's Second Law of Motion: Concept of a System
• Acceleration, a , is defined as a change in velocity, meaning a change in its magnitude or direction, or both.
• An external force is one acting on a system from outside the system, as opposed to internal forces, which act between

components within the system.
• Newton’s second law of motion states that the acceleration of a system is directly proportional to and in the same direction

as the net external force acting on the system, and inversely proportional to its mass.

• In equation form, Newton’s second law of motion is a =
Fnet .

• This is often written in the more familiar form: Fnet = a .

• The weight w of an object is defined as the force of gravity acting on an object of mass . The object experiences an
acceleration due to gravity g :

w = g.
• If the only force acting on an object is due to gravity, the object is in free fall.
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• Friction is a force that opposes the motion past each other of objects that are touching.

4.4 Newton's Third Law of Motion: Symmetry in Forces
• Newton’s third law of motion represents a basic symmetry in nature. It states: Whenever one body exerts a force on a

second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that the first
body exerts.

• A thrust is a reaction force that pushes a body forward in response to a backward force. Rockets, airplanes, and cars are
pushed forward by a thrust reaction force.

4.5 Normal, Tension, and Other Examples of Force
• When objects rest on a surface, the surface applies a force to the object that supports the weight of the object. This

supporting force acts perpendicular to and away from the surface. It is called a normal force, N .
• When objects rest on a non-accelerating horizontal surface, the magnitude of the normal force is equal to the weight of the

object:

= .
• When objects rest on an inclined plane that makes an angle with the horizontal surface, the weight of the object can be

resolved into components that act perpendicular ( w⊥ ) and parallel ( w ∥ ) to the surface of the plane. These

components can be calculated using:

∥ = sin ( ) = sin ( )

⊥ = cos ( ) = cos ( ).

• The pulling force that acts along a stretched flexible connector, such as a rope or cable, is called tension, T . When a rope
supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object:

= .
• In any inertial frame of reference (one that is not accelerated or rotated), Newton’s laws have the simple forms given in this

chapter and all forces are real forces having a physical origin.

4.6 Problem-Solving Strategies
• To solve problems involving Newton’s laws of motion, follow the procedure described:

1. Draw a sketch of the problem.
2. Identify known and unknown quantities, and identify the system of interest. Draw a free-body diagram, which is a

sketch showing all of the forces acting on an object. The object is represented by a dot, and the forces are
represented by vectors extending in different directions from the dot. If vectors act in directions that are not horizontal
or vertical, resolve the vectors into horizontal and vertical components and draw them on the free-body diagram.

3. Write Newton’s second law in the horizontal and vertical directions and add the forces acting on the object. If the
object does not accelerate in a particular direction (for example, the -direction) then net = 0 . If the object does

accelerate in that direction, net = .

4. Check your answer. Is the answer reasonable? Are the units correct?

4.7 Further Applications of Newton's Laws of Motion
• Newton’s laws of motion can be applied in numerous situations to solve problems of motion.
• Some problems will contain multiple force vectors acting in different directions on an object. Be sure to draw diagrams,

resolve all force vectors into horizontal and vertical components, and draw a free-body diagram. Always analyze the
direction in which an object accelerates so that you can determine whether net = or net = 0 .

• The normal force on an object is not always equal in magnitude to the weight of the object. If an object is accelerating, the
normal force will be less than or greater than the weight of the object. Also, if the object is on an inclined plane, the normal
force will always be less than the full weight of the object.

• Some problems will contain various physical quantities, such as forces, acceleration, velocity, or position. You can apply
concepts from kinematics and dynamics in order to solve these problems of motion.

4.8 Extended Topic: The Four Basic Forces—An Introduction
• The various types of forces that are categorized for use in many applications are all manifestations of the four basic forces

in nature.
• The properties of these forces are summarized in Table 4.2.
• Everything we experience directly without sensitive instruments is due to either electromagnetic forces or gravitational

forces. The nuclear forces are responsible for the submicroscopic structure of matter, but they are not directly sensed
because of their short ranges. Attempts are being made to show all four forces are different manifestations of a single
unified force.

• A force field surrounds an object creating a force and is the carrier of that force.
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Conceptual Questions

4.1 Development of Force Concept
1. Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be
capable of producing the same force repeatedly.

2. What properties do forces have that allow us to classify them as vectors?

4.2 Newton's First Law of Motion: Inertia
3. How are inertia and mass related?

4. What is the relationship between weight and mass? Which is an intrinsic, unchanging property of a body?

4.3 Newton's Second Law of Motion: Concept of a System
5. Which statement is correct? (a) Net force causes motion. (b) Net force causes change in motion. Explain your answer and
give an example.

6. Why can we neglect forces such as those holding a body together when we apply Newton’s second law of motion?

7. Explain how the choice of the “system of interest” affects which forces must be considered when applying Newton’s second
law of motion.

8. Describe a situation in which the net external force on a system is not zero, yet its speed remains constant.

9. A system can have a nonzero velocity while the net external force on it is zero. Describe such a situation.

10. A rock is thrown straight up. What is the net external force acting on the rock when it is at the top of its trajectory?

11. (a) Give an example of different net external forces acting on the same system to produce different accelerations. (b) Give an
example of the same net external force acting on systems of different masses, producing different accelerations. (c) What law
accurately describes both effects? State it in words and as an equation.

12. If the acceleration of a system is zero, are no external forces acting on it? What about internal forces? Explain your answers.

13. If a constant, nonzero force is applied to an object, what can you say about the velocity and acceleration of the object?

14. The gravitational force on the basketball in Figure 4.6 is ignored. When gravity is taken into account, what is the direction of
the net external force on the basketball—above horizontal, below horizontal, or still horizontal?

4.4 Newton's Third Law of Motion: Symmetry in Forces
15. When you take off in a jet aircraft, there is a sensation of being pushed back into the seat. Explain why you move backward
in the seat—is there really a force backward on you? (The same reasoning explains whiplash injuries, in which the head is
apparently thrown backward.)

16. A device used since the 1940s to measure the kick or recoil of the body due to heart beats is the “ballistocardiograph.” What
physics principle(s) are involved here to measure the force of cardiac contraction? How might we construct such a device?

17. Describe a situation in which one system exerts a force on another and, as a consequence, experiences a force that is equal
in magnitude and opposite in direction. Which of Newton’s laws of motion apply?

18. Why does an ordinary rifle recoil (kick backward) when fired? The barrel of a recoilless rifle is open at both ends. Describe
how Newton’s third law applies when one is fired. Can you safely stand close behind one when it is fired?

19. An American football lineman reasons that it is senseless to try to out-push the opposing player, since no matter how hard he
pushes he will experience an equal and opposite force from the other player. Use Newton’s laws and draw a free-body diagram
of an appropriate system to explain how he can still out-push the opposition if he is strong enough.

20. Newton’s third law of motion tells us that forces always occur in pairs of equal and opposite magnitude. Explain how the
choice of the “system of interest” affects whether one such pair of forces cancels.

4.5 Normal, Tension, and Other Examples of Force
21. If a leg is suspended by a traction setup as shown in Figure 4.30, what is the tension in the rope?
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Figure 4.30 A leg is suspended by a traction system in which wires are used to transmit forces. Frictionless pulleys change the direction of the force T

without changing its magnitude.

22. In a traction setup for a broken bone, with pulleys and rope available, how might we be able to increase the force along the
tibia using the same weight? (See Figure 4.30.) (Note that the tibia is the shin bone shown in this image.)

4.7 Further Applications of Newton's Laws of Motion
23. To simulate the apparent weightlessness of space orbit, astronauts are trained in the hold of a cargo aircraft that is
accelerating downward at . Why will they appear to be weightless, as measured by standing on a bathroom scale, in this

accelerated frame of reference? Is there any difference between their apparent weightlessness in orbit and in the aircraft?

24. A cartoon shows the toupee coming off the head of an elevator passenger when the elevator rapidly stops during an upward
ride. Can this really happen without the person being tied to the floor of the elevator? Explain your answer.

4.8 Extended Topic: The Four Basic Forces—An Introduction
25. Explain, in terms of the properties of the four basic forces, why people notice the gravitational force acting on their bodies if it
is such a comparatively weak force.

26. What is the dominant force between astronomical objects? Why are the other three basic forces less significant over these
very large distances?

27. Give a detailed example of how the exchange of a particle can result in an attractive force. (For example, consider one child
pulling a toy out of the hands of another.)
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Problems & Exercises

4.3 Newton's Second Law of Motion: Concept
of a System
You may assume data taken from illustrations is accurate
to three digits.

1. A 63.0-kg sprinter starts a race with an acceleration of

4.20 m/s2 . What is the net external force on him?

2. If the sprinter from the previous problem accelerates at that
rate for 20 m, and then maintains that velocity for the
remainder of the 100-m dash, what will be his time for the
race?

3. A cleaner pushes a 4.50-kg laundry cart in such a way that
the net external force on it is 60.0 N. Calculate the magnitude
of its acceleration.

4. Since astronauts in orbit are apparently weightless, a
clever method of measuring their masses is needed to
monitor their mass gains or losses to adjust diets. One way to
do this is to exert a known force on an astronaut and measure
the acceleration produced. Suppose a net external force of
50.0 N is exerted and the astronaut’s acceleration is

measured to be 0.893 m/s2 . (a) Calculate her mass. (b) By
exerting a force on the astronaut, the vehicle in which they
orbit experiences an equal and opposite force. Discuss how
this would affect the measurement of the astronaut’s
acceleration. Propose a method in which recoil of the vehicle
is avoided.

5. In Figure 4.7, the net external force on the 24-kg mower is
stated to be 51 N. If the force of friction opposing the motion
is 24 N, what force (in newtons) is the person exerting on
the mower? Suppose the mower is moving at 1.5 m/s when
the force is removed. How far will the mower go before
stopping?

6. The same rocket sled drawn in Figure 4.31 is decelerated

at a rate of 196 m/s2 . What force is necessary to produce
this deceleration? Assume that the rockets are off. The mass
of the system is 2100 kg.

Figure 4.31

7. (a) If the rocket sled shown in Figure 4.32 starts with only
one rocket burning, what is the magnitude of its acceleration?
Assume that the mass of the system is 2100 kg, the thrust T

is 2.4×104 N, and the force of friction opposing the motion
is known to be 650 N. (b) Why is the acceleration not one-
fourth of what it is with all rockets burning?

Figure 4.32

8. What is the deceleration of the rocket sled if it comes to
rest in 1.1 s from a speed of 1000 km/h? (Such deceleration
caused one test subject to black out and have temporary
blindness.)

9. Suppose two children push horizontally, but in exactly
opposite directions, on a third child in a wagon. The first child
exerts a force of 75.0 N, the second a force of 90.0 N, friction
is 12.0 N, and the mass of the third child plus wagon is 23.0
kg. (a) What is the system of interest if the acceleration of the
child in the wagon is to be calculated? (b) Draw a free-body
diagram, including all forces acting on the system. (c)
Calculate the acceleration. (d) What would the acceleration
be if friction were 15.0 N?

10. A powerful motorcycle can produce an acceleration of

3.50 m/s2 while traveling at 90.0 km/h. At that speed the
forces resisting motion, including friction and air resistance,
total 400 N. (Air resistance is analogous to air friction. It
always opposes the motion of an object.) What is the
magnitude of the force the motorcycle exerts backward on the
ground to produce its acceleration if the mass of the
motorcycle with rider is 245 kg?

11. The rocket sled shown in Figure 4.33 accelerates at a

rate of 49.0 m/s2 . Its passenger has a mass of 75.0 kg. (a)
Calculate the horizontal component of the force the seat
exerts against his body. Compare this with his weight by
using a ratio. (b) Calculate the direction and magnitude of the
total force the seat exerts against his body.

Figure 4.33

12. Repeat the previous problem for the situation in which the

rocket sled decelerates at a rate of 201 m/s2 . In this
problem, the forces are exerted by the seat and restraining
belts.

13. The weight of an astronaut plus his space suit on the
Moon is only 250 N. How much do they weigh on Earth?
What is the mass on the Moon? On Earth?

14. Suppose the mass of a fully loaded module in which
astronauts take off from the Moon is 10,000 kg. The thrust of
its engines is 30,000 N. (a) Calculate its the magnitude of
acceleration in a vertical takeoff from the Moon. (b) Could it lift
off from Earth? If not, why not? If it could, calculate the
magnitude of its acceleration.
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4.4 Newton's Third Law of Motion: Symmetry in
Forces
15. What net external force is exerted on a 1100-kg artillery
shell fired from a battleship if the shell is accelerated at

2.40 104 m/s2 ? What is the magnitude of the force
exerted on the ship by the artillery shell?

16. A brave but inadequate rugby player is being pushed
backward by an opposing player who is exerting a force of
800 N on him. The mass of the losing player plus equipment

is 90.0 kg, and he is accelerating at 1.20 m/s2 backward.
(a) What is the force of friction between the losing player’s
feet and the grass? (b) What force does the winning player
exert on the ground to move forward if his mass plus
equipment is 110 kg? (c) Draw a sketch of the situation
showing the system of interest used to solve each part. For
this situation, draw a free-body diagram and write the net
force equation.

4.5 Normal, Tension, and Other Examples of
Force
17. Two teams of nine members each engage in a tug of war.
Each of the first team’s members has an average mass of 68
kg and exerts an average force of 1350 N horizontally. Each
of the second team’s members has an average mass of 73 kg
and exerts an average force of 1365 N horizontally. (a) What
is magnitude of the acceleration of the two teams? (b) What is
the tension in the section of rope between the teams?

18. What force does a trampoline have to apply to a 45.0-kg

gymnast to accelerate her straight up at 7.50 m/s2 ? Note
that the answer is independent of the velocity of the
gymnast—she can be moving either up or down, or be
stationary.

19. (a) Calculate the tension in a vertical strand of spider web

if a spider of mass 8.00×10−5 kg hangs motionless on it.

(b) Calculate the tension in a horizontal strand of spider web if
the same spider sits motionless in the middle of it much like
the tightrope walker in Figure 4.17. The strand sags at an
angle of 12º below the horizontal. Compare this with the
tension in the vertical strand (find their ratio).

20. Suppose a 60.0-kg gymnast climbs a rope. (a) What is the
tension in the rope if he climbs at a constant speed? (b) What
is the tension in the rope if he accelerates upward at a rate of

1.50 m/s2 ?

21. Show that, as stated in the text, a force F⊥ exerted on

a flexible medium at its center and perpendicular to its length
(such as on the tightrope wire in Figure 4.17) gives rise to a

tension of magnitude = ⊥

2 sin ( )
.

22. Consider the baby being weighed in Figure 4.34. (a)
What is the mass of the child and basket if a scale reading of
55 N is observed? (b) What is the tension 1 in the cord

attaching the baby to the scale? (c) What is the tension 2 in

the cord attaching the scale to the ceiling, if the scale has a
mass of 0.500 kg? (d) Draw a sketch of the situation
indicating the system of interest used to solve each part. The
masses of the cords are negligible.

Figure 4.34 A baby is weighed using a spring scale.

4.6 Problem-Solving Strategies

23. A 5.00×105-kg rocket is accelerating straight up. Its

engines produce 1.250×107 N of thrust, and air resistance

is 4.50×106 N . What is the rocket’s acceleration? Explicitly
show how you follow the steps in the Problem-Solving
Strategy for Newton’s laws of motion.

24. The wheels of a midsize car exert a force of 2100 N
backward on the road to accelerate the car in the forward
direction. If the force of friction including air resistance is 250

N and the acceleration of the car is 1.80 m/s2 , what is the
mass of the car plus its occupants? Explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’s
laws of motion. For this situation, draw a free-body diagram
and write the net force equation.

25. Calculate the force a 70.0-kg high jumper must exert on
the ground to produce an upward acceleration 4.00 times the
acceleration due to gravity. Explicitly show how you follow the
steps in the Problem-Solving Strategy for Newton’s laws of
motion.

26. When landing after a spectacular somersault, a 40.0-kg
gymnast decelerates by pushing straight down on the mat.
Calculate the force she must exert if her deceleration is 7.00
times the acceleration due to gravity. Explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’s
laws of motion.
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27. A freight train consists of two 8.00×104 -kg engines

and 45 cars with average masses of 5.50×104 kg . (a)

What force must each engine exert backward on the track to

accelerate the train at a rate of 5.00×10–2 m/s2 if the force

of friction is 7.50×105 N , assuming the engines exert
identical forces? This is not a large frictional force for such a
massive system. Rolling friction for trains is small, and
consequently trains are very energy-efficient transportation
systems. (b) What is the force in the coupling between the
37th and 38th cars (this is the force each exerts on the other),
assuming all cars have the same mass and that friction is
evenly distributed among all of the cars and engines?

28. Commercial airplanes are sometimes pushed out of the
passenger loading area by a tractor. (a) An 1800-kg tractor

exerts a force of 1.75×104 N backward on the pavement,
and the system experiences forces resisting motion that total

2400 N. If the acceleration is 0.150 m/s2 , what is the mass
of the airplane? (b) Calculate the force exerted by the tractor
on the airplane, assuming 2200 N of the friction is
experienced by the airplane. (c) Draw two sketches showing
the systems of interest used to solve each part, including the
free-body diagrams for each.

29. A 1100-kg car pulls a boat on a trailer. (a) What total force
resists the motion of the car, boat, and trailer, if the car exerts
a 1900-N force on the road and produces an acceleration of

0.550 m/s2 ? The mass of the boat plus trailer is 700 kg. (b)
What is the force in the hitch between the car and the trailer if
80% of the resisting forces are experienced by the boat and
trailer?

30. (a) Find the magnitudes of the forces F1 and F2 that

add to give the total force Ftot shown in Figure 4.35. This

may be done either graphically or by using trigonometry. (b)
Show graphically that the same total force is obtained
independent of the order of addition of F1 and F2 . (c) Find

the direction and magnitude of some other pair of vectors that
add to give Ftot . Draw these to scale on the same drawing

used in part (b) or a similar picture.

Figure 4.35

31. Two children pull a third child on a snow saucer sled
exerting forces F1 and F2 as shown from above in Figure

4.36. Find the acceleration of the 49.00-kg sled and child
system. Note that the direction of the frictional force is
unspecified; it will be in the opposite direction of the sum of
F1 and F2 .

Figure 4.36 An overhead view of the horizontal forces acting on a child’s
snow saucer sled.

32. Suppose your car was mired deeply in the mud and you
wanted to use the method illustrated in Figure 4.37 to pull it
out. (a) What force would you have to exert perpendicular to
the center of the rope to produce a force of 12,000 N on the
car if the angle is 2.00°? In this part, explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’s
laws of motion. (b) Real ropes stretch under such forces.
What force would be exerted on the car if the angle increases
to 7.00° and you still apply the force found in part (a) to its
center?

Figure 4.37

33. What force is exerted on the tooth in Figure 4.38 if the
tension in the wire is 25.0 N? Note that the force applied to
the tooth is smaller than the tension in the wire, but this is
necessitated by practical considerations of how force can be
applied in the mouth. Explicitly show how you follow steps in
the Problem-Solving Strategy for Newton’s laws of motion.

Figure 4.38 Braces are used to apply forces to teeth to realign them.
Shown in this figure are the tensions applied by the wire to the
protruding tooth. The total force applied to the tooth by the wire, Fapp ,

points straight toward the back of the mouth.

34. Figure 4.39 shows Superhero and Trusty Sidekick
hanging motionless from a rope. Superhero’s mass is 90.0
kg, while Trusty Sidekick’s is 55.0 kg, and the mass of the
rope is negligible. (a) Draw a free-body diagram of the
situation showing all forces acting on Superhero, Trusty
Sidekick, and the rope. (b) Find the tension in the rope above
Superhero. (c) Find the tension in the rope between
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Superhero and Trusty Sidekick. Indicate on your free-body
diagram the system of interest used to solve each part.

Figure 4.39 Superhero and Trusty Sidekick hang motionless on a rope
as they try to figure out what to do next. Will the tension be the same
everywhere in the rope?

35. A nurse pushes a cart by exerting a force on the handle at
a downward angle 35.0º below the horizontal. The loaded
cart has a mass of 28.0 kg, and the force of friction is 60.0 N.
(a) Draw a free-body diagram for the system of interest. (b)
What force must the nurse exert to move at a constant
velocity?

36. Construct Your Own Problem Consider the tension in
an elevator cable during the time the elevator starts from rest
and accelerates its load upward to some cruising velocity.
Taking the elevator and its load to be the system of interest,
draw a free-body diagram. Then calculate the tension in the
cable. Among the things to consider are the mass of the
elevator and its load, the final velocity, and the time taken to
reach that velocity.

37. Construct Your Own Problem Consider two people
pushing a toboggan with four children on it up a snow-
covered slope. Construct a problem in which you calculate
the acceleration of the toboggan and its load. Include a free-
body diagram of the appropriate system of interest as the
basis for your analysis. Show vector forces and their
components and explain the choice of coordinates. Among
the things to be considered are the forces exerted by those
pushing, the angle of the slope, and the masses of the
toboggan and children.

38. Unreasonable Results (a) Repeat Exercise 4.29, but

assume an acceleration of 1.20 m/s2 is produced. (b) What

is unreasonable about the result? (c) Which premise is
unreasonable, and why is it unreasonable?

39. Unreasonable Results (a) What is the initial acceleration

of a rocket that has a mass of 1.50×106 kg at takeoff, the

engines of which produce a thrust of 2.00×106 N ? Do not
neglect gravity. (b) What is unreasonable about the result?
(This result has been unintentionally achieved by several real
rockets.) (c) Which premise is unreasonable, or which
premises are inconsistent? (You may find it useful to compare
this problem to the rocket problem earlier in this section.)

4.7 Further Applications of Newton's Laws of
Motion

40. A flea jumps by exerting a force of 1.20×10−5 N

straight down on the ground. A breeze blowing on the flea

parallel to the ground exerts a force of 0.500×10−6 N on
the flea. Find the direction and magnitude of the acceleration

of the flea if its mass is 6.00×10−7 kg . Do not neglect the

gravitational force.

41. Two muscles in the back of the leg pull upward on the
Achilles tendon, as shown in Figure 4.40. (These muscles
are called the medial and lateral heads of the gastrocnemius
muscle.) Find the magnitude and direction of the total force
on the Achilles tendon. What type of movement could be
caused by this force?

Figure 4.40 Achilles tendon

42. A 76.0-kg person is being pulled away from a burning
building as shown in Figure 4.41. Calculate the tension in the
two ropes if the person is momentarily motionless. Include a
free-body diagram in your solution.
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Figure 4.41 The force T2 needed to hold steady the person being

rescued from the fire is less than her weight and less than the force
T1 in the other rope, since the more vertical rope supports a greater

part of her weight (a vertical force).

43. Integrated Concepts A 35.0-kg dolphin decelerates from
12.0 to 7.50 m/s in 2.30 s to join another dolphin in play. What
average force was exerted to slow him if he was moving
horizontally? (The gravitational force is balanced by the
buoyant force of the water.)

44. Integrated Concepts When starting a foot race, a
70.0-kg sprinter exerts an average force of 650 N backward
on the ground for 0.800 s. (a) What is his final speed? (b)
How far does he travel?

45. Integrated Concepts A large rocket has a mass of

2.00×106 kg at takeoff, and its engines produce a thrust of

3.50×107 N . (a) Find its initial acceleration if it takes off
vertically. (b) How long does it take to reach a velocity of 120
km/h straight up, assuming constant mass and thrust? (c) In
reality, the mass of a rocket decreases significantly as its fuel
is consumed. Describe qualitatively how this affects the
acceleration and time for this motion.

46. Integrated Concepts A basketball player jumps straight
up for a ball. To do this, he lowers his body 0.300 m and then
accelerates through this distance by forcefully straightening
his legs. This player leaves the floor with a vertical velocity
sufficient to carry him 0.900 m above the floor. (a) Calculate
his velocity when he leaves the floor. (b) Calculate his
acceleration while he is straightening his legs. He goes from
zero to the velocity found in part (a) in a distance of 0.300 m.
(c) Calculate the force he exerts on the floor to do this, given
that his mass is 110 kg.

47. Integrated Concepts A 2.50-kg fireworks shell is fired
straight up from a mortar and reaches a height of 110 m. (a)
Neglecting air resistance (a poor assumption, but we will
make it for this example), calculate the shell’s velocity when it
leaves the mortar. (b) The mortar itself is a tube 0.450 m long.
Calculate the average acceleration of the shell in the tube as
it goes from zero to the velocity found in (a). (c) What is the

average force on the shell in the mortar? Express your
answer in newtons and as a ratio to the weight of the shell.

48. Integrated Concepts Repeat Exercise 4.47 for a shell
fired at an angle 10.0º from the vertical.

49. Integrated Concepts An elevator filled with passengers
has a mass of 1700 kg. (a) The elevator accelerates upward

from rest at a rate of 1.20 m/s2 for 1.50 s. Calculate the
tension in the cable supporting the elevator. (b) The elevator
continues upward at constant velocity for 8.50 s. What is the
tension in the cable during this time? (c) The elevator

decelerates at a rate of 0.600 m/s2 for 3.00 s. What is the
tension in the cable during deceleration? (d) How high has
the elevator moved above its original starting point, and what
is its final velocity?

50. Unreasonable Results (a) What is the final velocity of a
car originally traveling at 50.0 km/h that decelerates at a rate

of 0.400 m/s2 for 50.0 s? (b) What is unreasonable about
the result? (c) Which premise is unreasonable, or which
premises are inconsistent?

51. Unreasonable Results A 75.0-kg man stands on a
bathroom scale in an elevator that accelerates from rest to
30.0 m/s in 2.00 s. (a) Calculate the scale reading in newtons
and compare it with his weight. (The scale exerts an upward
force on him equal to its reading.) (b) What is unreasonable
about the result? (c) Which premise is unreasonable, or which
premises are inconsistent?

4.8 Extended Topic: The Four Basic
Forces—An Introduction
52. (a) What is the strength of the weak nuclear force relative
to the strong nuclear force? (b) What is the strength of the
weak nuclear force relative to the electromagnetic force?
Since the weak nuclear force acts at only very short
distances, such as inside nuclei, where the strong and
electromagnetic forces also act, it might seem surprising that
we have any knowledge of it at all. We have such knowledge
because the weak nuclear force is responsible for beta decay,
a type of nuclear decay not explained by other forces.

53. (a) What is the ratio of the strength of the gravitational
force to that of the strong nuclear force? (b) What is the ratio
of the strength of the gravitational force to that of the weak
nuclear force? (c) What is the ratio of the strength of the
gravitational force to that of the electromagnetic force? What
do your answers imply about the influence of the gravitational
force on atomic nuclei?

54. What is the ratio of the strength of the strong nuclear
force to that of the electromagnetic force? Based on this ratio,
you might expect that the strong force dominates the nucleus,
which is true for small nuclei. Large nuclei, however, have
sizes greater than the range of the strong nuclear force. At
these sizes, the electromagnetic force begins to affect nuclear
stability. These facts will be used to explain nuclear fusion
and fission later in this text.
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Test Prep for AP® Courses

4.1 Development of Force Concept
1.

Figure 4.42 The figure above represents a racetrack with
semicircular sections connected by straight sections. Each
section has length d, and markers along the track are spaced
d/4 apart. Two people drive cars counterclockwise around the
track, as shown. Car X goes around the curves at constant
speed vc, increases speed at constant acceleration for half of
each straight section to reach a maximum speed of 2vc, then
brakes at constant acceleration for the other half of each
straight section to return to speed vc. Car Y also goes around
the curves at constant speed vc, increases its speed at
constant acceleration for one-fourth of each straight section to
reach the same maximum speed 2vc, stays at that speed for
half of each straight section, then brakes at constant
acceleration for the remaining fourth of each straight section
to return to speed vc.

(a) On the figures below, draw an arrow showing the direction
of the net force on each of the cars at the positions noted by
the dots. If the net force is zero at any position, label the dot
with 0.

Figure 4.43

The position of the six dots on the Car Y track on the right are
as follows:

The first dot on the left center of the track is at the same
position as it is on the Car X track.
The second dot is just slight to the right of the Car X dot (less
than a dash) past three perpendicular hash marks moving to
the right.
The third dot is about one and two-thirds perpendicular hash
marks to the right of the center top perpendicular has mark.
The fourth dot is in the same position as the Car X figure
(one perpendicular hash mark above the center right
perpendicular hash mark).
The fifth dot is about one and two-third perpendicular hash
marks to the right of the center bottom perpendicular hash
mark.
The sixth dot is in the same position as the Car Y dot (one
and two third perpendicular hash marks to the left of the
center bottom hash mark).

(b)

i. Indicate which car, if either, completes one trip around the
track in less time, and justify your answer qualitatively without
using equations.

ii. Justify your answer about which car, if either, completes
one trip around the track in less time quantitatively with
appropriate equations.

2. Which of the following is an example of a body exerting a
force on itself?

a. a person standing up from a seated position
b. a car accelerating while driving
c. both of the above
d. none of the above

3. A hawk accelerates as it glides in the air. Does the force
causing the acceleration come from the hawk itself? Explain.

4. What causes the force that moves a boat forward when
someone rows it?

a. The force is caused by the rower’s arms.
b. The force is caused by an interaction between the oars

and gravity.
c. The force is caused by an interaction between the oars

and the water the boat is traveling in.
d. The force is caused by friction.

4.4 Newton's Third Law of Motion: Symmetry in
Forces
5. What object or objects commonly exert forces on the
following objects in motion? (a) a soccer ball being kicked, (b)
a dolphin jumping, (c) a parachutist drifting to Earth.

6. A ball with a mass of 0.25 kg hits a gym ceiling with a force
of 78.0 N. What happens next?

a. The ball accelerates downward with a force of 80.5 N.
b. The ball accelerates downward with a force of 78.0 N.
c. The ball accelerates downward with a force of 2.45 N.
d. It depends on the height of the ceiling.

7. Which of the following is true?
a. Earth exerts a force due to gravity on your body, and

your body exerts a smaller force on the Earth, because
your mass is smaller than the mass of the Earth.

b. The Moon orbits the Earth because the Earth exerts a
force on the Moon and the Moon exerts a force equal in
magnitude and direction on the Earth.

c. A rocket taking off exerts a force on the Earth equal to
the force the Earth exerts on the rocket.

d. An airplane cruising at a constant speed is not affected
by gravity.

8. Stationary skater A pushes stationary skater B, who then
accelerates at 5.0 m/s2. Skater A does not move. Since
forces act in action-reaction pairs, explain why Skater A did
not move?

9. The current in a river exerts a force of 9.0 N on a balloon
floating in the river. A wind exerts a force of 13.0 N on the
balloon in the opposite direction. Draw a free-body diagram to
show the forces acting on the balloon. Use your free-body
diagram to predict the effect on the balloon.

10. A force is applied to accelerate an object on a smooth icy
surface. When the force stops, which of the following will be
true? (Assume zero friction.)

a. The object’s acceleration becomes zero.
b. The object’s speed becomes zero.
c. The object’s acceleration continues to increase at a

constant rate.
d. The object accelerates, but in the opposite direction.

11. A parachutist’s fall to Earth is determined by two opposing
forces. A gravitational force of 539 N acts on the parachutist.
After 2 s, she opens her parachute and experiences an air
resistance of 615 N. At what speed is the parachutist falling
after 10 s?
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12. A flight attendant pushes a cart down the aisle of a plane
in flight. In determining the acceleration of the cart relative to
the plane, which factor do you not need to consider?

a. The friction of the cart’s wheels.
b. The force with which the flight attendant’s feet push on

the floor.
c. The velocity of the plane.
d. The mass of the items in the cart.

13. A landscaper is easing a wheelbarrow full of soil down a
hill. Define the system you would analyze and list all the
forces that you would need to include to calculate the
acceleration of the wheelbarrow.

14. Two water-skiers, with masses of 48 kg and 61 kg, are
preparing to be towed behind the same boat. When the boat
accelerates, the rope the skiers hold onto accelerates with it
and exerts a net force of 290 N on the skiers. At what rate will
the skiers accelerate?

a. 10.8 m/s2

b. 2.7 m/s2

c. 6.0 m/s2 and 4.8 m/s2

d. 5.3 m/s2

15. A figure skater has a mass of 40 kg and her partner's
mass is 50 kg. She pushes against the ice with a force of 120
N, causing her and her partner to move forward. Calculate the
pair’s acceleration. Assume that all forces opposing the
motion, such as friction and air resistance, total 5.0 N.

4.5 Normal, Tension, and Other Examples of
Force
16. An archer shoots an arrow straight up with a force of 24.5
N. The arrow has a mass of 0.4 kg. What is the force of
gravity on the arrow?

a. 9.8 m/s2

b. 9.8 N
c. 61.25 N
d. 3.9 N

17. A cable raises a mass of 120.0 kg with an acceleration of
1.3 m/s2. What force of tension is in the cable?

18. A child pulls a wagon along a grassy field. Define the
system, the pairs of forces at work, and the results.

19. Two teams are engaging in a tug–of-war. The rope
suddenly snaps. Which statement is true about the forces
involved?

a. The forces exerted by the two teams are no longer
equal; the teams will accelerate in opposite directions as
a result.

b. The forces exerted by the players are no longer
balanced by the force of tension in the rope; the teams
will accelerate in opposite directions as a result.

c. The force of gravity balances the forces exerted by the
players; the teams will fall as a result

d. The force of tension in the rope is transferred to the
players; the teams will accelerate in opposite directions
as a result.

20. The following free-body diagram represents a toboggan
on a hill. What acceleration would you expect, and why?

Figure 4.44
a. Acceleration down the hill; the force due to being

pushed, together with the downhill component of gravity,
overcomes the opposing force of friction.

b. Acceleration down the hill; friction is less than the
opposing component of force due to gravity.

c. No movement; friction is greater than the force due to
being pushed.

d. It depends on how strong the force due to friction is. p

21. Draw a free-body diagram to represent the forces acting
on a kite on a string that is floating stationary in the air. Label
the forces in your diagram.

22. A car is sliding down a hill with a slope of 20°. The mass
of the car is 965 kg. When a cable is used to pull the car up
the slope, a force of 4215 N is applied. What is the car’s
acceleration, ignoring friction?

4.6 Problem-Solving Strategies
23. A toboggan with two riders has a total mass of 85.0 kg. A
third person is pushing the toboggan with a force of 42.5 N at
the top of a hill with an angle of 15°. The force of friction on
the toboggan is 31.0 N. Which statement describes an
accurate free-body diagram to represent the situation?

a. An arrow of magnitude 10.5 N points down the slope of
the hill.

b. An arrow of magnitude 833 N points straight down.
c. An arrow of magnitude 833 N points perpendicular to

the slope of the hill.
d. An arrow of magnitude 73.5 N points down the slope of

the hill.

24. A mass of 2.0 kg is suspended from the ceiling of an
elevator by a rope. What is the tension in the rope when the
elevator (i) accelerates upward at 1.5 m/s2? (ii) accelerates
downward at 1.5 m/s2?

a. (i) 22.6 N; (ii) 16.6 N
b. Because the mass is hanging from the elevator itself,

the tension in the rope will not change in either case.
c. (i) 22.6 N; (ii) 19.6 N
d. (i) 16.6 N; (ii) 19.6 N

25. Which statement is true about drawing free-body
diagrams?
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a. Drawing a free-body diagram should be the last step in
solving a problem about forces.

b. Drawing a free-body diagram helps you compare forces
quantitatively.

c. The forces in a free-body diagram should always
balance.

d. Drawing a free-body diagram can help you determine
the net force.

4.7 Further Applications of Newton's Laws of
Motion
26. A basketball player jumps as he shoots the ball. Describe
the forces that are acting on the ball and on the basketball
player. What are the results?

27. Two people push on a boulder to try to move it. The mass
of the boulder is 825 kg. One person pushes north with a
force of 64 N. The other pushes west with a force of 38 N.
Predict the magnitude of the acceleration of the boulder.
Assume that friction is negligible.

28.

Figure 4.45 The figure shows the forces exerted on a block that
is sliding on a horizontal surface: the gravitational force of 40
N, the 40 N normal force exerted by the surface, and a
frictional force exerted to the left. The coefficient of friction
between the block and the surface is 0.20. The acceleration
of the block is most nearly

a. 1.0 m/s2 to the right
b. 1.0 m/s2 to the left
c. 2.0 m/s2 to the right
d. 2.0 m/s2 to the left

4.8 Extended Topic: The Four Basic
Forces—An Introduction
29. Which phenomenon correctly describes the direction and
magnitude of normal forces?

a. electromagnetic attraction
b. electromagnetic repulsion
c. gravitational attraction
d. gravitational repulsion

30. Explain which of the four fundamental forces is
responsible for a ball bouncing off the ground after it hits, and
why this force has this effect.

31. Which of the basic forces best explains tension in a rope
being pulled between two people? Is the acting force causing
attraction or repulsion in this instance?

a. gravity; attraction
b. electromagnetic; attraction
c. weak and strong nuclear; attraction
d. weak and strong nuclear; repulsion

32. Explain how interatomic electric forces produce the
normal force, and why it has the direction it does.

33. The gravitational force is the weakest of the four basic
forces. In which case can the electromagnetic, strong, and
weak forces be ignored because the gravitational force is so
strongly dominant?

a. a person jumping on a trampoline
b. a rocket blasting off from Earth
c. a log rolling down a hill
d. all of the above

34. Describe a situation in which gravitational force is the
dominant force. Why can the other three basic forces be
ignored in the situation you described?
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5 FURTHER APPLICATIONS OF NEWTON'S
LAWS: FRICTION, DRAG, AND ELASTICITY

Figure 5.1 Total hip replacement surgery has become a common procedure. The head (or ball) of the patient's femur fits into a cup that has a hard
plastic-like inner lining. (credit: National Institutes of Health, via Wikimedia Commons)

Chapter Outline
5.1. Friction

5.2. Drag Forces

5.3. Elasticity: Stress and Strain

Connection for AP® Courses
Have you ever wondered why it is difficult to walk on a smooth surface like ice? The interaction between you and the surface is a
result of forces that affect your motion. In the previous chapter, you learned Newton's laws of motion and examined how net force
affects the motion, position and shape of an object. Now we will look at some interesting and common forces that will provide
further applications of Newton's laws of motion.

The information presented in this chapter supports learning objectives covered under Big Idea 3 of the AP Physics Curriculum
Framework, which refer to the nature of forces and their roles in interactions among objects. The chapter discusses examples of
specific contact forces, such as friction, air or liquid drag, and elasticity that may affect the motion or shape of an object. It also
discusses the nature of forces on both macroscopic and microscopic levels (Enduring Understanding 3.C and Essential
Knowledge 3.C.4). In addition, Newton's laws are applied to describe the motion of an object (Enduring Understanding 3.B) and
to examine relationships between contact forces and other forces exerted on an object (Enduring Understanding 3.A, 3.A.3 and
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Essential Knowledge 3.A.4). The examples in this chapter give you practice in using vector properties of forces (Essential
Knowledge 3.A.2) and free-body diagrams (Essential Knowledge 3.B.2) to determine net force (Essential Knowledge 3.B.1).

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.2 Forces are described by vectors.

Essential Knowledge 3.A.3 A force exerted on an object is always due to the interaction of that object with another object.

Essential Knowledge 3.A.4 If one object exerts a force on a second object, the second object always exerts a force of equal
magnitude on the first object in the opposite direction.

Enduring Understanding 3.B Classically, the acceleration of an object interacting with other objects can be predicted by using

→ =
∑

→

.

Essential Knowledge 3.B.1 If an object of interest interacts with several other objects, the net force is the vector sum of the
individual forces.

Essential Knowledge 3.B.2 Free-body diagrams are useful tools for visualizing forces being exerted on a single object and writing
the equations that represent a physical situation.

Enduring Understanding 3.C At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance)
forces or contact forces.

Essential Knowledge 3.C.4 Contact forces result from the interaction of one object touching another object, and they arise from
interatomic electric forces. These forces include tension, friction, normal, spring (Physics 1), and buoyant (Physics 2).

5.1 Friction

Learning Objectives
By the end of this section, you will be able to:

• Discuss the general characteristics of friction.
• Describe the various types of friction.
• Calculate the magnitudes of static and kinetic frictional forces.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.C.4.1 The student is able to make claims about various contact forces between objects based on the microscopic
cause of those forces. (S.P. 6.1)

• 3.C.4.2 The student is able to explain contact forces (tension, friction, normal, buoyant, spring) as arising from
interatomic electric forces and that they therefore have certain directions. (S.P. 6.2)

Friction is a force that is around us all the time that opposes relative motion between systems in contact but also allows us to
move (which you have discovered if you have ever tried to walk on ice). While a common force, the behavior of friction is actually
very complicated and is still not completely understood. We have to rely heavily on observations for whatever understandings we
can gain. However, we can still deal with its more elementary general characteristics and understand the circumstances in which
it behaves.

Friction

Friction is a force that opposes relative motion between systems in contact.

One of the simpler characteristics of friction is that it is parallel to the contact surface between systems and always in a direction
that opposes motion or attempted motion of the systems relative to each other. If two systems are in contact and moving relative
to one another, then the friction between them is called kinetic friction. For example, friction slows a hockey puck sliding on ice.
But when objects are stationary, static friction can act between them; the static friction is usually greater than the kinetic friction
between the objects.

Kinetic Friction

If two systems are in contact and moving relative to one another, then the friction between them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you may push harder and harder on the crate and
not move it at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite
direction of your push. But if you finally push hard enough, the crate seems to slip suddenly and starts to move. Once in motion it
is easier to keep it in motion than it was to get it started, indicating that the kinetic friction force is less than the static friction
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force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it started and also to
keep it moving. Furthermore, if you oiled the concrete you would find it to be easier to get the crate started and keep it going (as
you might expect).

Figure 5.2 is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of
these surfaces shows them to be rough. So when you push to get an object moving (in this case, a crate), you must raise the
object until it can skip along with just the tips of the surface hitting, break off the points, or do both. A considerable force can be
resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on
the crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules
of the two objects, which explain the dependence of friction on the nature of the substances. Adhesion varies with substances in
contact and is a complicated aspect of surface physics. Once an object is moving, there are fewer points of contact (fewer
molecules adhering), so less force is required to keep the object moving. At small but nonzero speeds, friction is nearly
independent of speed.

Figure 5.2 Frictional forces, such as , always oppose motion or attempted motion between objects in contact. Friction arises in part because of the

roughness of the surfaces in contact, as seen in the expanded view. In order for the object to move, it must rise to where the peaks can skip along the
bottom surface. Thus a force is required just to set the object in motion. Some of the peaks will be broken off, also requiring a force to maintain motion.
Much of the friction is actually due to attractive forces between molecules making up the two objects, so that even perfectly smooth surfaces are not
friction-free. Such adhesive forces also depend on the substances the surfaces are made of, explaining, for example, why rubber-soled shoes slip less
than those with leather soles.

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for when there is motion
(kinetic friction).

When there is no motion between the objects, the magnitude of static friction fs is

(5.1)s ≤ s ,

where s is the coefficient of static friction and is the magnitude of the normal force (the force perpendicular to the surface).

Magnitude of Static Friction

Magnitude of static friction s is

(5.2)s ≤ s ,

where s is the coefficient of static friction and is the magnitude of the normal force.

The symbol ≤ means less than or equal to, implying that static friction can have a minimum and a maximum value of s .

Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit.
Once the applied force exceeds s(max) , the object will move. Thus

(5.3)
s(max) = s .

Once an object is moving, the magnitude of kinetic friction f
k

is given by

(5.4)
k = k ,

where k is the coefficient of kinetic friction. A system in which k = k is described as a system in which friction behaves

simply.

Magnitude of Kinetic Friction

The magnitude of kinetic friction k is given by
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(5.5)
k = k ,

where k is the coefficient of kinetic friction.

As seen in Table 5.1, the coefficients of kinetic friction are less than their static counterparts. That values of in Table 5.1 are

stated to only one or, at most, two digits is an indication of the approximate description of friction given by the above two
equations.

Table 5.1 Coefficients of Static and Kinetic Friction

System Static friction μs Kinetic friction μ
k

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.7 0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.4 0.02

The equations given earlier include the dependence of friction on materials and the normal force. The direction of friction is
always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if
the crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force would be equal to its

weight, = = (100 kg)(9.80 m/s2) = 980 N , perpendicular to the floor. If the coefficient of static friction is 0.45, you

would have to exert a force parallel to the floor greater than s(max) = s = (0.45)(980 N) = 440 N to move the crate.

Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only 290 N (

k = k = (0.30)(980 N) = 290 N ) would keep it moving at a constant speed. If the floor is lubricated, both coefficients

are considerably less than they would be without lubrication. Coefficient of friction is a unit less quantity with a magnitude usually
between 0 and 1.0. The coefficient of the friction depends on the two surfaces that are in contact.

Take-Home Experiment

Find a small plastic object (such as a food container) and slide it on a kitchen table by giving it a gentle tap. Now spray water
on the table, simulating a light shower of rain. What happens now when you give the object the same-sized tap? Now add a
few drops of (vegetable or olive) oil on the surface of the water and give the same tap. What happens now? This latter
situation is particularly important for drivers to note, especially after a light rain shower. Why?

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have
much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which are
connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is a
ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage,
which provides a smooth, almost glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A
damaged or arthritic joint can be replaced by an artificial joint (Figure 5.3). These replacements can be made of metals
(stainless steel or titanium) or plastic (polyethylene), also with very small coefficients of friction.
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Figure 5.3 Artificial knee replacement is a procedure that has been performed for more than 20 years. In this figure, we see the post-op x rays of the
right knee joint replacement. (credit: Mike Baird, Flickr)

Other natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found
between organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a
person moves. Artificial lubricants are also common in hospitals and doctor's clinics. For example, when ultrasonic imaging is
carried out, the gel that couples the transducer to the skin also serves to to lubricate the surface between the transducer and the
skin—thereby reducing the coefficient of friction between the two surfaces. This allows the transducer to mover freely over the
skin.

Example 5.1 Skiing Exercise

A skier with a mass of 62 kg is sliding down a snowy slope. Find the coefficient of kinetic friction for the skier if friction is
known to be 45.0 N.

Strategy

The magnitude of kinetic friction was given in to be 45.0 N. Kinetic friction is related to the normal force N as k = k ;

thus, the coefficient of kinetic friction can be found if we can find the normal force of the skier on a slope. The normal force is
always perpendicular to the surface, and since there is no motion perpendicular to the surface, the normal force should
equal the component of the skier's weight perpendicular to the slope. (See the skier and free-body diagram in Figure 5.4.)
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Figure 5.4 The motion of the skier and friction are parallel to the slope and so it is most convenient to project all forces onto a coordinate system
where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). N (the normal force) is perpendicular to the

slope, and f (the friction) is parallel to the slope, but w (the skier's weight) has components along both axes, namely w⊥ and W // . N is

equal in magnitude to w⊥ , so there is no motion perpendicular to the slope. However, f is less than W // in magnitude, so there is

acceleration down the slope (along the x-axis).

That is,

(5.6)= ⊥ = cos 25º = cos 25º.

Substituting this into our expression for kinetic friction, we get

(5.7)
k = k cos 25º,

which can now be solved for the coefficient of kinetic friction k .

Solution

Solving for k gives

(5.8)
k = k = k

cos 25º

= k

cos 25º.

Substituting known values on the right-hand side of the equation,

(5.9)
k = 45.0 N

(62 kg)(9.80 m/s2)(0.906)
= 0.082.

Discussion

This result is a little smaller than the coefficient listed in Table 5.1 for waxed wood on snow, but it is still reasonable since
values of the coefficients of friction can vary greatly. In situations like this, where an object of mass slides down a slope

that makes an angle with the horizontal, friction is given by k = k cos . All objects will slide down a slope with

constant acceleration under these circumstances. Proof of this is left for this chapter's Problems and Exercises.

Take-Home Experiment

An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to
measure the coefficient of kinetic friction between two objects. As shown in Example 5.1, the kinetic friction on a slope

k = k cos . The component of the weight down the slope is equal to sin (see the free-body diagram in

Figure 5.4). These forces act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing
these out:

(5.10)
k =

(5.11)
k cos = sin .

Solving for k , we find that

(5.12)
k =

sin

cos
= tan .
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Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book
lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find k . Note that the coin will not start

to slide at all until an angle greater than is attained, since the coefficient of static friction is larger than the coefficient of
kinetic friction. Discuss how this may affect the value for k and its uncertainty.

We have discussed that when an object rests on a horizontal surface, there is a normal force supporting it equal in magnitude to
its weight. Furthermore, simple friction is always proportional to the normal force.

Making Connections: Submicroscopic Explanations of Friction

The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been
made in the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic
nature of friction seems to have several fundamental characteristics. These characteristics not only explain some of the
simpler aspects of friction—they also hold the potential for the development of nearly friction-free environments that could
save hundreds of billions of dollars in energy which is currently being converted (unnecessarily) to heat.

Figure 5.5 illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have
noted that friction is proportional to the normal force, but not to the area in contact, a somewhat counterintuitive notion. When two
rough surfaces are in contact, the actual contact area is a tiny fraction of the total area since only high spots touch. When a
greater normal force is exerted, the actual contact area increases, and it is found that the friction is proportional to this area.

Figure 5.5 Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal force as a
result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is
generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked
with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially
creating sound waves that penetrate the material. The sound waves diminish with distance and their energy is converted into
heat. Chemical reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure
5.6 shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag
the tip can be measured and is found to be related to shear stress, which will be discussed later in this chapter. The variation in

shear stress is remarkable (more than a factor of 1012 ) and difficult to predict theoretically, but shear stress is yielding a
fundamental understanding of a large-scale phenomenon known since ancient times—friction.
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Figure 5.6 The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the force varies
for different materials are yielding fundamental insights into the atomic nature of friction.

PhET Explorations: Forces and Motion

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force
and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw a free-body
diagram of all the forces (including gravitational and normal forces).

Figure 5.7 Forces and Motion (http://cnx.org/content/m54899/1.2/forces-and-motion_en.jar)

5.2 Drag Forces

Learning Objectives
By the end of this section, you will be able to:

• Define drag force and model it mathematically.
• Discuss the applications of drag force.
• Define terminal velocity.
• Perform calculations to find terminal velocity.

Another interesting force in everyday life is the force of drag on an object when it is moving in a fluid (either a gas or a liquid).
You feel the drag force when you move your hand through water. You might also feel it if you move your hand during a strong
wind. The faster you move your hand, the harder it is to move. You feel a smaller drag force when you tilt your hand so only the
side goes through the air—you have decreased the area of your hand that faces the direction of motion. Like friction, the drag
force always opposes the motion of an object. Unlike simple friction, the drag force is proportional to some function of the
velocity of the object in that fluid. This functionality is complicated and depends upon the shape of the object, its size, its velocity,
and the fluid it is in. For most large objects such as bicyclists, cars, and baseballs not moving too slowly, the magnitude of the
drag force D is found to be proportional to the square of the speed of the object. We can write this relationship mathematically

as . When taking into account other factors, this relationship becomes

(5.13)
D = 1

2
Cρ 2,

where is the drag coefficient, is the area of the object facing the fluid, and is the density of the fluid. (Recall that density

is mass per unit volume.) This equation can also be written in a more generalized fashion as D = 2 , where is a constant

equivalent to 0.5 . We have set the exponent for these equations as 2 because, when an object is moving at high velocity
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deformation:

drag force:

friction:

Hooke's law:

kinetic friction:

magnitude of kinetic friction:

magnitude of static friction:

shear deformation:

static friction:

Stokes' law:

strain:

stress:

tensile strength:

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500
atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which
is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up,
since most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break their
container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it freezes,
and it can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations
considered here.

Glossary
change in shape due to the application of force

D , found to be proportional to the square of the speed of the object; mathematically

D ∝ 2

D = 1
2

2,

where is the drag coefficient, is the area of the object facing the fluid, and is the density of the fluid

a force that opposes relative motion or attempts at motion between systems in contact

proportional relationship between the force on a material and the deformation Δ it causes, = Δ

a force that opposes the motion of two systems that are in contact and moving relative to one another

k = k , where k is the coefficient of kinetic friction

s ≤ s , where s is the coefficient of static friction and is the magnitude of the normal

force

deformation perpendicular to the original length of an object

a force that opposes the motion of two systems that are in contact and are not moving relative to one another

s = 6 , where is the radius of the object, is the viscosity of the fluid, and is the object's velocity

ratio of change in length to original length

ratio of force to area

measure of deformation for a given tension or compression

Section Summary

5.1 Friction
• Friction is a contact force between systems that opposes the motion or attempted motion between them. Simple friction is

proportional to the normal force pushing the systems together. (A normal force is always perpendicular to the contact

surface between systems.) Friction depends on both of the materials involved. The magnitude of static friction s between

systems stationary relative to one another is given by

s ≤ s ,

where s is the coefficient of static friction, which depends on both of the materials.

• The kinetic friction force k between systems moving relative to one another is given by

k = k ,

where k is the coefficient of kinetic friction, which also depends on both materials.

5.2 Drag Forces
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• Drag forces acting on an object moving in a fluid oppose the motion. For larger objects (such as a baseball) moving at a
velocity in air, the drag force is given by

D = 1
2

2,

where is the drag coefficient (typical values are given in Table 5.2), is the area of the object facing the fluid, and

is the fluid density.
• For small objects (such as a bacterium) moving in a denser medium (such as water), the drag force is given by Stokes' law,

s = 6 ,

where is the radius of the object, is the fluid viscosity, and is the object's velocity.

5.3 Elasticity: Stress and Strain
• Hooke's law is given by

= Δ ,

where Δ is the amount of deformation (the change in length), is the applied force, and is a proportionality constant
that depends on the shape and composition of the object and the direction of the force. The relationship between the
deformation and the applied force can also be written as

Δ = 1
0,

where is Young's modulus, which depends on the substance, is the cross-sectional area, and 0 is the original

length.

• The ratio of force to area, , is defined as stress, measured in N/m2.

• The ratio of the change in length to length, Δ

0
, is defined as strain (a unitless quantity). In other words,

stress = ×strain.
• The expression for shear deformation is

Δ = 1
0,

where is the shear modulus and is the force applied perpendicular to 0 and parallel to the cross-sectional area .

• The relationship of the change in volume to other physical quantities is given by

Δ = 1
0,

where is the bulk modulus, 0 is the original volume, and is the force per unit area applied uniformly inward on all

surfaces.

Conceptual Questions

5.1 Friction
1. Define normal force. What is its relationship to friction when friction behaves simply?

2. The glue on a piece of tape can exert forces. Can these forces be a type of simple friction? Explain, considering especially that
tape can stick to vertical walls and even to ceilings.

3. When you learn to drive, you discover that you need to let up slightly on the brake pedal as you come to a stop or the car will
stop with a jerk. Explain this in terms of the relationship between static and kinetic friction.

4. When you push a piece of chalk across a chalkboard, it sometimes screeches because it rapidly alternates between slipping
and sticking to the board. Describe this process in more detail, in particular explaining how it is related to the fact that kinetic
friction is less than static friction. (The same slip-grab process occurs when tires screech on pavement.)

5.2 Drag Forces
5. Athletes such as swimmers and bicyclists wear body suits in competition. Formulate a list of pros and cons of such suits.

6. Two expressions were used for the drag force experienced by a moving object in a liquid. One depended upon the speed,
while the other was proportional to the square of the speed. In which types of motion would each of these expressions be more
applicable than the other one?

7. As cars travel, oil and gasoline leaks onto the road surface. If a light rain falls, what does this do to the control of the car?
Does a heavy rain make any difference?

8. Why can a squirrel jump from a tree branch to the ground and run away undamaged, while a human could break a bone in
such a fall?
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5.3 Elasticity: Stress and Strain
9. The elastic properties of the arteries are essential for blood flow. Explain the importance of this in terms of the characteristics
of the flow of blood (pulsating or continuous).

10. What are you feeling when you feel your pulse? Measure your pulse rate for 10 s and for 1 min. Is there a factor of 6
difference?

11. Examine different types of shoes, including sports shoes and thongs. In terms of physics, why are the bottom surfaces
designed as they are? What differences will dry and wet conditions make for these surfaces?

12. Would you expect your height to be different depending upon the time of day? Why or why not?

13. Why can a squirrel jump from a tree branch to the ground and run away undamaged, while a human could break a bone in
such a fall?

14. Explain why pregnant women often suffer from back strain late in their pregnancy.

15. An old carpenter's trick to keep nails from bending when they are pounded into hard materials is to grip the center of the nail
firmly with pliers. Why does this help?

16. When a glass bottle full of vinegar warms up, both the vinegar and the glass expand, but vinegar expands significantly more
with temperature than glass. The bottle will break if it was filled to its tightly capped lid. Explain why, and also explain how a
pocket of air above the vinegar would prevent the break. (This is the function of the air above liquids in glass containers.)
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Problems & Exercises

5.1 Friction
1. A physics major is cooking breakfast when he notices that
the frictional force between his steel spatula and his Teflon
frying pan is only 0.200 N. Knowing the coefficient of kinetic
friction between the two materials, he quickly calculates the
normal force. What is it?

2. (a) When rebuilding her car's engine, a physics major must
exert 300 N of force to insert a dry steel piston into a steel
cylinder. What is the magnitude of the normal force between
the piston and cylinder? (b) What is the magnitude of the
force would she have to exert if the steel parts were oiled?

3. (a) What is the maximum frictional force in the knee joint of
a person who supports 66.0 kg of her mass on that knee? (b)
During strenuous exercise it is possible to exert forces to the
joints that are easily ten times greater than the weight being
supported. What is the maximum force of friction under such
conditions? The frictional forces in joints are relatively small in
all circumstances except when the joints deteriorate, such as
from injury or arthritis. Increased frictional forces can cause
further damage and pain.

4. Suppose you have a 120-kg wooden crate resting on a
wood floor. (a) What maximum force can you exert
horizontally on the crate without moving it? (b) If you continue
to exert this force once the crate starts to slip, what will the
magnitude of its acceleration then be?

5. (a) If half of the weight of a small 1.00×103 kg utility

truck is supported by its two drive wheels, what is the
magnitude of the maximum acceleration it can achieve on dry
concrete? (b) Will a metal cabinet lying on the wooden bed of
the truck slip if it accelerates at this rate? (c) Solve both
problems assuming the truck has four-wheel drive.

6. A team of eight dogs pulls a sled with waxed wood runners
on wet snow (mush!). The dogs have average masses of 19.0
kg, and the loaded sled with its rider has a mass of 210 kg.
(a) Calculate the magnitude of the acceleration starting from
rest if each dog exerts an average force of 185 N backward
on the snow. (b) What is the magnitude of the acceleration
once the sled starts to move? (c) For both situations,
calculate the magnitude of the force in the coupling between
the dogs and the sled.

7. Consider the 65.0-kg ice skater being pushed by two
others shown in Figure 5.21. (a) Find the direction and
magnitude of Ftot , the total force exerted on her by the

others, given that the magnitudes 1 and 2 are 26.4 N

and 18.6 N, respectively. (b) What is her initial acceleration if
she is initially stationary and wearing steel-bladed skates that
point in the direction of Ftot ? (c) What is her acceleration

assuming she is already moving in the direction of Ftot ?

(Remember that friction always acts in the direction opposite
that of motion or attempted motion between surfaces in
contact.)

Figure 5.21

8. Show that the acceleration of any object down a frictionless
incline that makes an angle with the horizontal is

= sin . (Note that this acceleration is independent of

mass.)

9. Show that the acceleration of any object down an incline
where friction behaves simply (that is, where k = k ) is

= ( sin − kcos ). Note that the acceleration is

independent of mass and reduces to the expression found in
the previous problem when friction becomes negligibly small
( k = 0).

10. Calculate the deceleration of a snow boarder going up a
5.0º , slope assuming the coefficient of friction for waxed
wood on wet snow. The result of Exercise 5.9 may be useful,
but be careful to consider the fact that the snow boarder is
going uphill. Explicitly show how you follow the steps in
Problem-Solving Strategies.

11. (a) Calculate the acceleration of a skier heading down a
10.0º slope, assuming the coefficient of friction for waxed
wood on wet snow. (b) Find the angle of the slope down
which this skier could coast at a constant velocity. You can
neglect air resistance in both parts, and you will find the result
of Exercise 5.9 to be useful. Explicitly show how you follow
the steps in the Problem-Solving Strategies.

12. If an object is to rest on an incline without slipping, then
friction must equal the component of the weight of the object
parallel to the incline. This requires greater and greater
friction for steeper slopes. Show that the maximum angle of
an incline above the horizontal for which an object will not

slide down is = tan–1 μs . You may use the result of the

previous problem. Assume that = 0 and that static friction
has reached its maximum value.

13. Calculate the maximum deceleration of a car that is
heading down a 6º slope (one that makes an angle of 6º

with the horizontal) under the following road conditions. You
may assume that the weight of the car is evenly distributed on
all four tires and that the coefficient of static friction is
involved—that is, the tires are not allowed to slip during the
deceleration. (Ignore rolling.) Calculate for a car: (a) On dry
concrete. (b) On wet concrete. (c) On ice, assuming that

s = 0.100 , the same as for shoes on ice.

14. Calculate the maximum acceleration of a car that is
heading up a 4º slope (one that makes an angle of 4º with
the horizontal) under the following road conditions. Assume
that only half the weight of the car is supported by the two
drive wheels and that the coefficient of static friction is
involved—that is, the tires are not allowed to slip during the
acceleration. (Ignore rolling.) (a) On dry concrete. (b) On wet
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concrete. (c) On ice, assuming that μs = 0.100 , the same

as for shoes on ice.

15. Repeat Exercise 5.14 for a car with four-wheel drive.

16. A freight train consists of two 8.00×105-kg engines and

45 cars with average masses of 5.50×105 kg . (a) What

force must each engine exert backward on the track to

accelerate the train at a rate of 5.00×10−2 m / s2 if the

force of friction is 7.50×105 N , assuming the engines exert
identical forces? This is not a large frictional force for such a
massive system. Rolling friction for trains is small, and
consequently trains are very energy-efficient transportation
systems. (b) What is the magnitude of the force in the
coupling between the 37th and 38th cars (this is the force
each exerts on the other), assuming all cars have the same
mass and that friction is evenly distributed among all of the
cars and engines?

17. Consider the 52.0-kg mountain climber in Figure 5.22. (a)
Find the tension in the rope and the force that the mountain
climber must exert with her feet on the vertical rock face to
remain stationary. Assume that the force is exerted parallel to
her legs. Also, assume negligible force exerted by her arms.
(b) What is the minimum coefficient of friction between her
shoes and the cliff?

Figure 5.22 Part of the climber's weight is supported by her rope and
part by friction between her feet and the rock face.

18. A contestant in a winter sporting event pushes a 45.0-kg
block of ice across a frozen lake as shown in Figure 5.23(a).
(a) Calculate the minimum force he must exert to get the
block moving. (b) What is the magnitude of its acceleration
once it starts to move, if that force is maintained?

19. Repeat Exercise 5.18 with the contestant pulling the
block of ice with a rope over his shoulder at the same angle
above the horizontal as shown in Figure 5.23(b).

Figure 5.23 Which method of sliding a block of ice requires less
force—(a) pushing or (b) pulling at the same angle above the horizontal?

5.2 Drag Forces
20. The terminal velocity of a person falling in air depends
upon the weight and the area of the person facing the fluid.
Find the terminal velocity (in meters per second and
kilometers per hour) of an 80.0-kg skydiver falling in a pike

(headfirst) position with a surface area of 0.140 m2 .

21. A 60-kg and a 90-kg skydiver jump from an airplane at an
altitude of 6000 m, both falling in the pike position. Make
some assumption on their frontal areas and calculate their
terminal velocities. How long will it take for each skydiver to
reach the ground (assuming the time to reach terminal
velocity is small)? Assume all values are accurate to three
significant digits.

22. A 560-g squirrel with a surface area of 930 cm2 falls
from a 5.0-m tree to the ground. Estimate its terminal velocity.
(Use a drag coefficient for a horizontal skydiver.) What will be
the velocity of a 56-kg person hitting the ground, assuming no
drag contribution in such a short distance?

23. To maintain a constant speed, the force provided by a
car's engine must equal the drag force plus the force of
friction of the road (the rolling resistance). (a) What are the
magnitudes of drag forces at 70 km/h and 100 km/h for a

Toyota Camry? (Drag area is 0.70 m2 ) (b) What is the
magnitude of drag force at 70 km/h and 100 km/h for a

Hummer H2? (Drag area is 2.44 m2 ) Assume all values are
accurate to three significant digits.

24. By what factor does the drag force on a car increase as it
goes from 65 to 110 km/h?

25. Calculate the speed a spherical rain drop would achieve
falling from 5.00 km (a) in the absence of air drag (b) with air
drag. Take the size across of the drop to be 4 mm, the density

to be 1.00×103 kg/m3 , and the surface area to be 2 .
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26. Using Stokes' law, verify that the units for viscosity are
kilograms per meter per second.

27. Find the terminal velocity of a spherical bacterium
(diameter 2.00 μm ) falling in water. You will first need to

note that the drag force is equal to the weight at terminal
velocity. Take the density of the bacterium to be

1.10×103 kg/m3 .

28. Stokes' law describes sedimentation of particles in liquids
and can be used to measure viscosity. Particles in liquids
achieve terminal velocity quickly. One can measure the time it
takes for a particle to fall a certain distance and then use
Stokes' law to calculate the viscosity of the liquid. Suppose a

steel ball bearing (density 7.8×103 kg/m3 , diameter

3.0 mm ) is dropped in a container of motor oil. It takes 12 s
to fall a distance of 0.60 m. Calculate the viscosity of the oil.

5.3 Elasticity: Stress and Strain
29. During a circus act, one performer swings upside down
hanging from a trapeze holding another, also upside-down,
performer by the legs. If the upward force on the lower
performer is three times her weight, how much do the bones
(the femurs) in her upper legs stretch? You may assume each
is equivalent to a uniform rod 35.0 cm long and 1.80 cm in
radius. Her mass is 60.0 kg.

30. During a wrestling match, a 150 kg wrestler briefly stands
on one hand during a maneuver designed to perplex his
already moribund adversary. By how much does the upper
arm bone shorten in length? The bone can be represented by
a uniform rod 38.0 cm in length and 2.10 cm in radius.

31. (a) The “lead” in pencils is a graphite composition with a

Young's modulus of about 1×109 N / m2 . Calculate the
change in length of the lead in an automatic pencil if you tap it
straight into the pencil with a force of 4.0 N. The lead is 0.50
mm in diameter and 60 mm long. (b) Is the answer
reasonable? That is, does it seem to be consistent with what
you have observed when using pencils?

32. TV broadcast antennas are the tallest artificial structures
on Earth. In 1987, a 72.0-kg physicist placed himself and 400
kg of equipment at the top of one 610-m high antenna to
perform gravity experiments. By how much was the antenna
compressed, if we consider it to be equivalent to a steel
cylinder 0.150 m in radius?

33. (a) By how much does a 65.0-kg mountain climber stretch
her 0.800-cm diameter nylon rope when she hangs 35.0 m
below a rock outcropping? (b) Does the answer seem to be
consistent with what you have observed for nylon ropes?
Would it make sense if the rope were actually a bungee
cord?

34. A 20.0-m tall hollow aluminum flagpole is equivalent in
strength to a solid cylinder 4.00 cm in diameter. A strong wind
bends the pole much as a horizontal force of 900 N exerted at
the top would. How far to the side does the top of the pole
flex?

35. As an oil well is drilled, each new section of drill pipe
supports its own weight and that of the pipe and drill bit
beneath it. Calculate the stretch in a new 6.00 m length of
steel pipe that supports 3.00 km of pipe having a mass of
20.0 kg/m and a 100-kg drill bit. The pipe is equivalent in
strength to a solid cylinder 5.00 cm in diameter.

36. Calculate the force a piano tuner applies to stretch a steel
piano wire 8.00 mm, if the wire is originally 0.850 mm in
diameter and 1.35 m long.

37. A vertebra is subjected to a shearing force of 500 N. Find
the shear deformation, taking the vertebra to be a cylinder
3.00 cm high and 4.00 cm in diameter.

38. A disk between vertebrae in the spine is subjected to a
shearing force of 600 N. Find its shear deformation, taking it

to have the shear modulus of 1×109 N / m2 . The disk is
equivalent to a solid cylinder 0.700 cm high and 4.00 cm in
diameter.

39. When using a pencil eraser, you exert a vertical force of
6.00 N at a distance of 2.00 cm from the hardwood-eraser
joint. The pencil is 6.00 mm in diameter and is held at an
angle of 20.0º to the horizontal. (a) By how much does the
wood flex perpendicular to its length? (b) How much is it
compressed lengthwise?

40. To consider the effect of wires hung on poles, we take
data from Example 4.8, in which tensions in wires supporting
a traffic light were calculated. The left wire made an angle
30.0º below the horizontal with the top of its pole and carried
a tension of 108 N. The 12.0 m tall hollow aluminum pole is
equivalent in strength to a 4.50 cm diameter solid cylinder. (a)
How far is it bent to the side? (b) By how much is it
compressed?

41. A farmer making grape juice fills a glass bottle to the brim
and caps it tightly. The juice expands more than the glass
when it warms up, in such a way that the volume increases by

0.2% (that is, Δ / 0 = 2×10−3 ) relative to the space

available. Calculate the magnitude of the normal force
exerted by the juice per square centimeter if its bulk modulus

is 1.8×109 N/m2 , assuming the bottle does not break. In
view of your answer, do you think the bottle will survive?

42. (a) When water freezes, its volume increases by 9.05%

(that is, Δ / 0 = 9.05×10−2 ). What force per unit area

is water capable of exerting on a container when it freezes?
(It is acceptable to use the bulk modulus of water in this
problem.) (b) Is it surprising that such forces can fracture
engine blocks, boulders, and the like?

43. This problem returns to the tightrope walker studied in

Example 4.6, who created a tension of 3.94×103 N in a

wire making an angle 5.0º below the horizontal with each
supporting pole. Calculate how much this tension stretches
the steel wire if it was originally 15 m long and 0.50 cm in
diameter.

44. The pole in Figure 5.24 is at a 90.0º bend in a power
line and is therefore subjected to more shear force than poles
in straight parts of the line. The tension in each line is

4.00×104 N , at the angles shown. The pole is 15.0 m tall,
has an 18.0 cm diameter, and can be considered to have half
the strength of hardwood. (a) Calculate the compression of
the pole. (b) Find how much it bends and in what direction. (c)
Find the tension in a guy wire used to keep the pole straight if
it is attached to the top of the pole at an angle of 30.0º with
the vertical. (Clearly, the guy wire must be in the opposite
direction of the bend.)
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Figure 5.24 This telephone pole is at a 90º bend in a power line. A

guy wire is attached to the top of the pole at an angle of 30º with the

vertical.

Test Prep for AP® Courses

5.1 Friction
1. When a force of 20 N is applied to a stationary box
weighing 40 N, the box does not move. This means the
coefficient of static friction

a. is equal to 0.5.
b. is greater than 0.5.
c. is less than 0.5.
d. cannot be determined.

2. A 2-kg block slides down a ramp which is at an incline of
25º. If the frictional force is 4.86 N, what is the coefficient of
friction? At what incline will the box slide at a constant
velocity? Assume g = 10 m/s2.

3. A block is given a short push and then slides with constant
friction across a horizontal floor. Which statement best
explains the direction of the force that friction applies on the
moving block?

a. Friction will be in the same direction as the block's
motion because molecular interactions between the
block and the floor will deform the block in the direction
of motion.

b. Friction will be in the same direction as the block's
motion because thermal energy generated at the
interface between the block and the floor adds kinetic
energy to the block.

c. Friction will be in the opposite direction of the block's
motion because molecular interactions between the
block and the floor will deform the block in the opposite
direction of motion.

d. Friction will be in the opposite direction of the block's
motion because thermal energy generated at the
interface between the block and the floor converts some
of the block's kinetic energy to potential energy.

4. A student pushes a cardboard box across a carpeted floor
and afterwards notices that the bottom of the box feels warm.
Explain how interactions between molecules in the cardboard
and molecules in the carpet produced this heat.
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6 GRAVITATION AND UNIFORM CIRCULAR
MOTION

Figure 6.1 This Australian Grand Prix Formula 1 race car moves in a circular path as it makes the turn. Its wheels also spin rapidly—the latter
completing many revolutions, the former only part of one (a circular arc). The same physical principles are involved in each. (credit: Richard Munckton)

Chapter Outline
6.1. Rotation Angle and Angular Velocity

6.2. Centripetal Acceleration

6.3. Centripetal Force

6.4. Fictitious Forces and Non-inertial Frames: The Coriolis Force

6.5. Newton's Universal Law of Gravitation

6.6. Satellites and Kepler's Laws: An Argument for Simplicity

Connection for AP® Courses
Many motions, such as the arc of a bird's flight or Earth's path around the Sun, are curved. Recall that Newton's first law tells us
that motion is along a straight line at constant speed unless there is a net external force. We will therefore study not only motion
along curves, but also the forces that cause it, including gravitational forces. This chapter supports Big Idea 3 that interactions
between objects are described by forces, and thus change in motion is a result of a net force exerted on an object. In this
chapter, this idea is applied to uniform circular motion. In some ways, this chapter is a continuation of Dynamics: Newton's
Laws of Motion as we study more applications of Newton's laws of motion.

This chapter deals with the simplest form of curved motion, uniform circular motion, which is motion in a circular path at
constant speed. As an object moves on a circular path, the magnitude of its velocity remains constant, but the direction of the
velocity is changing. This means there is an acceleration that we will refer to as a “centripetal” acceleration caused by a net
external force, also called the “centripetal” force (Enduring Understanding 3.B). The centripetal force is the net force totaling all
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external forces acting on the object (Essential Knowledge 3.B.1). In order to determine the net force, a free-body diagram may
be useful (Essential Knowledge 3.B.2).

Studying this topic illustrates most of the concepts associated with rotational motion and leads to many new topics we group
under the name rotation. This motion can be described using kinematics variables (Essential Knowledge 3.A.1), but in addition to
linear variables, we will introduce angular variables. We use various ways to describe motion, namely, verbally, algebraically and
graphically (Learning Objective 3.A.1.1). Pure rotational motion occurs when points in an object move in circular paths centered
on one point. Pure translational motion is motion with no rotation. Some motion combines both types, such as a rotating hockey
puck moving over ice. Some combinations of both types of motion are conveniently described with fictitious forces which appear
as a result of using a non-inertial frame of reference (Enduring Understanding 3.A).

Furthermore, the properties of uniform circular motion can be applied to the motion of massive objects in a gravitational field.
Thus, this chapter supports Big Idea 1 that gravitational mass is an important property of an object or a system.

We have experimental evidence that gravitational and inertial masses are equal (Enduring Understanding 1.C), and that
gravitational mass is a measure of the strength of the gravitational interaction (Essential Knowledge 1.C.2). Therefore, this
chapter will support Big Idea 2 that fields existing in space can be used to explain interactions, because any massive object
creates a gravitational field in space (Enduring Understanding 2.B). Mathematically, we use Newton's universal law of gravitation
to provide a model for the gravitational interaction between two massive objects (Essential Knowledge 2.B.2). We will discover
that this model describes the interaction of one object with mass with another object with mass (Essential Knowledge 3.C.1), and
also that gravitational force is a long-range force (Enduring Understanding 3.C).

The concepts in this chapter support:

Big Idea 1 Objects and systems have properties such as mass and charge. Systems may have internal structure.

Enduring Understanding 1.C Objects and systems have properties of inertial mass and gravitational mass that are experimentally
verified to be the same and that satisfy conservation principles.

Essential Knowledge 1.C.2 Gravitational mass is the property of an object or a system that determines the strength of the
gravitational interaction with other objects, systems, or gravitational fields.

Essential Knowledge 1.C.3 Objects and systems have properties of inertial mass and gravitational mass that are experimentally
verified to be the same and that satisfy conservation principles.

Big Idea 2 Fields existing in space can be used to explain interactions.

Enduring Understanding 2.B A gravitational field is caused by an object with mass.

Essential Knowledge 2.B.2. The gravitational field caused by a spherically symmetric object with mass is radial and, outside the
object, varies as the inverse square of the radial distance from the center of that object.

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.1. An observer in a particular reference frame can describe the motion of an object using such
quantities as position, displacement, distance, velocity, speed, and acceleration.

Essential Knowledge 3.A.3. A force exerted on an object is always due to the interaction of that object with another object.

Enduring Understanding 3.B Classically, the acceleration of an object interacting with other objects can be predicted by using

= ∑ / .

Essential Knowledge 3.B.1 If an object of interest interacts with several other objects, the net force is the vector sum of the
individual forces.

Essential Knowledge 3.B.2 Free-body diagrams are useful tools for visualizing forces being exerted on a single object and writing
the equations that represent a physical situation.

Enduring Understanding 3.C At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance)
forces or contact forces.

Essential Knowledge 3.C.1. Gravitational force describes the interaction of one object that has mass with another object that has
mass.

6.1 Rotation Angle and Angular Velocity

Learning Objectives
By the end of this section, you will be able to:

• Define arc length, rotation angle, radius of curvature, and angular velocity.
• Calculate the angular velocity of a car wheel spin.

In Kinematics, we studied motion along a straight line and introduced such concepts as displacement, velocity, and acceleration.
Two-Dimensional Kinematics dealt with motion in two dimensions. Projectile motion is a special case of two-dimensional
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kinematics in which the object is projected into the air, while being subject to the gravitational force, and lands a distance away.
In this chapter, we consider situations where the object does not land but moves in a curve. We begin the study of uniform
circular motion by defining two angular quantities needed to describe rotational motion.

Rotation Angle
When objects rotate about some axis—for example, when the CD (compact disc) in Figure 6.2 rotates about its center—each
point in the object follows a circular arc. Consider a line from the center of the CD to its edge. Each pit used to record sound
along this line moves through the same angle in the same amount of time. The rotation angle is the amount of rotation and is
analogous to linear distance. We define the rotation angle Δ to be the ratio of the arc length to the radius of curvature:

(6.1)
Δ = Δ .

Figure 6.2 All points on a CD travel in circular arcs. The pits along a line from the center to the edge all move through the same angle Δ in a time

Δ .

Figure 6.3 The radius of a circle is rotated through an angle Δ . The arc length Δs is described on the circumference.

The arc length Δ is the distance traveled along a circular path as shown in Figure 6.3 Note that is the radius of curvature
of the circular path.

We know that for one complete revolution, the arc length is the circumference of a circle of radius . The circumference of a

circle is 2π . Thus for one complete revolution the rotation angle is

(6.2)
Δ = 2π = 2π.

This result is the basis for defining the units used to measure rotation angles, Δ to be radians (rad), defined so that

(6.3)2π rad = 1 revolution.

A comparison of some useful angles expressed in both degrees and radians is shown in Table 6.1.
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Table 6.1 Comparison of Angular Units

Degree Measures Radian Measure

30º 6

60º 3

90º 2

120º
2π
3

135º
3π
4

180º

Figure 6.4 Points 1 and 2 rotate through the same angle ( Δ ), but point 2 moves through a greater arc length (Δ ) because it is at a greater

distance from the center of rotation ( ) .

If Δ = 2 rad, then the CD has made one complete revolution, and every point on the CD is back at its original position.

Because there are 360º in a circle or one revolution, the relationship between radians and degrees is thus

(6.4)2 rad = 360º

so that

(6.5)
1 rad = 360º

2π
≈ 57.3º.

Angular Velocity
How fast is an object rotating? We define angular velocity as the rate of change of an angle. In symbols, this is

(6.6)
= Δ

Δ
,

where an angular rotation Δ takes place in a time Δ . The greater the rotation angle in a given amount of time, the greater
the angular velocity. The units for angular velocity are radians per second (rad/s).

Angular velocity is analogous to linear velocity . To get the precise relationship between angular and linear velocity, we

again consider a pit on the rotating CD. This pit moves an arc length Δ in a time Δ , and so it has a linear velocity

(6.7)
= Δ

Δ
.

From Δ = Δ we see that Δ = Δ . Substituting this into the expression for gives

(6.8)
= Δ

Δ
= .
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We write this relationship in two different ways and gain two different insights:

(6.9)=  or = .

The first relationship in =  or = states that the linear velocity is proportional to the distance from the center of

rotation, thus, it is largest for a point on the rim (largest ), as you might expect. We can also call this linear speed of a point

on the rim the tangential speed. The second relationship in =  or = can be illustrated by considering the tire of a

moving car. Note that the speed of a point on the rim of the tire is the same as the speed of the car. See Figure 6.5. So the
faster the car moves, the faster the tire spins—large means a large , because = . Similarly, a larger-radius tire
rotating at the same angular velocity ( ) will produce a greater linear speed ( ) for the car.

Figure 6.5 A car moving at a velocity to the right has a tire rotating with an angular velocity .The speed of the tread of the tire relative to the axle
is , the same as if the car were jacked up. Thus the car moves forward at linear velocity = , where is the tire radius. A larger angular
velocity for the tire means a greater velocity for the car.

Example 6.1 How Fast Does a Car Tire Spin?

Calculate the angular velocity of a 0.300 m radius car tire when the car travels at 15.0 m/s (about 54 km/h ). See Figure
6.5.

Strategy

Because the linear speed of the tire rim is the same as the speed of the car, we have = 15.0 m/s. The radius of the tire

is given to be = 0.300 m. Knowing and , we can use the second relationship in = , = to calculate the

angular velocity.

Solution

To calculate the angular velocity, we will use the following relationship:

(6.10)= .

Substituting the knowns,

(6.11)
= 15.0 m/s

0.300 m
= 50.0 rad/s.

Discussion

When we cancel units in the above calculation, we get 50.0/s. But the angular velocity must have units of rad/s. Because
radians are actually unitless (radians are defined as a ratio of distance), we can simply insert them into the answer for the
angular velocity. Also note that if an earth mover with much larger tires, say 1.20 m in radius, were moving at the same
speed of 15.0 m/s, its tires would rotate more slowly. They would have an angular velocity

(6.12)= (15.0 m/s) / (1.20 m) = 12.5 rad/s.
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Both and have directions (hence they are angular and linear velocities, respectively). Angular velocity has only two
directions with respect to the axis of rotation—it is either clockwise or counterclockwise. Linear velocity is tangent to the path, as
illustrated in Figure 6.6.

Take-Home Experiment

Tie an object to the end of a string and swing it around in a horizontal circle above your head (swing at your wrist). Maintain
uniform speed as the object swings and measure the angular velocity of the motion. What is the approximate speed of the
object? Identify a point close to your hand and take appropriate measurements to calculate the linear speed at this point.
Identify other circular motions and measure their angular velocities.

Figure 6.6 As an object moves in a circle, here a fly on the edge of an old-fashioned vinyl record, its instantaneous velocity is always tangent to the
circle. The direction of the angular velocity is clockwise in this case.

PhET Explorations: Ladybug Revolution

Figure 6.7 Ladybug Revolution (http://cnx.org/content/m54992/1.2/rotation_en.jar)

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant
angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and
acceleration using vectors or graphs.

6.2 Centripetal Acceleration

Learning Objectives
By the end of this section, you will be able to:

• Establish the expression for centripetal acceleration.
• Explain the centrifuge.

We know from kinematics that acceleration is a change in velocity, either in its magnitude or in its direction, or both. In uniform
circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the
magnitude of the velocity might be constant. You experience this acceleration yourself when you turn a corner in your car. (If you
hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion.) What you notice is a
sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the
more noticeable this acceleration will become. In this section we examine the direction and magnitude of that acceleration.

Figure 6.8 shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at
two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of
rotation (the center of the circular path). This pointing is shown with the vector diagram in the figure. We call the acceleration of
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an object moving in uniform circular motion (resulting from a net external force) the centripetal acceleration( c ); centripetal

means “toward the center” or “center seeking.”

Figure 6.8 The directions of the velocity of an object at two different points are shown, and the change in velocity Δv is seen to point directly toward

the center of curvature. (See small inset.) Because ac = Δv / Δ , the acceleration is also toward the center; a is called centripetal acceleration.

(Because Δ is very small, the arc length Δ is equal to the chord length Δ for small time differences.)

The direction of centripetal acceleration is toward the center of curvature, but what is its magnitude? Note that the triangle
formed by the velocity vectors and the one formed by the radii and Δ are similar. Both the triangles ABC and PQR are
isosceles triangles (two equal sides). The two equal sides of the velocity vector triangle are the speeds 1 = 2 = . Using the

properties of two similar triangles, we obtain

(6.13)Δ = Δ .

Acceleration is Δ / Δ , and so we first solve this expression for Δ :

(6.14)Δ = Δ .

Then we divide this by Δ , yielding

(6.15)Δ
Δ

= ×Δ
Δ

.

Finally, noting that Δ / Δ = c and that Δ / Δ = , the linear or tangential speed, we see that the magnitude of the

centripetal acceleration is

(6.16)
c =

2
,

which is the acceleration of an object in a circle of radius at a speed . So, centripetal acceleration is greater at high speeds
and in sharp curves (smaller radius), as you have noticed when driving a car. But it is a bit surprising that c is proportional to

speed squared, implying, for example, that it is four times as hard to take a curve at 100 km/h than at 50 km/h. A sharp corner
has a small radius, so that c is greater for tighter turns, as you have probably noticed.

It is also useful to express c in terms of angular velocity. Substituting = into the above expression, we find

c = ( )2 / = 2 . We can express the magnitude of centripetal acceleration using either of two equations:

(6.17)
c =

2
; c = 2.

Recall that the direction of c is toward the center. You may use whichever expression is more convenient, as illustrated in

examples below.
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A centrifuge (see Figure 6.9b) is a rotating device used to separate specimens of different densities. High centripetal
acceleration significantly decreases the time it takes for separation to occur, and makes separation possible with small samples.
Centrifuges are used in a variety of applications in science and medicine, including the separation of single cell suspensions
such as bacteria, viruses, and blood cells from a liquid medium and the separation of macromolecules, such as DNA and protein,
from a solution. Centrifuges are often rated in terms of their centripetal acceleration relative to acceleration due to gravity ( ) ;

maximum centripetal acceleration of several hundred thousand is possible in a vacuum. Human centrifuges, extremely large

centrifuges, have been used to test the tolerance of astronauts to the effects of accelerations larger than that of Earth's gravity.

Example 6.2 How Does the Centripetal Acceleration of a Car Around a Curve Compare with That
Due to Gravity?

What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 25.0 m/s
(about 90 km/h)? Compare the acceleration with that due to gravity for this fairly gentle curve taken at highway speed. See
Figure 6.9(a).

Strategy

Because and are given, the first expression in c =
2
; c = 2 is the most convenient to use.

Solution

Entering the given values of = 25.0 m/s and = 500 m into the first expression for c gives

(6.18)
c =

2
=

(25.0 m/s)2

500 m
= 1.25 m/s2.

Discussion

To compare this with the acceleration due to gravity ( = 9.80 m/s2) , we take the ratio of

c / = 1.25 m/s2 / 9.80 m/s2 = 0.128 . Thus, c = 0.128 g and is noticeable especially if you were not wearing a

seat belt.
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Figure 6.9 (a) The car following a circular path at constant speed is accelerated perpendicular to its velocity, as shown. The magnitude of this
centripetal acceleration is found in Example 6.2. (b) A particle of mass in a centrifuge is rotating at constant angular velocity . It must be accelerated
perpendicular to its velocity or it would continue in a straight line. The magnitude of the necessary acceleration is found in Example 6.3.

Example 6.3 How Big Is the Centripetal Acceleration in an Ultracentrifuge?

Calculate the centripetal acceleration of a point 7.50 cm from the axis of an ultracentrifuge spinning at

7.5 × 104 rev/min. Determine the ratio of this acceleration to that due to gravity. See Figure 6.9(b).

Strategy

The term rev/min stands for revolutions per minute. By converting this to radians per second, we obtain the angular velocity

. Because is given, we can use the second expression in the equation c =
2

c = 2 to calculate the

centripetal acceleration.

Solution

To convert 7.50×104 rev / min to radians per second, we use the facts that one revolution is 2πrad and one minute is
60.0 s. Thus,

(6.19)
= 7.50×104 rev

min
×2π rad

1 rev
× 1 min

60.0 s
= 7854 rad/s.

Now the centripetal acceleration is given by the second expression in c =
2
; c = 2 as

(6.20)
c = 2.

Converting 7.50 cm to meters and substituting known values gives

(6.21)
c = (0.0750 m)(7854 rad/s)2 = 4.63×106 m/s2.
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Note that the unitless radians are discarded in order to get the correct units for centripetal acceleration. Taking the ratio of
c to yields

(6.22)
c = 4.63×106

9.80
= 4.72×105.

Discussion

This last result means that the centripetal acceleration is 472,000 times as strong as . It is no wonder that such high

centrifuges are called ultracentrifuges. The extremely large accelerations involved greatly decrease the time needed to
cause the sedimentation of blood cells or other materials.

Of course, a net external force is needed to cause any acceleration, just as Newton proposed in his second law of motion. So a
net external force is needed to cause a centripetal acceleration. In Centripetal Force, we will consider the forces involved in
circular motion.

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration,
and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze
the behavior.

Figure 6.10 Ladybug Motion 2D (http://cnx.org/content/m54995/1.2/ladybug-motion-2d_en.jar)

6.3 Centripetal Force

Learning Objectives
By the end of this section, you will be able to:

• Calculate coefficient of friction on a car tire.
• Calculate ideal speed and angle of a car on a turn.

Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope
on a tether ball, the force of Earth's gravity on the Moon, friction between roller skates and a rink floor, a banked roadway's force
on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force. The direction of a centripetal force is toward the
center of curvature, the same as the direction of centripetal acceleration. According to Newton's second law of motion, net force
is mass times acceleration: net F = . For uniform circular motion, the acceleration is the centripetal acceleration— = .

Thus, the magnitude of centripetal force Fc is

(6.23)Fc = c.

By using the expressions for centripetal acceleration from =
2

= 2 , we get two expressions for the centripetal

force Fc in terms of mass, velocity, angular velocity, and radius of curvature:

(6.24)
=

2
= 2.

You may use whichever expression for centripetal force is more convenient. Centripetal force c is always perpendicular to the

path and pointing to the center of curvature, because a is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for , you get

(6.25)
=

2
.

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.
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Figure 6.11 The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes
uniform circular motion. The larger the Fc , the smaller the radius of curvature and the sharper the curve. The second curve has the same , but

a larger Fc produces a smaller ′ .

Example 6.4 What Coefficient of Friction Do Car Tires Need on a Flat Curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction
being the reason that keeps the car from slipping (see Figure 6.12).

Strategy and Solution for (a)

We know that c =
2

. Thus,

(6.26)
c =

2
=

(900 kg)(25.0 m/s)2

(500 m)
= 1125 N.

Strategy for (b)

Figure 6.12 shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car
from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We
know that the maximum static friction (at which the tires roll but do not slip) is s , where s is the static coefficient of

friction and N is the normal force. The normal force equals the car's weight on level ground, so that = . Thus the

centripetal force in this situation is

(6.27)c = = s = s .

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for c from

the equation

(6.28)

c =
2

c = 2

(6.29)2
= s .

We solve this for s , noting that mass cancels, and obtain
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(6.30)
s =

2
.

Solution for (b)

Substituting the knowns,

(6.31)
s =

(25.0 m/s)2

(500 m)(9.80 m/s2)
= 0.13.

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Discussion

We could also solve part (a) using the first expression in c =
2

c = 2

because and are given. The coefficient

of friction found in part (b) is much smaller than is typically found between tires and roads. The car will still negotiate the
curve if the coefficient is greater than 0.13, because static friction is a responsive force, being able to assume a value less
than but no more than s . A higher coefficient would also allow the car to negotiate the curve at a higher speed, but if the

coefficient of friction is less, the safe speed would be less than 25 m/s. Note that mass cancels, implying that in this
example, it does not matter how heavily loaded the car is to negotiate the turn. Mass cancels because friction is assumed
proportional to the normal force, which in turn is proportional to mass. If the surface of the road were banked, the normal
force would be less as will be discussed below.

Figure 6.12 This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path is due to
friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.

Let us now consider banked curves, where the slope of the road helps you negotiate the curve. See Figure 6.13. The greater
the angle , the faster you can take the curve. Race tracks for bikes as well as cars, for example, often have steeply banked

curves. In an “ideally banked curve,” the angle is such that you can negotiate the curve at a certain speed without the aid of

friction between the tires and the road. We will derive an expression for for an ideally banked curve and consider an example
related to it.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The components of the
normal force N in the horizontal and vertical directions must equal the centripetal force and the weight of the car, respectively. In
cases in which forces are not parallel, it is most convenient to consider components along perpendicular axes—in this case, the
vertical and horizontal directions.

Figure 6.13 shows a free body diagram for a car on a frictionless banked curve. If the angle is ideal for the speed and radius,
then the net external force will equal the necessary centripetal force. The only two external forces acting on the car are its weight
w and the normal force of the road N . (A frictionless surface can only exert a force perpendicular to the surface—that is, a
normal force.) These two forces must add to give a net external force that is horizontal toward the center of curvature and has
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magnitude mv2 /r . Because this is the crucial force and it is horizontal, we use a coordinate system with vertical and horizontal
axes. Only the normal force has a horizontal component, and so this must equal the centripetal force—that is,

(6.32)
sin =

2
.

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical
components of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the
vertical component of the normal force is cos , and the only other vertical force is the car's weight. These must be equal in
magnitude; thus,

(6.33)cos = .

Now we can combine the last two equations to eliminate and get an expression for , as desired. Solving the second

equation for = / (cos ) , and substituting this into the first yields

(6.34)sin
cos

=
2

(6.35)
tan( ) =

2

tan =
2

Taking the inverse tangent gives

(6.36)
= tan−1

2
(ideally banked curve, no friction).

This expression can be understood by considering how depends on and . A large will be obtained for a large and a
small . That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take

the curve at greater or lower speed than if the curve is frictionless. Note that does not depend on the mass of the vehicle.

Figure 6.13 The car on this banked curve is moving away and turning to the left.

Example 6.5 What Is the Ideal Speed to Take a Steeply Banked Tight Curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply
banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very
high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is
frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we
need only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

(6.37)
tan =

2
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we get

(6.38)= ( tan )1 / 2.

Noting that tan 65.0º = 2.14, we obtain

(6.39)
= (100 m)(9.80 m/s2)(2.14)

1 / 2

= 45.8 m/s.

Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to
take the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which
centripetal force is involved—a number of these are presented in this chapter's Problems and Exercises.

Take-Home Experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal
acceleration of the end of the club or racquet. You may choose to do this in slow motion.

PhET Explorations: Gravity and Orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the
sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Figure 6.14 Gravity and Orbits (http://cnx.org/content/m55002/1.2/gravity-and-orbits_en.jar)

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force

Learning Objectives
By the end of this section, you will be able to:

• Discuss the inertial frame of reference.
• Discuss the non-inertial frame of reference.
• Describe the effects of the Coriolis force.

What do taking off in a jet airplane, turning a corner in a car, riding a merry-go-round, and the circular motion of a tropical cyclone
have in common? Each exhibits fictitious forces—unreal forces that arise from motion and may seem real, because the
observer’s frame of reference is accelerating or rotating.

When taking off in a jet, most people would agree it feels as if you are being pushed back into the seat as the airplane
accelerates down the runway. Yet a physicist would say that you tend to remain stationary while the seat pushes forward on you,
and there is no real force backward on you. An even more common experience occurs when you make a tight curve in your
car—say, to the right. You feel as if you are thrown (that is, forced) toward the left relative to the car. Again, a physicist would say
that you are going in a straight line but the car moves to the right, and there is no real force on you to the left. Recall Newton’s
first law.
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Figure 6.15 (a) The car driver feels herself forced to the left relative to the car when she makes a right turn. This is a fictitious force arising from the
use of the car as a frame of reference. (b) In the Earth’s frame of reference, the driver moves in a straight line, obeying Newton’s first law, and the car
moves to the right. There is no real force to the left on the driver relative to Earth. There is a real force to the right on the car to make it turn.

We can reconcile these points of view by examining the frames of reference used. Let us concentrate on people in a car.
Passengers instinctively use the car as a frame of reference, while a physicist uses Earth. The physicist chooses Earth because
it is very nearly an inertial frame of reference—one in which all forces are real (that is, in which all forces have an identifiable
physical origin). In such a frame of reference, Newton’s laws of motion take the form given in Dynamics: Newton's Laws of
Motion The car is a non-inertial frame of reference because it is accelerated to the side. The force to the left sensed by car
passengers is a fictitious force having no physical origin. There is nothing real pushing them left—the car, as well as the driver,
is actually accelerating to the right.

Let us now take a mental ride on a merry-go-round—specifically, a rapidly rotating playground merry-go-round. You take the
merry-go-round to be your frame of reference because you rotate together. In that non-inertial frame, you feel a fictitious force,
named centrifugal force (not to be confused with centripetal force), trying to throw you off. You must hang on tightly to
counteract the centrifugal force. In Earth’s frame of reference, there is no force trying to throw you off. Rather you must hang on
to make yourself go in a circle because otherwise you would go in a straight line, right off the merry-go-round.

Figure 6.16 (a) A rider on a merry-go-round feels as if he is being thrown off. This fictitious force is called the centrifugal force—it explains the rider’s
motion in the rotating frame of reference. (b) In an inertial frame of reference and according to Newton’s laws, it is his inertia that carries him off and not
a real force (the unshaded rider has net = 0 and heads in a straight line). A real force, centripetal , is needed to cause a circular path.

This inertial effect, carrying you away from the center of rotation if there is no centripetal force to cause circular motion, is put to
good use in centrifuges (see Figure 6.17). A centrifuge spins a sample very rapidly, as mentioned earlier in this chapter. Viewed
from the rotating frame of reference, the fictitious centrifugal force throws particles outward, hastening their sedimentation. The
greater the angular velocity, the greater the centrifugal force. But what really happens is that the inertia of the particles carries
them along a line tangent to the circle while the test tube is forced in a circular path by a centripetal force.
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Figure 6.17 Centrifuges use inertia to perform their task. Particles in the fluid sediment come out because their inertia carries them away from the
center of rotation. The large angular velocity of the centrifuge quickens the sedimentation. Ultimately, the particles will come into contact with the test
tube walls, which will then supply the centripetal force needed to make them move in a circle of constant radius.

Let us now consider what happens if something moves in a frame of reference that rotates. For example, what if you slide a ball
directly away from the center of the merry-go-round, as shown in Figure 6.18? The ball follows a straight path relative to Earth
(assuming negligible friction) and a path curved to the right on the merry-go-round’s surface. A person standing next to the
merry-go-round sees the ball moving straight and the merry-go-round rotating underneath it. In the merry-go-round’s frame of
reference, we explain the apparent curve to the right by using a fictitious force, called the Coriolis force, that causes the ball to
curve to the right. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow
curved paths and allows us to apply Newton’s Laws in non-inertial frames of reference.

Figure 6.18 Looking down on the counterclockwise rotation of a merry-go-round, we see that a ball slid straight toward the edge follows a path curved
to the right. The person slides the ball toward point B, starting at point A. Both points rotate to the shaded positions (A’ and B’) shown in the time that
the ball follows the curved path in the rotating frame and a straight path in Earth’s frame.

Up until now, we have considered Earth to be an inertial frame of reference with little or no worry about effects due to its rotation.
Yet such effects do exist—in the rotation of weather systems, for example. Most consequences of Earth’s rotation can be
qualitatively understood by analogy with the merry-go-round. Viewed from above the North Pole, Earth rotates counterclockwise,
as does the merry-go-round in Figure 6.18. As on the merry-go-round, any motion in Earth’s northern hemisphere experiences a
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Coriolis force to the right. Just the opposite occurs in the southern hemisphere; there, the force is to the left. Because Earth’s
angular velocity is small, the Coriolis force is usually negligible, but for large-scale motions, such as wind patterns, it has
substantial effects.

The Coriolis force causes hurricanes in the northern hemisphere to rotate in the counterclockwise direction, while the tropical
cyclones (what hurricanes are called below the equator) in the southern hemisphere rotate in the clockwise direction. The terms
hurricane, typhoon, and tropical storm are regionally-specific names for tropical cyclones, storm systems characterized by low
pressure centers, strong winds, and heavy rains. Figure 6.19 helps show how these rotations take place. Air flows toward any
region of low pressure, and tropical cyclones contain particularly low pressures. Thus winds flow toward the center of a tropical
cyclone or a low-pressure weather system at the surface. In the northern hemisphere, these inward winds are deflected to the
right, as shown in the figure, producing a counterclockwise circulation at the surface for low-pressure zones of any type. Low
pressure at the surface is associated with rising air, which also produces cooling and cloud formation, making low-pressure
patterns quite visible from space. Conversely, wind circulation around high-pressure zones is clockwise in the northern
hemisphere but is less visible because high pressure is associated with sinking air, producing clear skies.

The rotation of tropical cyclones and the path of a ball on a merry-go-round can just as well be explained by inertia and the
rotation of the system underneath. When non-inertial frames are used, fictitious forces, such as the Coriolis force, must be
invented to explain the curved path. There is no identifiable physical source for these fictitious forces. In an inertial frame, inertia
explains the path, and no force is found to be without an identifiable source. Either view allows us to describe nature, but a view
in an inertial frame is the simplest and truest, in the sense that all forces have real origins and explanations.

Figure 6.19 (a) The counterclockwise rotation of this northern hemisphere hurricane is a major consequence of the Coriolis force. (credit: NASA) (b)
Without the Coriolis force, air would flow straight into a low-pressure zone, such as that found in tropical cyclones. (c) The Coriolis force deflects the
winds to the right, producing a counterclockwise rotation. (d) Wind flowing away from a high-pressure zone is also deflected to the right, producing a
clockwise rotation. (e) The opposite direction of rotation is produced by the Coriolis force in the southern hemisphere, leading to tropical cyclones.
(credit: NASA)

6.5 Newton's Universal Law of Gravitation

Learning Objectives
By the end of this section, you will be able to:

• Explain Earth's gravitational force.
• Describe the gravitational effect of the Moon on Earth.
• Discuss weightlessness in space.
• Understand the Cavendish experiment.

The information presented in this section supports the following AP® learning objectives and science practices:

• 2.B.2.1 The student is able to apply =
2

to calculate the gravitational field due to an object with mass M, where

the field is a vector directed toward the center of the object of mass M. (S.P. 2.2)
• 2.B.2.2 The student is able to approximate a numerical value of the gravitational field (g) near the surface of an object

from its radius and mass relative to those of the Earth or other reference objects. (S.P. 2.2)
• 3.A.3.4. The student is able to make claims about the force on an object due to the presence of other objects with the

same property: mass, electric charge. (S.P. 6.1, 6.4)
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What do aching feet, a falling apple, and the orbit of the Moon have in common? Each is caused by the gravitational force. Our
feet are strained by supporting our weight—the force of Earth's gravity on us. An apple falls from a tree because of the same
force acting a few meters above Earth's surface. And the Moon orbits Earth because gravity is able to supply the necessary
centripetal force at a distance of hundreds of millions of meters. In fact, the same force causes planets to orbit the Sun, stars to
orbit the center of the galaxy, and galaxies to cluster together. Gravity is another example of underlying simplicity in nature. It is
the weakest of the four basic forces found in nature, and in some ways the least understood. It is a force that acts at a distance,
without physical contact, and is expressed by a formula that is valid everywhere in the universe, for masses and distances that
vary from the tiny to the immense.

Sir Isaac Newton was the first scientist to precisely define the gravitational force, and to show that it could explain both falling
bodies and astronomical motions. See Figure 6.20. But Newton was not the first to suspect that the same force caused both our
weight and the motion of planets. His forerunner Galileo Galilei had contended that falling bodies and planetary motions had the
same cause. Some of Newton's contemporaries, such as Robert Hooke, Christopher Wren, and Edmund Halley, had also made
some progress toward understanding gravitation. But Newton was the first to propose an exact mathematical form and to use
that form to show that the motion of heavenly bodies should be conic sections—circles, ellipses, parabolas, and hyperbolas. This
theoretical prediction was a major triumph—it had been known for some time that moons, planets, and comets follow such paths,
but no one had been able to propose a mechanism that caused them to follow these paths and not others. This was one of the
earliest examples of a theory derived from empirical evidence doing more than merely describing those empirical results; it made
claims about the fundamental workings of the universe.

Figure 6.20 According to early accounts, Newton was inspired to make the connection between falling bodies and astronomical motions when he saw
an apple fall from a tree and realized that if the gravitational force could extend above the ground to a tree, it might also reach the Sun. The inspiration
of Newton's apple is a part of worldwide folklore and may even be based in fact. Great importance is attached to it because Newton's universal law of
gravitation and his laws of motion answered very old questions about nature and gave tremendous support to the notion of underlying simplicity and
unity in nature. Scientists still expect underlying simplicity to emerge from their ongoing inquiries into nature.

The gravitational force is relatively simple. It is always attractive, and it depends only on the masses involved and the distance
between them. Stated in modern language, Newton's universal law of gravitation states that every particle in the universe
attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses
and inversely proportional to the square of the distance between them.
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Figure 6.21 Gravitational attraction is along a line joining the centers of mass of these two bodies. The magnitude of the force is the same on each,
consistent with Newton's third law.

Misconception Alert

The magnitude of the force on each object (one has larger mass than the other) is the same, consistent with Newton's third
law.

The bodies we are dealing with tend to be large. To simplify the situation we assume that the body acts as if its entire mass is
concentrated at one specific point called the center of mass (CM), which will be further explored in Linear Momentum and
Collisions. For two bodies having masses and with a distance between their centers of mass, the equation for
Newton's universal law of gravitation is

(6.40)=
2

,

where is the magnitude of the gravitational force and is a proportionality factor called the gravitational constant. is a
universal gravitational constant—that is, it is thought to be the same everywhere in the universe. It has been measured
experimentally to be

(6.41)
= 6.673×10−11N ⋅ m2

kg2

in SI units. Note that the units of are such that a force in newtons is obtained from =
2

, when considering masses in

kilograms and distance in meters. For example, two 1.000 kg masses separated by 1.000 m will experience a gravitational

attraction of 6.673×10−11 N . This is an extraordinarily small force. The small magnitude of the gravitational force is consistent
with everyday experience. We are unaware that even large objects like mountains exert gravitational forces on us. In fact, our

body weight is the force of attraction of the entire Earth on us with a mass of 6×1024 kg .

The experiment to measure G was first performed by Cavendish, and is explained in more detail later. The fundamental concept
it is based on is having a known mass on a spring with a known force (or spring) constant. Then, a second known mass is placed
at multiple known distances from the first, and the amount of stretch in the spring resulting from the gravitational attraction of the
two masses is measured.

Recall that the acceleration due to gravity is about 9.80 m/s2 on Earth. We can now determine why this is so. The weight of

an object mg is the gravitational force between it and Earth. Substituting mg for in Newton's universal law of gravitation gives

(6.42)=
2

,

where is the mass of the object, is the mass of Earth, and is the distance to the center of Earth (the distance between
the centers of mass of the object and Earth). See Figure 6.22. The mass of the object cancels, leaving an equation for :
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(6.43)=
2
.

Substituting known values for Earth's mass and radius (to three significant figures),

(6.44)
= 6.67×10−11N ⋅ m2

kg2
×

5.98×1024 kg

(6.38×106 m)2
,

and we obtain a value for the acceleration of a falling body:

(6.45)= 9.80 m/s2.

Figure 6.22 The distance between the centers of mass of Earth and an object on its surface is very nearly the same as the radius of Earth, because
Earth is so much larger than the object.

This is the expected value and is independent of the body's mass. Newton's law of gravitation takes Galileo's observation that all
masses fall with the same acceleration a step further, explaining the observation in terms of a force that causes objects to fall—in
fact, in terms of a universally existing force of attraction between masses.

Gravitational Mass and Inertial Mass

Notice that, in Equation 6.40, the mass of the objects under consideration is directly proportional to the gravitational force.
More mass means greater forces, and vice versa. However, we have already seen the concept of mass before in a different
context.

In Chapter 4, you read that mass is a measure of inertia. However, we normally measure the mass of an object by
measuring the force of gravity (F) on it.

How do we know that inertial mass is identical to gravitational mass? Assume that we compare the mass of two objects. The
objects have inertial masses m1 and m2. If the objects balance each other on a pan balance, we can conclude that they
have the same gravitational mass, that is, that they experience the same force due to gravity, F. Using Newton's second law
of motion, F = ma, we can write m1 a1 = m2 a2.

If we can show that the two objects experience the same acceleration due to gravity, we can conclude that m1 = m2, that is,
that the objects' inertial masses are equal.

In fact, Galileo and others conducted experiments to show that, when factors such as wind resistance are kept constant, all
objects, regardless of their mass, experience the same acceleration due to gravity. Galileo is famously said to have dropped
two balls of different masses off the leaning tower of Pisa to demonstrate this. The balls accelerated at the same rate. Since
acceleration due to gravity is constant for all objects on Earth, regardless of their mass or composition, i.e., a1 = a2, then m1
= m2. Thus, we can conclude that inertial mass is identical to gravitational mass. This allows us to calculate the acceleration
of free fall due to gravity, such as in the orbits of planets.

Take-Home Experiment

Take a marble, a ball, and a spoon and drop them from the same height. Do they hit the floor at the same time? If you drop a
piece of paper as well, does it behave like the other objects? Explain your observations.

Making Connections: Gravitation, Other Forces, and General Relativity

Attempts are still being made to understand the gravitational force. As we shall see in Particle Physics, modern physics is
exploring the connections of gravity to other forces, space, and time. General relativity alters our view of gravitation, leading
us to think of gravitation as bending space and time.
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Applying the Science Practices: All Objects Have Gravitational Fields

We can use the formula developed above, =
2

, to calculate the gravitational fields of other objects.

For example, the Moon has a radius of 1.7 × 106 m and a mass of 7.3 × 1022 kg. The gravitational field on the surface of the
Moon can be expressed as

=
2

= 6.67×10−11 N·m2

kg2
×

7.3×1022  kg

1.7×106  m
2

= 1.685 m/s2

This is about 1/6 of the gravity on Earth, which seems reasonable, since the Moon has a much smaller mass than Earth
does.

A person has a mass of 50 kg. The gravitational field 1.0 m from the person's center of mass can be expressed as

=
2

= 6.67×10−11  N·m2

kg2
×

50 kg

(1 m)2

= 3.34×10−9  m/s2

This is less than one millionth of the gravitational field at the surface of Earth.

In the following example, we make a comparison similar to one made by Newton himself. He noted that if the gravitational force
caused the Moon to orbit Earth, then the acceleration due to gravity should equal the centripetal acceleration of the Moon in its
orbit. Newton found that the two accelerations agreed “pretty nearly.”

Example 6.6 Earth's Gravitational Force Is the Centripetal Force Making the Moon Move in a
Curved Path

(a) Find the acceleration due to Earth's gravity at the distance of the Moon.

(b) Calculate the centripetal acceleration needed to keep the Moon in its orbit (assuming a circular orbit about a fixed Earth),
and compare it with the value of the acceleration due to Earth's gravity that you have just found.

Strategy for (a)

This calculation is the same as the one finding the acceleration due to gravity at Earth's surface, except that is the

distance from the center of Earth to the center of the Moon. The radius of the Moon's nearly circular orbit is 3.84×108 m .

Solution for (a)

Substituting known values into the expression for found above, remembering that is the mass of Earth not the Moon,

yields

(6.46)
=

2
= 6.67×10−11N ⋅ m2

kg2
×

5.98×1024 kg

(3.84×108 m)2

= 2.70×10−3 m/s.2

Strategy for (b)

Centripetal acceleration can be calculated using either form of

(6.47)

=
2

= 2

.

We choose to use the second form:
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(6.48)= 2,

where is the angular velocity of the Moon about Earth.

Solution for (b)

Given that the period (the time it takes to make one complete rotation) of the Moon's orbit is 27.3 days, (d) and using

(6.49)
1 d×24hr

d
×60min

hr
×60 s

min
= 86,400 s

we see that

(6.50)
= Δ

Δ
= 2π rad

(27.3 d)(86,400 s/d)
= 2.66×10−6rad

s .

The centripetal acceleration is

(6.51)= 2 = (3.84×108 m)(2.66×10−6 rad/s)2

= 2.72×10−3 m/s.2

The direction of the acceleration is toward the center of the Earth.

Discussion

The centripetal acceleration of the Moon found in (b) differs by less than 1% from the acceleration due to Earth's gravity
found in (a). This agreement is approximate because the Moon's orbit is slightly elliptical, and Earth is not stationary (rather
the Earth-Moon system rotates about its center of mass, which is located some 1700 km below Earth's surface). The clear
implication is that Earth's gravitational force causes the Moon to orbit Earth.

Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton's third law, if Earth exerts
a force on the Moon, then the Moon should exert an equal and opposite force on Earth (see Figure 6.23). We do not sense the
Moon's effect on Earth's motion, because the Moon's gravity moves our bodies right along with Earth but there are other signs on
Earth that clearly show the effect of the Moon's gravitational force as discussed in Satellites and Kepler's Laws: An Argument
for Simplicity.

Figure 6.23 (a) Earth and the Moon rotate approximately once a month around their common center of mass. (b) Their center of mass orbits the Sun in
an elliptical orbit, but Earth's path around the Sun has “wiggles” in it. Similar wiggles in the paths of stars have been observed and are considered
direct evidence of planets orbiting those stars. This is important because the planets' reflected light is often too dim to be observed.

Tides
Ocean tides are one very observable result of the Moon's gravity acting on Earth. Figure 6.24 is a simplified drawing of the
Moon's position relative to the tides. Because water easily flows on Earth's surface, a high tide is created on the side of Earth
nearest to the Moon, where the Moon's gravitational pull is strongest. Why is there also a high tide on the opposite side of Earth?
The answer is that Earth is pulled toward the Moon more than the water on the far side, because Earth is closer to the Moon. So
the water on the side of Earth closest to the Moon is pulled away from Earth, and Earth is pulled away from water on the far side.
As Earth rotates, the tidal bulge (an effect of the tidal forces between an orbiting natural satellite and the primary planet that it
orbits) keeps its orientation with the Moon. Thus there are two tides per day (the actual tidal period is about 12 hours and 25.2
minutes), because the Moon moves in its orbit each day as well).
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Figure 6.24 The Moon causes ocean tides by attracting the water on the near side more than Earth, and by attracting Earth more than the water on the
far side. The distances and sizes are not to scale. For this simplified representation of the Earth-Moon system, there are two high and two low tides per
day at any location, because Earth rotates under the tidal bulge.

The Sun also affects tides, although it has about half the effect of the Moon. However, the largest tides, called spring tides, occur
when Earth, the Moon, and the Sun are aligned. The smallest tides, called neap tides, occur when the Sun is at a 90º angle to
the Earth-Moon alignment.

Figure 6.25 (a, b) Spring tides: The highest tides occur when Earth, the Moon, and the Sun are aligned. (c) Neap tide: The lowest tides occur when the
Sun lies at 90º to the Earth-Moon alignment. Note that this figure is not drawn to scale.

Tides are not unique to Earth but occur in many astronomical systems. The most extreme tides occur where the gravitational
force is the strongest and varies most rapidly, such as near black holes (see Figure 6.26). A few likely candidates for black holes
have been observed in our galaxy. These have masses greater than the Sun but have diameters only a few kilometers across.
The tidal forces near them are so great that they can actually tear matter from a companion star.
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Figure 6.26 A black hole is an object with such strong gravity that not even light can escape it. This black hole was created by the supernova of one
star in a two-star system. The tidal forces created by the black hole are so great that it tears matter from the companion star. This matter is
compressed and heated as it is sucked into the black hole, creating light and X-rays observable from Earth.

”Weightlessness” and Microgravity
In contrast to the tremendous gravitational force near black holes is the apparent gravitational field experienced by astronauts
orbiting Earth. What is the effect of “weightlessness” upon an astronaut who is in orbit for months? Or what about the effect of
weightlessness upon plant growth? Weightlessness doesn't mean that an astronaut is not being acted upon by the gravitational
force. There is no “zero gravity” in an astronaut's orbit. The term just means that the astronaut is in free-fall, accelerating with the
acceleration due to gravity. If an elevator cable breaks, the passengers inside will be in free fall and will experience
weightlessness. You can experience short periods of weightlessness in some rides in amusement parks.

Figure 6.27 Astronauts experiencing weightlessness on board the International Space Station. (credit: NASA)

Microgravity refers to an environment in which the apparent net acceleration of a body is small compared with that produced by
Earth at its surface. Many interesting biology and physics topics have been studied over the past three decades in the presence
of microgravity. Of immediate concern is the effect on astronauts of extended times in outer space, such as at the International
Space Station. Researchers have observed that muscles will atrophy (waste away) in this environment. There is also a
corresponding loss of bone mass. Study continues on cardiovascular adaptation to space flight. On Earth, blood pressure is
usually higher in the feet than in the head, because the higher column of blood exerts a downward force on it, due to gravity.
When standing, 70% of your blood is below the level of the heart, while in a horizontal position, just the opposite occurs. What
difference does the absence of this pressure differential have upon the heart?

Some findings in human physiology in space can be clinically important to the management of diseases back on Earth. On a
somewhat negative note, spaceflight is known to affect the human immune system, possibly making the crew members more
vulnerable to infectious diseases. Experiments flown in space also have shown that some bacteria grow faster in microgravity
than they do on Earth. However, on a positive note, studies indicate that microbial antibiotic production can increase by a factor
of two in space-grown cultures. One hopes to be able to understand these mechanisms so that similar successes can be
achieved on the ground. In another area of physics space research, inorganic crystals and protein crystals have been grown in
outer space that have much higher quality than any grown on Earth, so crystallography studies on their structure can yield much
better results.

242 Chapter 6 | Gravitation and Uniform Circular Motion

This content is available for free at http://cnx.org/content/col11844/1.13



Plants have evolved with the stimulus of gravity and with gravity sensors. Roots grow downward and shoots grow upward. Plants
might be able to provide a life support system for long duration space missions by regenerating the atmosphere, purifying water,
and producing food. Some studies have indicated that plant growth and development are not affected by gravity, but there is still
uncertainty about structural changes in plants grown in a microgravity environment.

The Cavendish Experiment: Then and Now

As previously noted, the universal gravitational constant is determined experimentally. This definition was first done
accurately by Henry Cavendish (1731–1810), an English scientist, in 1798, more than 100 years after Newton published his
universal law of gravitation. The measurement of is very basic and important because it determines the strength of one of the
four forces in nature. Cavendish's experiment was very difficult because he measured the tiny gravitational attraction between
two ordinary-sized masses (tens of kilograms at most), using apparatus like that in Figure 6.28. Remarkably, his value for
differs by less than 1% from the best modern value.

One important consequence of knowing was that an accurate value for Earth's mass could finally be obtained. This was done

by measuring the acceleration due to gravity as accurately as possible and then calculating the mass of Earth from the
relationship Newton's universal law of gravitation gives

(6.52)=
2

,

where is the mass of the object, is the mass of Earth, and is the distance to the center of Earth (the distance between
the centers of mass of the object and Earth). See Figure 6.21. The mass of the object cancels, leaving an equation for :

(6.53)=
2
.

Rearranging to solve for yields

(6.54)
=

2

.

So can be calculated because all quantities on the right, including the radius of Earth , are known from direct

measurements. We shall see in Satellites and Kepler's Laws: An Argument for Simplicity that knowing also allows for the

determination of astronomical masses. Interestingly, of all the fundamental constants in physics, is by far the least well
determined.

The Cavendish experiment is also used to explore other aspects of gravity. One of the most interesting questions is whether the
gravitational force depends on substance as well as mass—for example, whether one kilogram of lead exerts the same
gravitational pull as one kilogram of water. A Hungarian scientist named Roland von Eötvös pioneered this inquiry early in the
20th century. He found, with an accuracy of five parts per billion, that the gravitational force does not depend on the substance.
Such experiments continue today, and have improved upon Eötvös' measurements. Cavendish-type experiments such as those
of Eric Adelberger and others at the University of Washington, have also put severe limits on the possibility of a fifth force and
have verified a major prediction of general relativity—that gravitational energy contributes to rest mass. Ongoing measurements
there use a torsion balance and a parallel plate (not spheres, as Cavendish used) to examine how Newton's law of gravitation
works over sub-millimeter distances. On this small-scale, do gravitational effects depart from the inverse square law? So far, no
deviation has been observed.

Figure 6.28 Cavendish used an apparatus like this to measure the gravitational attraction between the two suspended spheres ( ) and the two on

the stand ( ) by observing the amount of torsion (twisting) created in the fiber. Distance between the masses can be varied to check the
dependence of the force on distance. Modern experiments of this type continue to explore gravity.
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angular velocity:

arc length:

banked curve:

center of mass:

centrifugal force:

centripetal acceleration:

centripetal force:

Coriolis force:

fictitious force:

gravitational constant, G:

ideal angle:

ideal banking:

ideal speed:

microgravity:

Newton's universal law of gravitation:

non-inertial frame of reference:

pit:

Figure 6.31(b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force
explain not only all motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws of
physics are compelling. As our knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.

Figure 6.31 (a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving about it in
complex superpositions of circular paths. This geocentric model, which can be made progressively more accurate by adding more circles, is purely
descriptive, containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun at the center of the solar system. It
is fully explained by a small number of laws of physics, including Newton's universal law of gravitation.

Glossary
, the rate of change of the angle with which an object moves on a circular path

Δ , the distance traveled by an object along a circular path

the curve in a road that is sloping in a manner that helps a vehicle negotiate the curve

the point where the entire mass of an object can be thought to be concentrated

a fictitious force that tends to throw an object off when the object is rotating in a non-inertial frame of
reference

the acceleration of an object moving in a circle, directed toward the center

any net force causing uniform circular motion

the fictitious force causing the apparent deflection of moving objects when viewed in a rotating frame of
reference

a force having no physical origin

a proportionality factor used in the equation for Newton's universal law of gravitation; it is a
universal constant—that is, it is thought to be the same everywhere in the universe

the angle at which a car can turn safely on a steep curve, which is in proportion to the ideal speed

the sloping of a curve in a road, where the angle of the slope allows the vehicle to negotiate the curve at a
certain speed without the aid of friction between the tires and the road; the net external force on the vehicle equals the
horizontal centripetal force in the absence of friction

the maximum safe speed at which a vehicle can turn on a curve without the aid of friction between the tire and
the road

an environment in which the apparent net acceleration of a body is small compared with that produced by Earth
at its surface

every particle in the universe attracts every other particle with a force along a line
joining them; the force is directly proportional to the product of their masses and inversely proportional to the square of
the distance between them

an accelerated frame of reference

a tiny indentation on the spiral track moulded into the top of the polycarbonate layer of CD
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radians:

radius of curvature:

rotation angle:

ultracentrifuge:

uniform circular motion:

a unit of angle measurement

radius of a circular path

the ratio of the arc length to the radius of curvature on a circular path:

Δ = Δ

a centrifuge optimized for spinning a rotor at very high speeds

the motion of an object in a circular path at constant speed

Section Summary

6.1 Rotation Angle and Angular Velocity
• Uniform circular motion is motion in a circle at constant speed. The rotation angle Δ is defined as the ratio of the arc

length to the radius of curvature:

Δ = Δ ,

where arc length Δ is distance traveled along a circular path and is the radius of curvature of the circular path. The

quantity Δ is measured in units of radians (rad), for which

2π rad = 360º= 1 revolution.
• The conversion between radians and degrees is 1 rad = 57.3º .
• Angular velocity is the rate of change of an angle,

= Δ
Δ

,

where a rotation Δ takes place in a time Δ . The units of angular velocity are radians per second (rad/s). Linear velocity
and angular velocity are related by

=  or = .

6.2 Centripetal Acceleration
• Centripetal acceleration c is the acceleration experienced while in uniform circular motion. It always points toward the

center of rotation. It is perpendicular to the linear velocity and has the magnitude

c =
2

c = 2.

• The unit of centripetal acceleration is m / s2 .

6.3 Centripetal Force
• Centripetal force Fc is any force causing uniform circular motion. It is a “center-seeking” force that always points toward

the center of rotation. It is perpendicular to linear velocity and has magnitude

c = c,

which can also be expressed as

c =
2

or

c = 2

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
• Rotating and accelerated frames of reference are non-inertial.
• Fictitious forces, such as the Coriolis force, are needed to explain motion in such frames.

6.5 Newton's Universal Law of Gravitation
• Newton's universal law of gravitation: Every particle in the universe attracts every other particle with a force along a line

joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the
distance between them. In equation form, this is

=
2

,
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where F is the magnitude of the gravitational force. is the gravitational constant, given by

= 6.673×10–11 N ⋅ m2/kg2 .

• Newton's law of gravitation applies universally.

6.6 Satellites and Kepler's Laws: An Argument for Simplicity
• Kepler's laws are stated for a small mass orbiting a larger mass in near-isolation. Kepler's laws of planetary motion

are then as follows:
Kepler's first law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

Kepler's second law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times.

Kepler's third law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average
distances from the Sun:

1
 2

2
 2

= 1
 3

2
 3

,

where is the period (time for one orbit) and is the average radius of the orbit.

• The period and radius of a satellite's orbit about a larger body are related by

2 = 4π2 3

or

3

2
=

4π2
.

Conceptual Questions

6.1 Rotation Angle and Angular Velocity
1. There is an analogy between rotational and linear physical quantities. What rotational quantities are analogous to distance and
velocity?

6.2 Centripetal Acceleration
2. Can centripetal acceleration change the speed of circular motion? Explain.

6.3 Centripetal Force
3. If you wish to reduce the stress (which is related to centripetal force) on high-speed tires, would you use large- or small-
diameter tires? Explain.

4. Define centripetal force. Can any type of force (for example, tension, gravitational force, friction, and so on) be a centripetal
force? Can any combination of forces be a centripetal force?

5. If centripetal force is directed toward the center, why do you feel that you are ‘thrown' away from the center as a car goes
around a curve? Explain.

6. Race car drivers routinely cut corners as shown in Figure 6.32. Explain how this allows the curve to be taken at the greatest
speed.
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Figure 6.32 Two paths around a race track curve are shown. Race car drivers will take the inside path (called cutting the corner) whenever possible
because it allows them to take the curve at the highest speed.

7. A number of amusement parks have rides that make vertical loops like the one shown in Figure 6.33. For safety, the cars are
attached to the rails in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will
supply the centripetal force. What other force acts and what is its direction if:

(a) The car goes over the top at faster than this speed?

(b)The car goes over the top at slower than this speed?

Figure 6.33 Amusement rides with a vertical loop are an example of a form of curved motion.

8. What is the direction of the force exerted by the car on the passenger as the car goes over the top of the amusement ride
pictured in Figure 6.33 under the following circumstances:

(a) The car goes over the top at such a speed that the gravitational force is the only force acting?

(b) The car goes over the top faster than this speed?

(c) The car goes over the top slower than this speed?

9. As a skater forms a circle, what force is responsible for making her turn? Use a free body diagram in your answer.

10. Suppose a child is riding on a merry-go-round at a distance about halfway between its center and edge. She has a lunch box
resting on wax paper, so that there is very little friction between it and the merry-go-round. Which path shown in Figure 6.34 will
the lunch box take when she lets go? The lunch box leaves a trail in the dust on the merry-go-round. Is that trail straight, curved
to the left, or curved to the right? Explain your answer.
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Figure 6.34 A child riding on a merry-go-round releases her lunch box at point P. This is a view from above the clockwise rotation. Assuming it slides
with negligible friction, will it follow path A, B, or C, as viewed from Earth's frame of reference? What will be the shape of the path it leaves in the dust
on the merry-go-round?

11. Do you feel yourself thrown to either side when you negotiate a curve that is ideally banked for your car's speed? What is the
direction of the force exerted on you by the car seat?

12. Suppose a mass is moving in a circular path on a frictionless table as shown in figure. In the Earth's frame of reference, there
is no centrifugal force pulling the mass away from the centre of rotation, yet there is a very real force stretching the string
attaching the mass to the nail. Using concepts related to centripetal force and Newton's third law, explain what force stretches
the string, identifying its physical origin.

Figure 6.35 A mass attached to a nail on a frictionless table moves in a circular path. The force stretching the string is real and not fictional. What is
the physical origin of the force on the string?

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
13. When a toilet is flushed or a sink is drained, the water (and other material) begins to rotate about the drain on the way down.
Assuming no initial rotation and a flow initially directly straight toward the drain, explain what causes the rotation and which
direction it has in the northern hemisphere. (Note that this is a small effect and in most toilets the rotation is caused by directional
water jets.) Would the direction of rotation reverse if water were forced up the drain?

14. Is there a real force that throws water from clothes during the spin cycle of a washing machine? Explain how the water is
removed.

15. In one amusement park ride, riders enter a large vertical barrel and stand against the wall on its horizontal floor. The barrel is
spun up and the floor drops away. Riders feel as if they are pinned to the wall by a force something like the gravitational force.
This is a fictitious force sensed and used by the riders to explain events in the rotating frame of reference of the barrel. Explain in
an inertial frame of reference (Earth is nearly one) what pins the riders to the wall, and identify all of the real forces acting on
them.
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16. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the
ultimate determinant of the truth in physics, and why was this action ultimately accepted?

17. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward

Earth. Tom says a satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s2 . Who do you agree
with and why?

18. A non-rotating frame of reference placed at the center of the Sun is very nearly an inertial one. Why is it not exactly an inertial
frame?

6.5 Newton's Universal Law of Gravitation
19. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the
ultimate determinant of the truth in physics, and why was this action ultimately accepted?

20. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward

Earth. Tom says a satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s2 . Who do you agree
with and why?

21. Draw a free body diagram for a satellite in an elliptical orbit showing why its speed increases as it approaches its parent body
and decreases as it moves away.

22. Newton's laws of motion and gravity were among the first to convincingly demonstrate the underlying simplicity and unity in
nature. Many other examples have since been discovered, and we now expect to find such underlying order in complex
situations. Is there proof that such order will always be found in new explorations?

6.6 Satellites and Kepler's Laws: An Argument for Simplicity
23. In what frame(s) of reference are Kepler's laws valid? Are Kepler's laws purely descriptive, or do they contain causal
information?
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Problems & Exercises

6.1 Rotation Angle and Angular Velocity
1. Semi-trailer trucks have an odometer on one hub of a
trailer wheel. The hub is weighted so that it does not rotate,
but it contains gears to count the number of wheel
revolutions—it then calculates the distance traveled. If the
wheel has a 1.15 m diameter and goes through 200,000
rotations, how many kilometers should the odometer read?

2. Microwave ovens rotate at a rate of about 6 rev/min. What
is this in revolutions per second? What is the angular velocity
in radians per second?

3. An automobile with 0.260 m radius tires travels 80,000 km
before wearing them out. How many revolutions do the tires
make, neglecting any backing up and any change in radius
due to wear?

4. (a) What is the period of rotation of Earth in seconds? (b)
What is the angular velocity of Earth? (c) Given that Earth has

a radius of 6.4×106 m at its equator, what is the linear
velocity at Earth's surface?

5. A baseball pitcher brings his arm forward during a pitch,
rotating the forearm about the elbow. If the velocity of the ball
in the pitcher's hand is 35.0 m/s and the ball is 0.300 m from
the elbow joint, what is the angular velocity of the forearm?

6. In lacrosse, a ball is thrown from a net on the end of a stick
by rotating the stick and forearm about the elbow. If the
angular velocity of the ball about the elbow joint is 30.0 rad/s
and the ball is 1.30 m from the elbow joint, what is the velocity
of the ball?

7. A truck with 0.420-m-radius tires travels at 32.0 m/s. What
is the angular velocity of the rotating tires in radians per
second? What is this in rev/min?

8. Integrated Concepts When kicking a football, the kicker
rotates his leg about the hip joint.

(a) If the velocity of the tip of the kicker's shoe is 35.0 m/s and
the hip joint is 1.05 m from the tip of the shoe, what is the
shoe tip's angular velocity?

(b) The shoe is in contact with the initially stationary 0.500 kg
football for 20.0 ms. What average force is exerted on the
football to give it a velocity of 20.0 m/s?

(c) Find the maximum range of the football, neglecting air
resistance.

9. Construct Your Own Problem

Consider an amusement park ride in which participants are
rotated about a vertical axis in a cylinder with vertical walls.
Once the angular velocity reaches its full value, the floor
drops away and friction between the walls and the riders
prevents them from sliding down. Construct a problem in
which you calculate the necessary angular velocity that
assures the riders will not slide down the wall. Include a free
body diagram of a single rider. Among the variables to
consider are the radius of the cylinder and the coefficients of
friction between the riders' clothing and the wall.

6.2 Centripetal Acceleration
10. A fairground ride spins its occupants inside a flying
saucer-shaped container. If the horizontal circular path the
riders follow has an 8.00 m radius, at how many revolutions
per minute will the riders be subjected to a centripetal
acceleration whose magnitude is 1.50 times that due to
gravity?

11. A runner taking part in the 200 m dash must run around
the end of a track that has a circular arc with a radius of
curvature of 30 m. If he completes the 200 m dash in 23.2 s
and runs at constant speed throughout the race, what is the
magnitude of his centripetal acceleration as he runs the
curved portion of the track?

12. Taking the age of Earth to be about 4×109 years and

assuming its orbital radius of 1.5 ×1011 has not changed
and is circular, calculate the approximate total distance Earth
has traveled since its birth (in a frame of reference stationary
with respect to the Sun).

13. The propeller of a World War II fighter plane is 2.30 m in
diameter.

(a) What is its angular velocity in radians per second if it spins
at 1200 rev/min?

(b) What is the linear speed of its tip at this angular velocity if
the plane is stationary on the tarmac?

(c) What is the centripetal acceleration of the propeller tip
under these conditions? Calculate it in meters per second
squared and convert to multiples of .

14. An ordinary workshop grindstone has a radius of 7.50 cm
and rotates at 6500 rev/min.

(a) Calculate the magnitude of the centripetal acceleration at
its edge in meters per second squared and convert it to
multiples of .

(b) What is the linear speed of a point on its edge?

15. Helicopter blades withstand tremendous stresses. In
addition to supporting the weight of a helicopter, they are
spun at rapid rates and experience large centripetal
accelerations, especially at the tip.

(a) Calculate the magnitude of the centripetal acceleration at
the tip of a 4.00 m long helicopter blade that rotates at 300
rev/min.

(b) Compare the linear speed of the tip with the speed of
sound (taken to be 340 m/s).

16. Olympic ice skaters are able to spin at about 5 rev/s.

(a) What is their angular velocity in radians per second?

(b) What is the centripetal acceleration of the skater's nose if
it is 0.120 m from the axis of rotation?

(c) An exceptional skater named Dick Button was able to spin
much faster in the 1950s than anyone since—at about 9 rev/
s. What was the centripetal acceleration of the tip of his nose,
assuming it is at 0.120 m radius?

(d) Comment on the magnitudes of the accelerations found. It
is reputed that Button ruptured small blood vessels during his
spins.

17. What percentage of the acceleration at Earth's surface is
the acceleration due to gravity at the position of a satellite
located 300 km above Earth?

18. Verify that the linear speed of an ultracentrifuge is about
0.50 km/s, and Earth in its orbit is about 30 km/s by
calculating:

(a) The linear speed of a point on an ultracentrifuge 0.100 m
from its center, rotating at 50,000 rev/min.

(b) The linear speed of Earth in its orbit about the Sun (use
data from the text on the radius of Earth's orbit and
approximate it as being circular).
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19. A rotating space station is said to create “artificial
gravity”—a loosely-defined term used for an acceleration that
would be crudely similar to gravity. The outer wall of the
rotating space station would become a floor for the
astronauts, and centripetal acceleration supplied by the floor
would allow astronauts to exercise and maintain muscle and
bone strength more naturally than in non-rotating space
environments. If the space station is 200 m in diameter, what
angular velocity would produce an “artificial gravity” of

9.80 m/s2 at the rim?

20. At takeoff, a commercial jet has a 60.0 m/s speed. Its tires
have a diameter of 0.850 m.

(a) At how many rev/min are the tires rotating?

(b) What is the centripetal acceleration at the edge of the tire?

(c) With what force must a determined 1.00×10−15 kg

bacterium cling to the rim?

(d) Take the ratio of this force to the bacterium's weight.

21. Integrated Concepts

Riders in an amusement park ride shaped like a Viking ship
hung from a large pivot are rotated back and forth like a rigid
pendulum. Sometime near the middle of the ride, the ship is
momentarily motionless at the top of its circular arc. The ship
then swings down under the influence of gravity.

(a) Assuming negligible friction, find the speed of the riders at
the bottom of its arc, given the system's center of mass
travels in an arc having a radius of 14.0 m and the riders are
near the center of mass.

(b) What is the centripetal acceleration at the bottom of the
arc?

(c) Draw a free body diagram of the forces acting on a rider at
the bottom of the arc.

(d) Find the force exerted by the ride on a 60.0 kg rider and
compare it to her weight.

(e) Discuss whether the answer seems reasonable.

22. Unreasonable Results

A mother pushes her child on a swing so that his speed is
9.00 m/s at the lowest point of his path. The swing is
suspended 2.00 m above the child's center of mass.

(a) What is the magnitude of the centripetal acceleration of
the child at the low point?

(b) What is the magnitude of the force the child exerts on the
seat if his mass is 18.0 kg?

(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent?

6.3 Centripetal Force
23. (a) A 22.0 kg child is riding a playground merry-go-round
that is rotating at 40.0 rev/min. What centripetal force must
she exert to stay on if she is 1.25 m from its center?

(b) What centripetal force does she need to stay on an
amusement park merry-go-round that rotates at 3.00 rev/min
if she is 8.00 m from its center?

(c) Compare each force with her weight.

24. Calculate the centripetal force on the end of a 100 m
(radius) wind turbine blade that is rotating at 0.5 rev/s.
Assume the mass is 4 kg.

25. What is the ideal banking angle for a gentle turn of 1.20
km radius on a highway with a 105 km/h speed limit (about 65
mi/h), assuming everyone travels at the limit?

26. What is the ideal speed to take a 100 m radius curve
banked at a 20.0° angle?

27. (a) What is the radius of a bobsled turn banked at 75.0°
and taken at 30.0 m/s, assuming it is ideally banked?

(b) Calculate the centripetal acceleration.

(c) Does this acceleration seem large to you?

28. Part of riding a bicycle involves leaning at the correct
angle when making a turn, as seen in Figure 6.36. To be
stable, the force exerted by the ground must be on a line
going through the center of gravity. The force on the bicycle
wheel can be resolved into two perpendicular
components—friction parallel to the road (this must supply the
centripetal force), and the vertical normal force (which must
equal the system's weight).

(a) Show that (as defined in the figure) is related to the
speed and radius of curvature of the turn in the same
way as for an ideally banked roadway—that is,

= tan–1 2 /
(b) Calculate for a 12.0 m/s turn of radius 30.0 m (as in a
race).

Figure 6.36 A bicyclist negotiating a turn on level ground must lean at
the correct angle—the ability to do this becomes instinctive. The force of
the ground on the wheel needs to be on a line through the center of
gravity. The net external force on the system is the centripetal force. The
vertical component of the force on the wheel cancels the weight of the
system while its horizontal component must supply the centripetal force.

This process produces a relationship among the angle , the speed

, and the radius of curvature of the turn similar to that for the ideal

banking of roadways.

29. A large centrifuge, like the one shown in Figure 6.37(a),
is used to expose aspiring astronauts to accelerations similar
to those experienced in rocket launches and atmospheric
reentries.

(a) At what angular velocity is the centripetal acceleration
10 if the rider is 15.0 m from the center of rotation?
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(b) The rider's cage hangs on a pivot at the end of the arm,
allowing it to swing outward during rotation as shown in
Figure 6.37(b). At what angle below the horizontal will the

cage hang when the centripetal acceleration is 10 ? (Hint:

The arm supplies centripetal force and supports the weight of
the cage. Draw a free body diagram of the forces to see what
the angle should be.)

Figure 6.37 (a) NASA centrifuge used to subject trainees to
accelerations similar to those experienced in rocket launches and
reentries. (credit: NASA) (b) Rider in cage showing how the cage pivots
outward during rotation. This allows the total force exerted on the rider
by the cage to be along its axis at all times.

30. Integrated Concepts

If a car takes a banked curve at less than the ideal speed,
friction is needed to keep it from sliding toward the inside of
the curve (a real problem on icy mountain roads). (a)
Calculate the ideal speed to take a 100 m radius curve
banked at 15.0º. (b) What is the minimum coefficient of
friction needed for a frightened driver to take the same curve
at 20.0 km/h?

31. Modern roller coasters have vertical loops like the one
shown in Figure 6.38. The radius of curvature is smaller at
the top than on the sides so that the downward centripetal
acceleration at the top will be greater than the acceleration
due to gravity, keeping the passengers pressed firmly into
their seats. What is the speed of the roller coaster at the top
of the loop if the radius of curvature there is 15.0 m and the
downward acceleration of the car is 1.50 g?

Figure 6.38 Teardrop-shaped loops are used in the latest roller coasters
so that the radius of curvature gradually decreases to a minimum at the
top. This means that the centripetal acceleration builds from zero to a
maximum at the top and gradually decreases again. A circular loop
would cause a jolting change in acceleration at entry, a disadvantage
discovered long ago in railroad curve design. With a small radius of
curvature at the top, the centripetal acceleration can more easily be kept
greater than so that the passengers do not lose contact with their

seats nor do they need seat belts to keep them in place.

32. Unreasonable Results

(a) Calculate the minimum coefficient of friction needed for a
car to negotiate an unbanked 50.0 m radius curve at 30.0 m/
s.

(b) What is unreasonable about the result?

(c) Which premises are unreasonable or inconsistent?

6.5 Newton's Universal Law of Gravitation
33. (a) Calculate Earth's mass given the acceleration due to

gravity at the North Pole is 9.830 m/s2 and the radius of the
Earth is 6371 km from pole to pole.

(b) Compare this with the accepted value of

5.979×1024 kg .

34. (a) Calculate the magnitude of the acceleration due to
gravity on the surface of Earth due to the Moon.

(b) Calculate the magnitude of the acceleration due to gravity
at Earth due to the Sun.

(c) Take the ratio of the Moon's acceleration to the Sun's and
comment on why the tides are predominantly due to the Moon
in spite of this number.

35. (a) What is the acceleration due to gravity on the surface
of the Moon?

(b) On the surface of Mars? The mass of Mars is

6.418×1023 kg and its radius is 3.38×106 m .

36. (a) Calculate the acceleration due to gravity on the
surface of the Sun.

(b) By what factor would your weight increase if you could
stand on the Sun? (Never mind that you cannot.)
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37. The Moon and Earth rotate about their common center of
mass, which is located about 4700 km from the center of
Earth. (This is 1690 km below the surface.)

(a) Calculate the magnitude of the acceleration due to the
Moon's gravity at that point.

(b) Calculate the magnitude of the centripetal acceleration of
the center of Earth as it rotates about that point once each
lunar month (about 27.3 d) and compare it with the
acceleration found in part (a). Comment on whether or not
they are equal and why they should or should not be.

38. Solve part (b) of Example 6.6 using = 2 / .

39. Astrology, that unlikely and vague pseudoscience, makes
much of the position of the planets at the moment of one's
birth. The only known force a planet exerts on Earth is
gravitational.

(a) Calculate the magnitude of the gravitational force exerted
on a 4.20 kg baby by a 100 kg father 0.200 m away at birth
(he is assisting, so he is close to the child).

(b) Calculate the magnitude of the force on the baby due to
Jupiter if it is at its closest distance to Earth, some

6.29×1011 m away. How does the force of Jupiter on the
baby compare to the force of the father on the baby? Other
objects in the room and the hospital building also exert similar
gravitational forces. (Of course, there could be an unknown
force acting, but scientists first need to be convinced that
there is even an effect, much less that an unknown force
causes it.)

40. The existence of the dwarf planet Pluto was proposed
based on irregularities in Neptune's orbit. Pluto was
subsequently discovered near its predicted position. But it
now appears that the discovery was fortuitous, because Pluto
is small and the irregularities in Neptune's orbit were not well
known. To illustrate that Pluto has a minor effect on the orbit
of Neptune compared with the closest planet to Neptune:

(a) Calculate the acceleration due to gravity at Neptune due

to Pluto when they are 4.50×1012 m apart, as they are at

present. The mass of Pluto is 1.4×1022 kg .

(b) Calculate the acceleration due to gravity at Neptune due

to Uranus, presently about 2.50×1012 m apart, and
compare it with that due to Pluto. The mass of Uranus is

8.62×1025 kg .

41. (a) The Sun orbits the Milky Way galaxy once each

2.60 x 108 y , with a roughly circular orbit averaging

3.00 x 104 light years in radius. (A light year is the distance
traveled by light in 1 y.) Calculate the centripetal acceleration
of the Sun in its galactic orbit. Does your result support the
contention that a nearly inertial frame of reference can be
located at the Sun?

(b) Calculate the average speed of the Sun in its galactic
orbit. Does the answer surprise you?

42. Unreasonable Result

A mountain 10.0 km from a person exerts a gravitational force
on him equal to 2.00% of his weight.

(a) Calculate the mass of the mountain.

(b) Compare the mountain's mass with that of Earth.

(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent? (Note
that accurate gravitational measurements can easily detect
the effect of nearby mountains and variations in local
geology.)

6.6 Satellites and Kepler's Laws: An Argument
for Simplicity
43. A geosynchronous Earth satellite is one that has an
orbital period of precisely 1 day. Such orbits are useful for
communication and weather observation because the satellite
remains above the same point on Earth (provided it orbits in
the equatorial plane in the same direction as Earth's rotation).
Calculate the radius of such an orbit based on the data for the
moon in Table 6.2.

44. Calculate the mass of the Sun based on data for Earth's
orbit and compare the value obtained with the Sun's actual
mass.

45. Find the mass of Jupiter based on data for the orbit of one
of its moons, and compare your result with its actual mass.

46. Find the ratio of the mass of Jupiter to that of Earth based
on data in Table 6.2.

47. Astronomical observations of our Milky Way galaxy

indicate that it has a mass of about 8.0×1011 solar masses.

A star orbiting on the galaxy's periphery is about 6.0×104

light years from its center. (a) What should the orbital period

of that star be? (b) If its period is 6.0×107 instead, what is
the mass of the galaxy? Such calculations are used to imply
the existence of “dark matter” in the universe and have
indicated, for example, the existence of very massive black
holes at the centers of some galaxies.

48. Integrated Concepts

Space debris left from old satellites and their launchers is
becoming a hazard to other satellites. (a) Calculate the speed
of a satellite in an orbit 900 km above Earth's surface. (b)
Suppose a loose rivet is in an orbit of the same radius that
intersects the satellite's orbit at an angle of 90º relative to
Earth. What is the velocity of the rivet relative to the satellite
just before striking it? (c) Given the rivet is 3.00 mm in size,
how long will its collision with the satellite last? (d) If its mass
is 0.500 g, what is the average force it exerts on the satellite?
(e) How much energy in joules is generated by the collision?
(The satellite's velocity does not change appreciably, because
its mass is much greater than the rivet's.)

49. Unreasonable Results

(a) Based on Kepler's laws and information on the orbital
characteristics of the Moon, calculate the orbital radius for an
Earth satellite having a period of 1.00 h. (b) What is
unreasonable about this result? (c) What is unreasonable or
inconsistent about the premise of a 1.00 h orbit?

50. Construct Your Own Problem

On February 14, 2000, the NEAR spacecraft was successfully
inserted into orbit around Eros, becoming the first artificial
satellite of an asteroid. Construct a problem in which you
determine the orbital speed for a satellite near Eros. You will
need to find the mass of the asteroid and consider such
things as a safe distance for the orbit. Although Eros is not
spherical, calculate the acceleration due to gravity on its
surface at a point an average distance from its center of
mass. Your instructor may also wish to have you calculate the
escape velocity from this point on Eros.
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Test Prep for AP® Courses

6.5 Newton's Universal Law of Gravitation
1. Jupiter has a mass approximately 300 times greater than
Earth's and a radius about 11 times greater. How will the
gravitational acceleration at the surface of Jupiter compare to
that at the surface of the Earth?

a. Greater
b. Less
c. About the same
d. Not enough information

2. Given Newton's universal law of gravitation (Equation
6.40), under what circumstances is the force due to gravity
maximized?

3. In the formula =
2

, what does G represent?

a. The acceleration due to gravity
b. A gravitational constant that is the same everywhere in

the universe
c. A gravitational constant that is inversely proportional to

the radius
d. The factor by which you multiply the inertial mass to

obtain the gravitational mass

4. Saturn's moon Titan has a radius of 2.58 × 106 m and a
measured gravitational field of 1.35 m/s2. What is its mass?

5. A recently discovered planet has a mass twice as great as
Earth's and a radius twice as large as Earth's. What will be
the approximate size of its gravitational field?

a. 19 m/s2

b. 4.9 m/s2

c. 2.5 m/s2

d. 9.8 m/s2

6. 4. Earth is 1.5 × 1011 m from the Sun. Mercury is 5.7 ×
1010 m from the Sun. How does the gravitational field of the
Sun on Mercury (gSM) compare to the gravitational field of the
Sun on Earth (gSE)?
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7 WORK, ENERGY, AND ENERGY
RESOURCES

Figure 7.1 How many forms of energy can you identify in this photograph of a wind farm in Iowa? (credit: Jürgen from Sandesneben, Germany,
Wikimedia Commons)

Chapter Outline
7.1. Work: The Scientific Definition

7.2. Kinetic Energy and the Work-Energy Theorem

7.3. Gravitational Potential Energy

7.4. Conservative Forces and Potential Energy

7.5. Nonconservative Forces

7.6. Conservation of Energy

7.7. Power

7.8. Work, Energy, and Power in Humans

7.9. World Energy Use

Connection for AP® Courses
Energy plays an essential role both in everyday events and in scientific phenomena. You can no doubt name many forms of
energy, from that provided by our foods to the energy we use to run our cars and the sunlight that warms us on the beach. You
can also cite examples of what people call “energy” that may not be scientific, such as someone having an energetic personality.
Not only does energy have many interesting forms, it is involved in almost all phenomena, and is one of the most important
concepts of physics.

There is no simple and accurate scientific definition for energy. Energy is characterized by its many forms and the fact that it is
conserved. We can loosely define energy as the ability to do work, admitting that in some circumstances not all energy is
available to do work. Because of the association of energy with work, we begin the chapter with a discussion of work. Work is
intimately related to energy and how energy moves from one system to another or changes form. The work-energy theorem
supports Big Idea 3, that interactions between objects are described by forces. In particular, exerting a force on an object may do
work on it, changing it's energy (Enduring Understanding 3.E). The work-energy theorem, introduced in this chapter, establishes
the relationship between work done on an object by an external force and changes in the object’s kinetic energy (Essential
Knowledge 3.E.1).

Similarly, systems can do work on each other, supporting Big Idea 4, that interactions between systems can result in changes in
those systems—in this case, changes in the total energy of the system (Enduring Understanding 4.C). The total energy of the
system is the sum of its kinetic energy, potential energy, and microscopic internal energy (Essential Knowledge 4.C.1). In this
chapter students learn how to calculate kinetic, gravitational, and elastic potential energy in order to determine the total
mechanical energy of a system. The transfer of mechanical energy into or out of a system is equal to the work done on the
system by an external force with a nonzero component parallel to the displacement (Essential Knowledge 4.C.2).

An important aspect of energy is that the total amount of energy in the universe is constant. Energy can change forms, but it
cannot appear from nothing or disappear without a trace. Energy is thus one of a handful of physical quantities that we say is
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“conserved.” Conservation of energy (as physicists call the principle that energy can neither be created nor destroyed) is based
on experiment. Even as scientists discovered new forms of energy, conservation of energy has always been found to apply.
Perhaps the most dramatic example of this was supplied by Einstein when he suggested that mass is equivalent to energy (his
famous equation E = mc2). This is one of the most important applications of Big Idea 5, that changes that occur as a result of
interactions are constrained by conservation laws. Specifically, there are many situations where conservation of energy
(Enduring Understanding 5.B) is both a useful concept and starting point for calculations related to the system. Note, however,
that conservation doesn’t necessarily mean that energy in a system doesn’t change. Energy may be transferred into or out of the
system, and the change must be equal to the amount transferred (Enduring Understanding 5.A). This may occur if there is an
external force or a transfer between external objects and the system (Essential Knowledge 5.A.3). Energy is one of the
fundamental quantities that are conserved for all systems (Essential Knowledge 5.A.2). The chapter introduces concepts of
kinetic energy and potential energy. Kinetic energy is introduced as an energy of motion that can be changed by the amount of
work done by an external force. Potential energy can only exist when objects interact with each other via conservative forces
according to classical physics (Essential Knowledge 5.B.3). Because of this, a single object can only have kinetic energy and no
potential energy (Essential Knowledge 5.B.1). The chapter also introduces the idea that the energy transfer is equal to the work
done on the system by external forces and the rate of energy transfer is defined as power (Essential Knowledge 5.B.5).

From a societal viewpoint, energy is one of the major building blocks of modern civilization. Energy resources are key limiting
factors to economic growth. The world use of energy resources, especially oil, continues to grow, with ominous consequences
economically, socially, politically, and environmentally. We will briefly examine the world’s energy use patterns at the end of this
chapter.

The concepts in this chapter support:

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.E A force exerted on an object can change the kinetic energy of the object.

Essential Knowledge 3.E.1 The change in the kinetic energy of an object depends on the force exerted on the object and on the
displacement of the object during the interval that the force is exerted.

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.C Interactions with other objects or systems can change the total energy of a system.

Essential Knowledge 4.C.1 The energy of a system includes its kinetic energy, potential energy, and microscopic internal energy.
Examples should include gravitational potential energy, elastic potential energy, and kinetic energy.

Essential Knowledge 4.C.2 Mechanical energy (the sum of kinetic and potential energy) is transferred into or out of a system
when an external force is exerted on a system such that a component of the force is parallel to its displacement. The process
through which the energy is transferred is called work.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.A Certain quantities are conserved, in the sense that the changes of those quantities in a given
system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.

Essential Knowledge 5.A.2 For all systems under all circumstances, energy, charge, linear momentum, and angular momentum
are conserved.

Essential Knowledge 5.A.3 An interaction can be either a force exerted by objects outside the system or the transfer of some
quantity with objects outside the system.

Enduring Understanding 5.B The energy of a system is conserved.

Essential Knowledge 5.B.1 Classically, an object can only have kinetic energy since potential energy requires an interaction
between two or more objects.

Essential Knowledge 5.B.3 A system with internal structure can have potential energy. Potential energy exists within a system if
the objects within that system interact with conservative forces.

Essential Knowledge 5.B.5 Energy can be transferred by an external force exerted on an object or system that moves the object
or system through a distance; this energy transfer is called work. Energy transfer in mechanical or electrical systems may occur
at different rates. Power is defined as the rate of energy transfer into, out of, or within a system.

7.1 Work: The Scientific Definition

Learning Objectives
By the end of this section, you will be able to:

• Explain how an object must be displaced for a force on it to do work.
• Explain how relative directions of force and displacement of an object determine whether the work done on the object is

positive, negative, or zero.

The information presented in this section supports the following AP® learning objectives and science practices:

• 5.B.5.1 The student is able to design an experiment and analyze data to examine how a force exerted on an object or
system does work on the object or system as it moves through a distance. (S.P. 4.2, 5.1)
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• 5.B.5.2 The student is able to design an experiment and analyze graphical data in which interpretations of the area
under a force-distance curve are needed to determine the work done on or by the object or system. (S.P. 4.5, 5.1)

• 5.B.5.3 The student is able to predict and calculate from graphical data the energy transfer to or work done on an
object or system from information about a force exerted on the object or system through a distance. (S.P. 1.5, 2.2, 6.4)

What It Means to Do Work
The scientific definition of work differs in some ways from its everyday meaning. Certain things we think of as hard work, such as
writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work
reveals its relationship to energy—whenever work is done, energy is transferred.

For work, in the scientific sense, to be done on an object, a force must be exerted on that object and there must be motion or
displacement of that object in the direction of the force.

Formally, the work done on a system by a constant force is defined to be the product of the component of the force in the

direction of motion and the distance through which the force acts. For a constant force, this is expressed in equation form as

(7.1)= ∣ F ∣ (cos ) ∣ d ∣ ,

where is work, d is the displacement of the system, and is the angle between the force vector F and the displacement

vector d , as in Figure 7.2. We can also write this as

(7.2)= cos .

To find the work done on a system that undergoes motion that is not one-way or that is in two or three dimensions, we divide the
motion into one-way one-dimensional segments and add up the work done over each segment.

What is Work?

The work done on a system by a constant force is the product of the component of the force in the direction of motion times

the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as

(7.3)= cos ,

where is work, is the magnitude of the force on the system, is the magnitude of the displacement of the system,

and is the angle between the force vector F and the displacement vector d .
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Figure 7.2 Examples of work. (a) The work done by the force F on this lawn mower is cos . Note that cos is the component of the
force in the direction of motion. (b) A person holding a briefcase does no work on it, because there is no motion. No energy is transferred to or from the
briefcase. (c) The person moving the briefcase horizontally at a constant speed does no work on it, and transfers no energy to it. (d) Work is done on
the briefcase by carrying it up stairs at constant speed, because there is necessarily a component of force F in the direction of the motion. Energy is
transferred to the briefcase and could in turn be used to do work. (e) When the briefcase is lowered, energy is transferred out of the briefcase and into
an electric generator. Here the work done on the briefcase by the generator is negative, removing energy from the briefcase, because F and d are
in opposite directions.

To examine what the definition of work means, let us consider the other situations shown in Figure 7.2. The person holding the
briefcase in Figure 7.2(b) does no work, for example. Here = 0 , so = 0 . Why is it you get tired just holding a load? The
answer is that your muscles are doing work against one another, but they are doing no work on the system of interest (the
“briefcase-Earth system”—see Gravitational Potential Energy for more details). There must be displacement for work to be
done, and there must be a component of the force in the direction of the motion. For example, the person carrying the briefcase
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on level ground in Figure 7.2(c) does no work on it, because the force is perpendicular to the motion. That is, cos 90º = 0 , and

so = 0 .

In contrast, when a force exerted on the system has a component in the direction of motion, such as in Figure 7.2(d), work is

done—energy is transferred to the briefcase. Finally, in Figure 7.2(e), energy is transferred from the briefcase to a generator.
There are two good ways to interpret this energy transfer. One interpretation is that the briefcase’s weight does work on the
generator, giving it energy. The other interpretation is that the generator does negative work on the briefcase, thus removing
energy from it. The drawing shows the latter, with the force from the generator upward on the briefcase, and the displacement
downward. This makes = 180º , and cos 180º = –1 ; therefore, is negative.

Real World Connections: When Work Happens

Note that work as we define it is not the same as effort. You can push against a concrete wall all you want, but you won’t
move it. While the pushing represents effort on your part, the fact that you have not changed the wall’s state in any way
indicates that you haven’t done work. If you did somehow push the wall over, this would indicate a change in the wall’s state,
and therefore you would have done work.

This can also be shown with Figure 7.2(a): as you push a lawnmower against friction, both you and friction are changing the
lawnmower’s state. However, only the component of the force parallel to the movement is changing the lawnmower’s state.
The component perpendicular to the motion is trying to push the lawnmower straight into Earth; the lawnmower does not
move into Earth, and therefore the lawnmower’s state is not changing in the direction of Earth.

Similarly, in Figure 7.2(c), both your hand and gravity are exerting force on the briefcase. However, they are both acting
perpendicular to the direction of motion, hence they are not changing the condition of the briefcase and do no work.
However, if the briefcase were dropped, then its displacement would be parallel to the force of gravity, which would do work
on it, changing its state (it would fall to the ground).

Calculating Work
Work and energy have the same units. From the definition of work, we see that those units are force times distance. Thus, in SI
units, work and energy are measured in newton-meters. A newton-meter is given the special name joule (J), and

1 J = 1 N ⋅ m = 1 kg ⋅ m2/s2 . One joule is not a large amount of energy; it would lift a small 100-gram apple a distance of

about 1 meter.

Example 7.1 Calculating the Work You Do to Push a Lawn Mower Across a Large Lawn

How much work is done on the lawn mower by the person in Figure 7.2(a) if he exerts a constant force of 75.0 N at an

angle 35º below the horizontal and pushes the mower 25.0 m on level ground? Convert the amount of work from joules to

kilocalories and compare it with this person’s average daily intake of 10 000 kJ (about 2400 kcal ) of food energy. One

calorie (1 cal) of heat is the amount required to warm 1 g of water by 1ºC , and is equivalent to 4.184 J , while one food

calorie (1 kcal) is equivalent to 4184 J .

Strategy

We can solve this problem by substituting the given values into the definition of work done on a system, stated in the
equation = cos . The force, angle, and displacement are given, so that only the work is unknown.

Solution

The equation for the work is

(7.4)= cos .

Substituting the known values gives

(7.5)= (75.0 N)(25.0 m) cos (35.0º)

= 1536 J = 1.54×103 J.

Converting the work in joules to kilocalories yields = (1536 J)(1 kcal / 4184 J) = 0.367 kcal . The ratio of the work

done to the daily consumption is

(7.6)
2400 kcal

= 1.53×10−4.

Discussion

This ratio is a tiny fraction of what the person consumes, but it is typical. Very little of the energy released in the consumption
of food is used to do work. Even when we “work” all day long, less than 10% of our food energy intake is used to do work
and more than 90% is converted to thermal energy or stored as chemical energy in fat.
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Applying the Science Practices: Boxes on Floors

Plan and design an experiment to determine how much work you do on a box when you are pushing it over different floor
surfaces. Make sure your experiment can help you answer the following questions: What happens on different surfaces?
What happens if you take different routes across the same surface? Do you get different results with two people pushing on
perpendicular surfaces of the box? What if you vary the mass in the box? Remember to think about both your effort in any
given instant (a proxy for force exerted) and the total work you do. Also, when planning your experiments, remember that in
any given set of trials you should only change one variable.

You should find that you have to exert more effort on surfaces that will create more friction with the box, though you might be
surprised by which surfaces the box slides across easily. Longer routes result in your doing more work, even though the box
ends up in the same place. Two people pushing on perpendicular sides do less work for their total effort, due to the forces
and displacement not being parallel. A more massive box will take more effort to move.

Applying the Science Practices: Force-Displacement Diagrams

Suppose you are given two carts and a track to run them on, a motion detector, a force sensor, and a computer that can
record the data from the two sensors. Plan and design an experiment to measure the work done on one of the carts, and
compare your results to the work-energy theorem. Note that the motion detector can measure both displacement and
velocity versus time, while the force sensor measures force over time, and the carts have known masses. Recall that the
work-energy theorem states that the work done on a system (force over displacement) should equal the change in kinetic
energy. In your experimental design, describe and compare two possible ways to calculate the work done.

Sample Response: One possible technique is to set up the motion detector at one end of the track, and have the computer
record both displacement and velocity over time. Then attach the force sensor to one of the carts, and use this cart, through
the force sensor, to push the second cart toward the motion detector. Calculate the difference between the final and initial
kinetic energies (the kinetic energies after and before the push), and compare this to the area of a graph of force versus
displacement for the duration of the push. They should be the same.

7.2 Kinetic Energy and the Work-Energy Theorem

Learning Objectives
By the end of this section, you will be able to:

• Explain work as a transfer of energy and net work as the work done by the net force.
• Explain and apply the work-energy theorem.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.E.1.1 The student is able to make predictions about the changes in kinetic energy of an object based on
considerations of the direction of the net force on the object as the object moves. (S.P. 6.4, 7.2)

• 3.E.1.2 The student is able to use net force and velocity vectors to determine qualitatively whether kinetic energy of an
object would increase, decrease, or remain unchanged. (S.P. 1.4)

• 3.E.1.3 The student is able to use force and velocity vectors to determine qualitatively or quantitatively the net force
exerted on an object and qualitatively whether kinetic energy of that object would increase, decrease, or remain
unchanged. (S.P. 1.4, 2.2)

• 3.E.1.4 The student is able to apply mathematical routines to determine the change in kinetic energy of an object given
the forces on the object and the displacement of the object. (S.P. 2.2)

• 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the
calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)

• 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a
component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P. 6.4)

• 4.C.2.2 The student is able to apply the concepts of conservation of energy and the work-energy theorem to determine
qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy
of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. (S.P.
1.4, 2.2, 7.2)

• 5.B.5.3 The student is able to predict and calculate from graphical data the energy transfer to or work done on an
object or system from information about a force exerted on the object or system through a distance. (S.P. 1.5, 2.2, 6.4)

Work Transfers Energy
What happens to the work done on a system? Energy is transferred into the system, but in what form? Does it remain in the
system or move on? The answers depend on the situation. For example, if the lawn mower in Figure 7.2(a) is pushed just hard
enough to keep it going at a constant speed, then energy put into the mower by the person is removed continuously by friction,
and eventually leaves the system in the form of heat transfer. In contrast, work done on the briefcase by the person carrying it up
stairs in Figure 7.2(d) is stored in the briefcase-Earth system and can be recovered at any time, as shown in Figure 7.2(e). In
fact, the building of the pyramids in ancient Egypt is an example of storing energy in a system by doing work on the system.
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Some of the energy imparted to the stone blocks in lifting them during construction of the pyramids remains in the stone-Earth
system and has the potential to do work.

In this section we begin the study of various types of work and forms of energy. We will find that some types of work leave the
energy of a system constant, for example, whereas others change the system in some way, such as making it move. We will also
develop definitions of important forms of energy, such as the energy of motion.

Net Work and the Work-Energy Theorem
We know from the study of Newton’s laws in Dynamics: Force and Newton's Laws of Motion that net force causes
acceleration. We will see in this section that work done by the net force gives a system energy of motion, and in the process we
will also find an expression for the energy of motion.

Let us start by considering the total, or net, work done on a system. Net work is defined to be the sum of work done by all
external forces—that is, net work is the work done by the net external force Fnet . In equation form, this is

net = net cos where is the angle between the force vector and the displacement vector.

Figure 7.3(a) shows a graph of force versus displacement for the component of the force in the direction of the
displacement—that is, an cos vs. graph. In this case, cos is constant. You can see that the area under the graph is

cos , or the work done. Figure 7.3(b) shows a more general process where the force varies. The area under the curve is

divided into strips, each having an average force ( cos )
(ave)

. The work done is ( cos )
(ave)

for each strip, and the

total work done is the sum of the . Thus the total work done is the total area under the curve, a useful property to which we

shall refer later.

Figure 7.3 (a) A graph of cos vs. , when cos is constant. The area under the curve represents the work done by the force. (b) A

graph of cos vs. in which the force varies. The work done for each interval is the area of each strip; thus, the total area under the curve
equals the total work done.

Real World Connections: Work and Direction

Consider driving in a car. While moving, you have forward velocity and therefore kinetic energy. When you hit the brakes,
they exert a force opposite to your direction of motion (acting through the wheels). The brakes do work on your car and
reduce the kinetic energy. Similarly, when you accelerate, the engine (acting through the wheels) exerts a force in the
direction of motion. The engine does work on your car, and increases the kinetic energy. Finally, if you go around a corner at
a constant speed, you have the same kinetic energy both before and after the corner. The force exerted by the engine was
perpendicular to the direction of motion, and therefore did no work and did not change the kinetic energy.
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Net work will be simpler to examine if we consider a one-dimensional situation where a force is used to accelerate an object in a
direction parallel to its initial velocity. Such a situation occurs for the package on the roller belt conveyor system shown in Figure
7.4.

Figure 7.4 A package on a roller belt is pushed horizontally through a distance d .

The force of gravity and the normal force acting on the package are perpendicular to the displacement and do no work.
Moreover, they are also equal in magnitude and opposite in direction so they cancel in calculating the net force. The net force
arises solely from the horizontal applied force Fapp and the horizontal friction force f . Thus, as expected, the net force is

parallel to the displacement, so that = 0º and cos = 1 , and the net work is given by

(7.7)net = net .

The effect of the net force Fnet is to accelerate the package from 0 to . The kinetic energy of the package increases,

indicating that the net work done on the system is positive. (See Example 7.2.) By using Newton’s second law, and doing some
algebra, we can reach an interesting conclusion. Substituting net = from Newton’s second law gives

(7.8)net =

To get a relationship between net work and the speed given to a system by the net force acting on it, we take = − 0 and

use the equation studied in Motion Equations for Constant Acceleration in One Dimension for the change in speed over a

distance if the acceleration has the constant value ; namely, 2 = 0
2 + 2 (note that appears in the expression for

the net work). Solving for acceleration gives =
2 − 0

2

2
. When is substituted into the preceding expression for net , we

obtain

(7.9)
net =

2 − 0
2

2
.

The cancels, and we rearrange this to obtain

(7.10)
= 1

2
2 − 1

2 0
 2 .

This expression is called the work-energy theorem, and it actually applies in general (even for forces that vary in direction and
magnitude), although we have derived it for the special case of a constant force parallel to the displacement. The theorem

implies that the net work on a system equals the change in the quantity 1
2

2 . This quantity is our first example of a form of

energy.

The Work-Energy Theorem

The net work on a system equals the change in the quantity 1
2

2 .

(7.11)
net = 1

2
2 − 1

2 0
 2

The quantity 1
2

2 in the work-energy theorem is defined to be the translational kinetic energy (KE) of a mass moving at a

speed . (Translational kinetic energy is distinct from rotational kinetic energy, which is considered later.) In equation form, the
translational kinetic energy,

(7.12)
KE = 1

2
2
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is the energy associated with translational motion. Kinetic energy is a form of energy associated with the motion of a particle,
single body, or system of objects moving together.

We are aware that it takes energy to get an object, like a car or the package in Figure 7.4, up to speed, but it may be a bit
surprising that kinetic energy is proportional to speed squared. This proportionality means, for example, that a car traveling at
100 km/h has four times the kinetic energy it has at 50 km/h, helping to explain why high-speed collisions are so devastating. We
will now consider a series of examples to illustrate various aspects of work and energy.

Applying the Science Practices: Cars on a Hill

Assemble a ramp suitable for rolling some toy cars up or down. Then plan a series of experiments to determine how the
direction of a force relative to the velocity of an object alters the kinetic energy of the object. Note that gravity will be pointing
down in all cases. What happens if you start the car at the top? How about at the bottom, with an initial velocity that is
increasing? If your ramp is wide enough, what happens if you send the toy car straight across? Does varying the surface of
the ramp change your results?

Sample Response: When the toy car is going down the ramp, with a component of gravity in the same direction, the kinetic
energy increases. Sending the car up the ramp decreases the kinetic energy, as gravity is opposing the motion. Sending the
car sideways should result in little to no change. If you have a surface that generates more friction than a smooth surface
(carpet), note that the friction always opposed the motion, and hence decreases the kinetic energy.

Example 7.2 Calculating the Kinetic Energy of a Package

Suppose a 30.0-kg package on the roller belt conveyor system in Figure 7.4 is moving at 0.500 m/s. What is its kinetic
energy?

Strategy

Because the mass and speed are given, the kinetic energy can be calculated from its definition as given in the

equation KE = 1
2

2 .

Solution

The kinetic energy is given by

(7.13)
KE = 1

2
2.

Entering known values gives

(7.14)KE = 0.5(30.0 kg)(0.500 m/s)2

which yields

(7.15)KE = 3.75 kg ⋅ m2/s2 = 3.75 J.

Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is
also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This
fact is consistent with the observation that people can move packages like this without exhausting themselves.

Real World Connections: Center of Mass

Suppose we have two experimental carts, of equal mass, latched together on a track with a compressed spring between
them. When the latch is released, the spring does 10 J of work on the carts (we’ll see how in a couple of sections). The carts
move relative to the spring, which is the center of mass of the system. However, the center of mass stays fixed. How can we
consider the kinetic energy of this system?

By the work-energy theorem, the work done by the spring on the carts must turn into kinetic energy. So this system has 10 J
of kinetic energy. The total kinetic energy of the system is the kinetic energy of the center of mass of the system relative to
the fixed origin plus the kinetic energy of each cart relative to the center of mass. We know that the center of mass relative to
the fixed origin does not move, and therefore all of the kinetic energy must be distributed among the carts relative to the
center of mass. Since the carts have equal mass, they each receive an equal amount of kinetic energy, so each cart has 5.0
J of kinetic energy.

In our example, the forces between the spring and each cart are internal to the system. According to Newton’s third law,
these internal forces will cancel since they are equal and opposite in direction. However, this does not imply that these
internal forces will not do work. Thus, the change in kinetic energy of the system is caused by work done by the force of the
spring, and results in the motion of the two carts relative to the center of mass.
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Example 7.3 Determining the Work to Accelerate a Package

Suppose that you push on the 30.0-kg package in Figure 7.4 with a constant force of 120 N through a distance of 0.800 m,
and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work
done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal
force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force,
friction, and the displacement are all horizontal. (See Figure 7.4.) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or net = 120 N – 5.00 N = 115 N . Thus the net work is

(7.16)net = net = (115 N)(0.800 m)

= 92.0 N ⋅ m = 92.0 J.

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the
motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy.
The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force
and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)

The applied force does work.

(7.17)app = app cos(0º) = app

= (120 N)(0.800 m)

= 96.0 J

The friction force and displacement are in opposite directions, so that = 180º , and the work done by friction is

(7.18)
fr = fr cos(180º) = − fr

= −(5.00 N)(0.800 m)

= −4.00 J.

So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,

(7.19)gr = 0,

N = 0,

app = 96.0 J,

fr = − 4.00 J.

The total work done as the sum of the work done by each force is then seen to be

(7.20)
total = gr + N + app + fr = 92.0 J.

Discussion for (b)

The calculated total work total as the sum of the work by each force agrees, as expected, with the work net done by

the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

Example 7.4 Determining Speed from Work and Energy

Find the speed of the package in Figure 7.4 at the end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used, because we have just calculated the net work, net , and the initial kinetic

energy, 1
2 0

2 . These calculations allow us to find the final kinetic energy, 1
2

2 , and thus the final speed .
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Solution

The work-energy theorem in equation form is

(7.21)
net = 1

2
2 − 1

2 0
2.

Solving for 1
2

2 gives

(7.22)1
2

2 = net + 1
2 0

2.

Thus,

(7.23)1
2

2 = 92.0 J+3.75 J = 95.75 J.

Solving for the final speed as requested and entering known values gives

(7.24)
=

2(95.75 J)
=

191.5 kg ⋅ m2/s2

30.0 kg

= 2.53 m/s.

Discussion

Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic
energy and the net work done on the package. This means that the work indeed adds to the energy of the package.

Example 7.5 Work and Energy Can Reveal Distance, Too

How far does the package in Figure 7.4 coast after the push, assuming friction remains constant? Use work and energy
considerations.

Strategy

We know that once the person stops pushing, friction will bring the package to rest. In terms of energy, friction does negative
work until it has removed all of the package’s kinetic energy. The work done by friction is the force of friction times the
distance traveled times the cosine of the angle between the friction force and displacement; hence, this gives us a way of
finding the distance traveled after the person stops pushing.

Solution

The normal force and force of gravity cancel in calculating the net force. The horizontal friction force is then the net force,
and it acts opposite to the displacement, so = 180º . To reduce the kinetic energy of the package to zero, the work fr

by friction must be minus the kinetic energy that the package started with plus what the package accumulated due to the
pushing. Thus fr = −95.75 J . Furthermore, fr = ′ cos = – ′ , where ′ is the distance it takes to stop. Thus,

(7.25)
′ = − fr = −−95.75 J

5.00 N
,

and so

(7.26)′ = 19.2 m.

Discussion

This is a reasonable distance for a package to coast on a relatively friction-free conveyor system. Note that the work done
by friction is negative (the force is in the opposite direction of motion), so it removes the kinetic energy.

Some of the examples in this section can be solved without considering energy, but at the expense of missing out on gaining
insights about what work and energy are doing in this situation. On the whole, solutions involving energy are generally shorter
and easier than those using kinematics and dynamics alone.

7.3 Gravitational Potential Energy

Learning Objectives
By the end of this section, you will be able to:

• Explain gravitational potential energy in terms of work done against gravity.
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• Show that the gravitational potential energy of an object of mass m at height h on Earth is given by PEg = mgh.
• Show how knowledge of potential energy as a function of position can be used to simplify calculations and explain

physical phenomena.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the
calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)

• 5.B.1.1 The student is able to set up a representation or model showing that a single object can only have kinetic
energy and use information about that object to calculate its kinetic energy. (S.P. 1.4, 2.2)

• 5.B.1.2 The student is able to translate between a representation of a single object, which can only have kinetic energy,
and a system that includes the object, which may have both kinetic and potential energies. (S.P. 1.5)

Work Done Against Gravity
Climbing stairs and lifting objects is work in both the scientific and everyday sense—it is work done against the gravitational
force. When there is work, there is a transformation of energy. The work done against the gravitational force goes into an
important form of stored energy that we will explore in this section.

Let us calculate the work done in lifting an object of mass through a height , such as in Figure 7.5. If the object is lifted
straight up at constant speed, then the force needed to lift it is equal to its weight . The work done on the mass is then

. We define this to be the gravitational potential energy (PEg) put into (or gained by) the object-Earth

system. This energy is associated with the state of separation between two objects that attract each other by the gravitational
force. For convenience, we refer to this as the PEg gained by the object, recognizing that this is energy stored in the

gravitational field of Earth. Why do we use the word “system”? Potential energy is a property of a system rather than of a single
object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the
Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it
increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position,
we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but
this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to
the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a
ladder will be the same for the first two rungs as for the last two rungs.

Converting Between Potential Energy and Kinetic Energy
Gravitational potential energy may be converted to other forms of energy, such as kinetic energy. If we release the mass,
gravitational force will do an amount of work equal to on it, thereby increasing its kinetic energy by that same amount (by

the work-energy theorem). We will find it more useful to consider just the conversion of PEg to KE without explicitly

considering the intermediate step of work. (See Example 7.7.) This shortcut makes it is easier to solve problems using energy (if
possible) rather than explicitly using forces.
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Figure 7.5 (a) The work done to lift the weight is stored in the mass-Earth system as gravitational potential energy. (b) As the weight moves downward,
this gravitational potential energy is transferred to the cuckoo clock.

More precisely, we define the change in gravitational potential energy ΔPEg to be

(7.27)ΔPEg = ,

where, for simplicity, we denote the change in height by rather than the usual Δ . Note that is positive when the final
height is greater than the initial height, and vice versa. For example, if a 0.500-kg mass hung from a cuckoo clock is raised 1.00
m, then its change in gravitational potential energy is

(7.28)= 0.500 kg 9.80 m/s2 (1.00 m)

= 4.90 kg ⋅ m2/s2 = 4.90 J.

Note that the units of gravitational potential energy turn out to be joules, the same as for work and other forms of energy. As the
clock runs, the mass is lowered. We can think of the mass as gradually giving up its 4.90 J of gravitational potential energy,
without directly considering the force of gravity that does the work.

Using Potential Energy to Simplify Calculations

The equation ΔPEg = applies for any path that has a change in height of , not just when the mass is lifted straight up.

(See Figure 7.6.) It is much easier to calculate (a simple multiplication) than it is to calculate the work done along a

complicated path. The idea of gravitational potential energy has the double advantage that it is very broadly applicable and it
makes calculations easier. From now on, we will consider that any change in vertical position of a mass is accompanied

by a change in gravitational potential energy , and we will avoid the equivalent but more difficult task of calculating work

done by or against the gravitational force.
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Figure 7.6 The change in gravitational potential energy (ΔPEg) between points A and B is independent of the path. ΔPEg = for any path

between the two points. Gravity is one of a small class of forces where the work done by or against the force depends only on the starting and ending
points, not on the path between them.

Example 7.6 The Force to Stop Falling

A 60.0-kg person jumps onto the floor from a height of 3.00 m. If he lands stiffly (with his knee joints compressing by 0.500
cm), calculate the force on the knee joints.

Strategy

This person’s energy is brought to zero in this situation by the work done on him by the floor as he stops. The initial PEg is

transformed into KE as he falls. The work done by the floor reduces this kinetic energy to zero.

Solution

The work done on the person by the floor as he stops is given by

(7.29)= cos = − ,

with a minus sign because the displacement while stopping and the force from floor are in opposite directions
(cos = cos 180º = − 1) . The floor removes energy from the system, so it does negative work.

The kinetic energy the person has upon reaching the floor is the amount of potential energy lost by falling through height :

(7.30)KE = −ΔPEg = − ,

The distance that the person’s knees bend is much smaller than the height of the fall, so the additional change in
gravitational potential energy during the knee bend is ignored.

The work done by the floor on the person stops the person and brings the person’s kinetic energy to zero:

(7.31)= −KE = .

Combining this equation with the expression for gives

(7.32)− = .

Recalling that is negative because the person fell down, the force on the knee joints is given by
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(7.33)
= − = −

60.0 kg 9.80 m/s2 (−3.00 m)

5.00×10−3 m
= 3.53×105 N.

Discussion

Such a large force (500 times more than the person’s weight) over the short impact time is enough to break bones. A much
better way to cushion the shock is by bending the legs or rolling on the ground, increasing the time over which the force
acts. A bending motion of 0.5 m this way yields a force 100 times smaller than in the example. A kangaroo's hopping shows
this method in action. The kangaroo is the only large animal to use hopping for locomotion, but the shock in hopping is
cushioned by the bending of its hind legs in each jump.(See Figure 7.7.)

Figure 7.7 The work done by the ground upon the kangaroo reduces its kinetic energy to zero as it lands. However, by applying the force of the ground
on the hind legs over a longer distance, the impact on the bones is reduced. (credit: Chris Samuel, Flickr)

Example 7.7 Finding the Speed of a Roller Coaster from its Height

(a) What is the final speed of the roller coaster shown in Figure 7.8 if it starts from rest at the top of the 20.0 m hill and work
done by frictional forces is negligible? (b) What is its final speed (again assuming negligible friction) if its initial speed is 5.00
m/s?

Figure 7.8 The speed of a roller coaster increases as gravity pulls it downhill and is greatest at its lowest point. Viewed in terms of energy, the
roller-coaster-Earth system’s gravitational potential energy is converted to kinetic energy. If work done by friction is negligible, all ΔPEg is

converted to KE .

Strategy

The roller coaster loses potential energy as it goes downhill. We neglect friction, so that the remaining force exerted by the
track is the normal force, which is perpendicular to the direction of motion and does no work. The net work on the roller
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coaster is then done by gravity alone. The loss of gravitational potential energy from moving downward through a distance
equals the gain in kinetic energy. This can be written in equation form as −ΔPEg = ΔKE . Using the equations for

PEg and KE , we can solve for the final speed , which is the desired quantity.

Solution for (a)

Here the initial kinetic energy is zero, so that ΔKE = 1
2

2 . The equation for change in potential energy states that

ΔPEg = . Since is negative in this case, we will rewrite this as ΔPEg = − ∣ ∣ to show the minus sign

clearly. Thus,

(7.34)−ΔPEg = ΔKE

becomes

(7.35)
∣ ∣ = 1

2
2.

Solving for , we find that mass cancels and that

(7.36)= 2 ∣ ∣ .

Substituting known values,

(7.37)
= 2 9.80 m/s2 (20.0 m)

= 19.8 m/s.

Solution for (b)

Again − ΔPEg = ΔKE . In this case there is initial kinetic energy, so ΔKE = 1
2

2 − 1
2 0

2 . Thus,

(7.38)
∣ ∣ = 1

2
2 − 1

2 0
2.

Rearranging gives

(7.39)1
2

2 = ∣ ∣ + 1
2 0

2.

This means that the final kinetic energy is the sum of the initial kinetic energy and the gravitational potential energy. Mass
again cancels, and

(7.40)
= 2 ∣ ∣ + 0

2.

This equation is very similar to the kinematics equation = 0
2 + 2 , but it is more general—the kinematics equation is

valid only for constant acceleration, whereas our equation above is valid for any path regardless of whether the object
moves with a constant acceleration. Now, substituting known values gives

(7.41)
= 2(9.80 m/s2)(20.0 m) + (5.00 m/s)2

= 20.4 m/s.

Discussion and Implications

First, note that mass cancels. This is quite consistent with observations made in Falling Objects that all objects fall at the
same rate if friction is negligible. Second, only the speed of the roller coaster is considered; there is no information about its
direction at any point. This reveals another general truth. When friction is negligible, the speed of a falling body depends
only on its initial speed and height, and not on its mass or the path taken. For example, the roller coaster will have the same
final speed whether it falls 20.0 m straight down or takes a more complicated path like the one in the figure. Third, and
perhaps unexpectedly, the final speed in part (b) is greater than in part (a), but by far less than 5.00 m/s. Finally, note that
speed can be found at any height along the way by simply using the appropriate value of at the point of interest.

We have seen that work done by or against the gravitational force depends only on the starting and ending points, and not on the
path between, allowing us to define the simplifying concept of gravitational potential energy. We can do the same thing for a few
other forces, and we will see that this leads to a formal definition of the law of conservation of energy.
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Making Connections: Take-Home Investigation—Converting Potential to Kinetic Energy

One can study the conversion of gravitational potential energy into kinetic energy in this experiment. On a smooth, level
surface, use a ruler of the kind that has a groove running along its length and a book to make an incline (see Figure 7.9).
Place a marble at the 10-cm position on the ruler and let it roll down the ruler. When it hits the level surface, measure the
time it takes to roll one meter. Now place the marble at the 20-cm and the 30-cm positions and again measure the times it
takes to roll 1 m on the level surface. Find the velocity of the marble on the level surface for all three positions. Plot velocity
squared versus the distance traveled by the marble. What is the shape of each plot? If the shape is a straight line, the plot
shows that the marble’s kinetic energy at the bottom is proportional to its potential energy at the release point.

Figure 7.9 A marble rolls down a ruler, and its speed on the level surface is measured.

7.4 Conservative Forces and Potential Energy

Learning Objectives
By the end of this section, you will be able to:

• Define conservative force, potential energy, and mechanical energy.
• Explain the potential energy of a spring in terms of its compression when Hooke’s law applies.
• Use the work-energy theorem to show how having only conservative forces leads to conservation of mechanical

energy.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the
calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)

• 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a
component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P. 6.4)

• 5.B.1.1 The student is able to set up a representation or model showing that a single object can only have kinetic
energy and use information about that object to calculate its kinetic energy. (S.P. 1.4, 2.2)

• 5.B.1.2 The student is able to translate between a representation of a single object, which can only have kinetic energy,
and a system that includes the object, which may have both kinetic and potential energies. (S.P. 1.5)

• 5.B.3.1 The student is able to describe and make qualitative and/or quantitative predictions about everyday examples
of systems with internal potential energy. (S.P. 2.2, 6.4, 7.2)

• 5.B.3.2 The student is able to make quantitative calculations of the internal potential energy of a system from a
description or diagram of that system. (S.P. 1.4, 2.2)

• 5.B.3.3 The student is able to apply mathematical reasoning to create a description of the internal potential energy of a
system from a description or diagram of the objects and interactions in that system. (S.P. 1.4, 2.2)

Potential Energy and Conservative Forces
Work is done by a force, and some forces, such as weight, have special characteristics. A conservative force is one, like the
gravitational force, for which work done by or against it depends only on the starting and ending points of a motion and not on the
path taken. We can define a potential energy (PE) for any conservative force, just as we did for the gravitational force. For

example, when you wind up a toy, an egg timer, or an old-fashioned watch, you do work against its spring and store energy in it.
(We treat these springs as ideal, in that we assume there is no friction and no production of thermal energy.) This stored energy
is recoverable as work, and it is useful to think of it as potential energy contained in the spring. Indeed, the reason that the spring
has this characteristic is that its force is conservative. That is, a conservative force results in stored or potential energy.
Gravitational potential energy is one example, as is the energy stored in a spring. We will also see how conservative forces are
related to the conservation of energy.

Potential Energy and Conservative Forces

Potential energy is the energy a system has due to position, shape, or configuration. It is stored energy that is completely
recoverable.
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A conservative force is one for which work done by or against it depends only on the starting and ending points of a motion
and not on the path taken.

We can define a potential energy (PE) for any conservative force. The work done against a conservative force to reach a

final configuration depends on the configuration, not the path followed, and is the potential energy added.

Real World Connections: Energy of a Bowling Ball

How much energy does a bowling ball have? (Just think about it for a minute.)

If you are thinking that you need more information, you’re right. If we can measure the ball’s velocity, then determining its
kinetic energy is simple. Note that this does require defining a reference frame in which to measure the velocity. Determining
the ball’s potential energy also requires more information. You need to know its height above the ground, which requires a
reference frame of the ground. Without the ground—in other words, Earth—the ball does not classically have potential
energy. Potential energy comes from the interaction between the ball and the ground. Another way of thinking about this is to
compare the ball’s potential energy on Earth and on the Moon. A bowling ball a certain height above Earth is going to have
more potential energy than the same bowling ball the same height above the surface of the Moon, because Earth has
greater mass than the Moon and therefore exerts more gravity on the ball. Thus, potential energy requires a system of at
least two objects, or an object with an internal structure of at least two parts.

Potential Energy of a Spring

First, let us obtain an expression for the potential energy stored in a spring ( PEs ). We calculate the work done to stretch or

compress a spring that obeys Hooke’s law. (Hooke’s law was examined in Elasticity: Stress and Strain, and states that the
magnitude of force on the spring and the resulting deformation Δ are proportional, = Δ .) (See Figure 7.10.) For our

spring, we will replace Δ (the amount of deformation produced by a force ) by the distance that the spring is stretched or

compressed along its length. So the force needed to stretch the spring has magnitude , where is the spring’s force

constant. The force increases linearly from 0 at the start to in the fully stretched position. The average force is / 2 . Thus

the work done in stretching or compressing the spring is s = =
2

= 1
2

2 . Alternatively, we noted in Kinetic Energy

and the Work-Energy Theorem that the area under a graph of vs. is the work done by the force. In Figure 7.10(c) we

see that this area is also 1
2

2 . We therefore define the potential energy of a spring, PEs , to be

(7.42)
PEs = 1

2
2,

where is the spring’s force constant and is the displacement from its undeformed position. The potential energy represents
the work done on the spring and the energy stored in it as a result of stretching or compressing it a distance . The potential

energy of the spring PEs does not depend on the path taken; it depends only on the stretch or squeeze in the final

configuration.

Figure 7.10 (a) An undeformed spring has no PEs stored in it. (b) The force needed to stretch (or compress) the spring a distance has a

magnitude = , and the work done to stretch (or compress) it is 1
2

2 . Because the force is conservative, this work is stored as potential

energy (PEs) in the spring, and it can be fully recovered. (c) A graph of vs. has a slope of , and the area under the graph is 1
2

2 . Thus

the work done or potential energy stored is 1
2

2 .
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The equation PEs = 1
2

2 has general validity beyond the special case for which it was derived. Potential energy can be stored

in any elastic medium by deforming it. Indeed, the general definition of potential energy is energy due to position, shape, or

configuration. For shape or position deformations, stored energy is PEs = 1
2

2 , where is the force constant of the particular

system and is its deformation. Another example is seen in Figure 7.11 for a guitar string.

Figure 7.11 Work is done to deform the guitar string, giving it potential energy. When released, the potential energy is converted to kinetic energy and
back to potential as the string oscillates back and forth. A very small fraction is dissipated as sound energy, slowly removing energy from the string.

Conservation of Mechanical Energy
Let us now consider what form the work-energy theorem takes when only conservative forces are involved. This will lead us to
the conservation of energy principle. The work-energy theorem states that the net work done by all forces acting on a system
equals its change in kinetic energy. In equation form, this is

(7.43)
net = 1

2
2 − 1

2 0
2 = ΔKE.

If only conservative forces act, then

(7.44)net = c,

where c is the total work done by all conservative forces. Thus,

(7.45)c = ΔKE.

Now, if the conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy.
That is, c = −ΔPE . Therefore,

(7.46)−ΔPE = ΔKE

or

(7.47)ΔKE + ΔPE = 0.

This equation means that the total kinetic and potential energy is constant for any process involving only conservative forces.
That is,

(7.48)KE + PE = constant    
or

KEi + PEi = KEf + PEf

(conservative forces only),

where i and f denote initial and final values. This equation is a form of the work-energy theorem for conservative forces; it is
known as the conservation of mechanical energy principle. Remember that this applies to the extent that all the forces are
conservative, so that friction is negligible. The total kinetic plus potential energy of a system is defined to be its mechanical
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energy, (KE + PE) . In a system that experiences only conservative forces, there is a potential energy associated with each

force, and the energy only changes form between KE and the various types of PE , with the total energy remaining constant.

The internal energy of a system is the sum of the kinetic energies of all of its elements, plus the potential energy due to all of the
interactions due to conservative forces between all of the elements.

Real World Connections

Consider a wind-up toy, such as a car. It uses a spring system to store energy. The amount of energy stored depends only
on how many times it is wound, not how quickly or slowly the winding happens. Similarly, a dart gun using compressed air
stores energy in its internal structure. In this case, the energy stored inside depends only on how many times it is pumped,
not how quickly or slowly the pumping is done. The total energy put into the system, whether through winding or pumping, is
equal to the total energy conserved in the system (minus any energy loss in the system due to interactions between its
parts, such as air leaks in the dart gun). Since the internal energy of the system is conserved, you can calculate the amount
of stored energy by measuring the kinetic energy of the system (the moving car or dart) when the potential energy is
released.

Example 7.8 Using Conservation of Mechanical Energy to Calculate the Speed of a Toy Car

A 0.100-kg toy car is propelled by a compressed spring, as shown in Figure 7.12. The car follows a track that rises 0.180 m
above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by
friction to be negligible, find (a) how fast the car is going before it starts up the slope and (b) how fast it is going at the top of
the slope.

Figure 7.12 A toy car is pushed by a compressed spring and coasts up a slope. Assuming negligible friction, the potential energy in the spring is
first completely converted to kinetic energy, and then to a combination of kinetic and gravitational potential energy as the car rises. The details of
the path are unimportant because all forces are conservative—the car would have the same final speed if it took the alternate path shown.

Strategy

The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used.
Thus,

(7.49)KEi +PEi = KEf + PEf

or

(7.50)1
2 i

2 + i + 1
2 i

2 = 1
2 f

2 + f + 1
2 f

2,

where is the height (vertical position) and is the compression of the spring. This general statement looks complex but
becomes much simpler when we start considering specific situations. First, we must identify the initial and final conditions in
a problem; then, we enter them into the last equation to solve for an unknown.

Solution for (a)

This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the
initial height to be zero, so that both i and f are zero. Furthermore, the initial speed i is zero and the final

compression of the spring f is zero, and so several terms in the conservation of mechanical energy equation are zero and

it simplifies to

(7.51)1
2 i

2 = 1
2 f

2.

In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction.
Solving for the final speed and entering known values yields
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(7.52)
f = i

= 250.0 N/m
0.100 kg

(0.0400 m)

= 2.00 m/s.

Solution for (b)

One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after
it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which
terms are zero, the conservation of mechanical energy becomes

(7.53)1
2 i

 2 = 1
 2 f

 2 + f.

This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy
and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for f and

substituting known values gives

(7.54)

f = i
2

− 2 f

= 250.0 N/m
0.100 kg

(0.0400 m)2 − 2(9.80 m/s2)(0.180 m)

= 0.687 m/s.

Discussion

Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to
potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

Applying the Science Practices: Potential Energy in a Spring

Suppose you are running an experiment in which two 250 g carts connected by a spring (with spring constant 120 N/m) are
run into a solid block, and the compression of the spring is measured. In one run of this experiment, the spring was
measured to compress from its rest length of 5.0 cm to a minimum length of 2.0 cm. What was the potential energy stored in
this system?

Answer

Note that the change in length of the spring is 3.0 cm. Hence we can apply Equation 7.42 to find that the potential
energy is PE = (1/2)(120 N/m)(0.030 m)2 = 0.0541 J.

Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their
corresponding potential energies, just as we did in Example 7.8. Note also that we do not consider details of the path
taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a
tremendous simplification, because the path may be complicated and forces may vary along the way.

PhET Explorations: Energy Skate Park

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic
energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Figure 7.13 Energy Skate Park (http://cnx.org/content/m55076/1.4/energy-skate-park_en.jar)

Chapter 7 | Work, Energy, and Energy Resources 281

http://cnx.org/content/m55076/1.4/energy-skate-park_en.jar


7.5 Nonconservative Forces

Learning Objectives
By the end of this section, you will be able to:

• Define nonconservative forces and explain how they affect mechanical energy.
• Show how the principle of conservation of energy can be applied by treating the conservative forces in terms of their

potential energies and any nonconservative forces in terms of the work they do.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.C.1.2 The student is able to predict changes in the total energy of a system due to changes in position and speed of
objects or frictional interactions within the system. (S.P. 6.4)

• 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a
component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P. 6.4)

Nonconservative Forces and Friction
Forces are either conservative or nonconservative. Conservative forces were discussed in Conservative Forces and Potential
Energy. A nonconservative force is one for which work depends on the path taken. Friction is a good example of a
nonconservative force. As illustrated in Figure 7.14, work done against friction depends on the length of the path between the
starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative
forces. An important characteristic is that the work done by a nonconservative force adds or removes mechanical energy from a

system. Friction, for example, creates thermal energy that dissipates, removing energy from the system. Furthermore, even if
the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense
as well.

Figure 7.14 The amount of the happy face erased depends on the path taken by the eraser between points A and B, as does the work done against
friction. Less work is done and less of the face is erased for the path in (a) than for the path in (b). The force here is friction, and most of the work goes
into thermal energy that subsequently leaves the system (the happy face plus the eraser). The energy expended cannot be fully recovered.

How Nonconservative Forces Affect Mechanical Energy
Mechanical energy may not be conserved when nonconservative forces act. For example, when a car is brought to a stop by
friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. Figure
7.15 compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as
that described in Figure 7.15(a) first before studying more complicated systems as in Figure 7.15(b).
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Figure 7.15 Comparison of the effects of conservative and nonconservative forces on the mechanical energy of a system. (a) A system with only
conservative forces. When a rock is dropped onto a spring, its mechanical energy remains constant (neglecting air resistance) because the force in the
spring is conservative. The spring can propel the rock back to its original height, where it once again has only potential energy due to gravity. (b) A
system with nonconservative forces. When the same rock is dropped onto the ground, it is stopped by nonconservative forces that dissipate its
mechanical energy as thermal energy, sound, and surface distortion. The rock has lost mechanical energy.

How the Work-Energy Theorem Applies
Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will
see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in Kinetic
Energy and the Work-Energy Theorem, the work-energy theorem states that the net work on a system equals the change in its
kinetic energy, or net = ΔKE . The net work is the sum of the work by nonconservative forces plus the work by conservative

forces. That is,

(7.55)net = nc + c,

so that

(7.56)nc + c = ΔKE,

where nc is the total work done by all nonconservative forces and c is the total work done by all conservative forces.

Figure 7.16 A person pushes a crate up a ramp, doing work on the crate. Friction and gravitational force (not shown) also do work on the crate; both
forces oppose the person’s push. As the crate is pushed up the ramp, it gains mechanical energy, implying that the work done by the person is greater
than the work done by friction.

Consider Figure 7.16, in which a person pushes a crate up a ramp and is opposed by friction. As in the previous section, we
note that work done by a conservative force comes from a loss of gravitational potential energy, so that c = −ΔPE .

Substituting this equation into the previous one and solving for nc gives

(7.57)nc = ΔKE + ΔPE.

This equation means that the total mechanical energy (KE + PE) changes by exactly the amount of work done by

nonconservative forces. In Figure 7.16, this is the work done by the person minus the work done by friction. So even if energy is
not conserved for the system of interest (such as the crate), we know that an equal amount of work was done to cause the
change in total mechanical energy.

We rearrange nc = ΔKE + ΔPE to obtain

(7.58)KEi +PEi + nc = KEf + PEf .
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This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If nc is

positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in Figure 7.16. If nc is

negative, then mechanical energy is decreased, such as when the rock hits the ground in Figure 7.15(b). If nc is zero, then

mechanical energy is conserved, and nonconservative forces are balanced. For example, when you push a lawn mower at
constant speed on level ground, your work done is removed by the work of friction, and the mower has a constant energy.

Applying Energy Conservation with Nonconservative Forces

When no change in potential energy occurs, applying KEi +PEi + nc = KEf + PEf amounts to applying the work-energy

theorem by setting the change in kinetic energy to be equal to the net work done on the system, which in the most general case
includes both conservative and nonconservative forces. But when seeking instead to find a change in total mechanical energy in
situations that involve changes in both potential and kinetic energy, the previous equation KEi + PEi + nc = KEf + PEf

says that you can start by finding the change in mechanical energy that would have resulted from just the conservative forces,
including the potential energy changes, and add to it the work done, with the proper sign, by any nonconservative forces
involved.

Example 7.9 Calculating Distance Traveled: How Far a Baseball Player Slides

Consider the situation shown in Figure 7.17, where a baseball player slides to a stop on level ground. Using energy
considerations, calculate the distance the 65.0-kg baseball player slides, given that his initial speed is 6.00 m/s and the force
of friction against him is a constant 450 N.

Figure 7.17 The baseball player slides to a stop in a distance . In the process, friction removes the player’s kinetic energy by doing an amount

of work equal to the initial kinetic energy.

Strategy

Friction stops the player by converting his kinetic energy into other forms, including thermal energy. In terms of the work-
energy theorem, the work done by friction, which is negative, is added to the initial kinetic energy to reduce it to zero. The
work done by friction is negative, because f is in the opposite direction of the motion (that is, = 180º , and so

cos = −1 ). Thus nc = − . The equation simplifies to

(7.59)1
2 i

2 − = 0

or

(7.60)
= 1

2 i

2.

This equation can now be solved for the distance .

Solution

Solving the previous equation for and substituting known values yields
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(7.61)
= i

2

2

=
(65.0 kg)(6.00 m/s)2

(2)(450 N)

= 2.60 m.

Discussion

The most important point of this example is that the amount of nonconservative work equals the change in mechanical
energy. For example, you must work harder to stop a truck, with its large mechanical energy, than to stop a mosquito.

Example 7.10 Calculating Distance Traveled: Sliding Up an Incline

Suppose that the player from Example 7.9 is running up a hill having a 5.00º incline upward with a surface similar to that in
the baseball stadium. The player slides with the same initial speed. Determine how far he slides.

Figure 7.18 The same baseball player slides to a stop on a 5.00º slope.

Strategy

In this case, the work done by the nonconservative friction force on the player reduces the mechanical energy he has from
his kinetic energy at zero height, to the final mechanical energy he has by moving through distance to reach height

along the hill, with = sin 5.00º . This is expressed by the equation

(7.62)KE + PEi + nc = KEf + PEf .

Solution

The work done by friction is again nc = − ; initially the potential energy is PEi = ⋅ 0 = 0 and the kinetic energy

is KEi = 1
2 i

2 ; the final energy contributions are KEf = 0 for the kinetic energy and PEf = = sin for

the potential energy.

Substituting these values gives

(7.63)1
2 i

2 + 0 + − = 0 + sin

Solve this for to obtain

(7.64)
=

1
2 i

2

+ sin

=
(0.5)(65.0 kg)(6.00 m/s)2

450 N+(65.0 kg)(9.80 m/s2) sin (5.00º)

= 2.31 m.

Discussion

As might have been expected, the player slides a shorter distance by sliding uphill. Note that the problem could also have
been solved in terms of the forces directly and the work energy theorem, instead of using the potential energy. This method
would have required combining the normal force and force of gravity vectors, which no longer cancel each other because
they point in different directions, and friction, to find the net force. You could then use the net force and the net work to find
the distance that reduces the kinetic energy to zero. By applying conservation of energy and using the potential energy
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instead, we need only consider the gravitational potential energy , without combining and resolving force vectors. This

simplifies the solution considerably.

Making Connections: Take-Home Investigation—Determining Friction from the Stopping Distance

This experiment involves the conversion of gravitational potential energy into thermal energy. Use the ruler, book, and
marble from Making Connections: Take-Home Investigation—Converting Potential to Kinetic Energy. In addition, you
will need a foam cup with a small hole in the side, as shown in Figure 7.19. From the 10-cm position on the ruler, let the
marble roll into the cup positioned at the bottom of the ruler. Measure the distance the cup moves before stopping. What
forces caused it to stop? What happened to the kinetic energy of the marble at the bottom of the ruler? Next, place the
marble at the 20-cm and the 30-cm positions and again measure the distance the cup moves after the marble enters it. Plot
the distance the cup moves versus the initial marble position on the ruler. Is this relationship linear?

With some simple assumptions, you can use these data to find the coefficient of kinetic friction k of the cup on the table.

The force of friction on the cup is k , where the normal force is just the weight of the cup plus the marble. The

normal force and force of gravity do no work because they are perpendicular to the displacement of the cup, which moves
horizontally. The work done by friction is . You will need the mass of the marble as well to calculate its initial kinetic

energy.

It is interesting to do the above experiment also with a steel marble (or ball bearing). Releasing it from the same positions on
the ruler as you did with the glass marble, is the velocity of this steel marble the same as the velocity of the marble at the
bottom of the ruler? Is the distance the cup moves proportional to the mass of the steel and glass marbles?

Figure 7.19 Rolling a marble down a ruler into a foam cup.

PhET Explorations: The Ramp

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how
the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.

Figure 7.20 The Ramp (http://cnx.org/content/m55047/1.4/the-ramp_en.jar)

7.6 Conservation of Energy

Learning Objectives
By the end of this section, you will be able to:

• Explain the law of the conservation of energy.
• Describe some of the many forms of energy.
• Define efficiency of an energy conversion process as the fraction left as useful energy or work, rather than being

transformed, for example, into thermal energy.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.C.1.2 The student is able to predict changes in the total energy of a system due to changes in position and speed of
objects or frictional interactions within the system. (S.P. 6.4)
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• 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a
component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P. 6.4)

• 4.C.2.2 The student is able to apply the concepts of conservation of energy and the work-energy theorem to determine
qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy
of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. (S.P.
1.4, 2.2, 7.2)

• 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts
for energy, charge, and linear momentum to those situations. (S.P. 6.4, 7.2)

• 5.B.5.4 The student is able to make claims about the interaction between a system and its environment in which the
environment exerts a force on the system, thus doing work on the system and changing the energy of the system
(kinetic energy plus potential energy). (S.P. 6.4, 7.2)

• 5.B.5.5 The student is able to predict and calculate the energy transfer to (i.e., the work done on) an object or system
from information about a force exerted on the object or system through a distance. (S.P. 2.2, 6.4)

Law of Conservation of Energy
Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The law of
conservation of energy can be stated as follows:

Total energy is constant in any process. It may change in form or be transferred from one system to another, but the total

remains the same.

We have explored some forms of energy and some ways it can be transferred from one system to another. This exploration led
to the definition of two major types of energy—mechanical energy (KE + PE) and energy transferred via work done by

nonconservative forces ( nc) . But energy takes many other forms, manifesting itself in many different ways, and we need to be

able to deal with all of these before we can write an equation for the above general statement of the conservation of energy.

Other Forms of Energy than Mechanical Energy

At this point, we deal with all other forms of energy by lumping them into a single group called other energy ( OE ). Then we can
state the conservation of energy in equation form as

(7.65)KEi + PEi + nc + OEi = KEf + PEf + OEf.

All types of energy and work can be included in this very general statement of conservation of energy. Kinetic energy is KE ,

work done by a conservative force is represented by PE , work done by nonconservative forces is nc , and all other energies

are included as OE . This equation applies to all previous examples; in those situations OE was constant, and so it subtracted
out and was not directly considered.

Making Connections: Usefulness of the Energy Conservation Principle

The fact that energy is conserved and has many forms makes it very important. You will find that energy is discussed in
many contexts, because it is involved in all processes. It will also become apparent that many situations are best understood
in terms of energy and that problems are often most easily conceptualized and solved by considering energy.

When does OE play a role? One example occurs when a person eats. Food is oxidized with the release of carbon dioxide,
water, and energy. Some of this chemical energy is converted to kinetic energy when the person moves, to potential energy
when the person changes altitude, and to thermal energy (another form of OE ).

Some of the Many Forms of Energy
What are some other forms of energy? You can probably name a number of forms of energy not yet discussed. Many of these
will be covered in later chapters, but let us detail a few here. Electrical energy is a common form that is converted to many other
forms and does work in a wide range of practical situations. Fuels, such as gasoline and food, carry chemical energy that can
be transferred to a system through oxidation. Chemical fuel can also produce electrical energy, such as in batteries. Batteries
can in turn produce light, which is a very pure form of energy. Most energy sources on Earth are in fact stored energy from the
energy we receive from the Sun. We sometimes refer to this as radiant energy, or electromagnetic radiation, which includes
visible light, infrared, and ultraviolet radiation. Nuclear energy comes from processes that convert measurable amounts of mass
into energy. Nuclear energy is transformed into the energy of sunlight, into electrical energy in power plants, and into the energy
of the heat transfer and blast in weapons. Atoms and molecules inside all objects are in random motion. This internal mechanical
energy from the random motions is called thermal energy, because it is related to the temperature of the object. These and all
other forms of energy can be converted into one another and can do work.
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Real World Connections: Open or Closed System?

Consider whether the following systems are open or closed: a car, a spring-operated dart gun, and the system shown in
Figure 7.15(a).

A car is not a closed system. You add energy in the form of more gas in the tank (or charging the batteries), and energy is
lost due to air resistance and friction.

A spring-operated dart gun is not a closed system. You have to initially compress the spring. Once that has been done,
however, the dart gun and dart can be treated as a closed system. All of the energy remains in the system consisting of
these two objects.

Figure 7.15(a) is an example of a closed system, once it has been started. All of the energy in the system remains there;
none is brought in from outside or leaves.

Table 7.1 gives the amount of energy stored, used, or released from various objects and in various phenomena. The range of
energies and the variety of types and situations is impressive.

Problem-Solving Strategies for Energy

You will find the following problem-solving strategies useful whenever you deal with energy. The strategies help in organizing
and reinforcing energy concepts. In fact, they are used in the examples presented in this chapter. The familiar general
problem-solving strategies presented earlier—involving identifying physical principles, knowns, and unknowns, checking
units, and so on—continue to be relevant here.

Step 1. Determine the system of interest and identify what information is given and what quantity is to be calculated. A
sketch will help.

Step 2. Examine all the forces involved and determine whether you know or are given the potential energy from the work
done by the forces. Then use step 3 or step 4.

Step 3. If you know the potential energies for the forces that enter into the problem, then forces are all conservative, and you
can apply conservation of mechanical energy simply in terms of potential and kinetic energy. The equation expressing
conservation of energy is

(7.66)KEi + PEi = KEf + PEf.

Step 4. If you know the potential energy for only some of the forces, possibly because some of them are nonconservative
and do not have a potential energy, or if there are other energies that are not easily treated in terms of force and work, then
the conservation of energy law in its most general form must be used.

(7.67)KEi + PEi + nc + OEi = KEf + PEf + OEf.

In most problems, one or more of the terms is zero, simplifying its solution. Do not calculate c , the work done by

conservative forces; it is already incorporated in the PE terms.

Step 5. You have already identified the types of work and energy involved (in step 2). Before solving for the unknown,
eliminate terms wherever possible to simplify the algebra. For example, choose = 0 at either the initial or final point, so

that PEg is zero there. Then solve for the unknown in the customary manner.

Step 6. Check the answer to see if it is reasonable. Once you have solved a problem, reexamine the forms of work and
energy to see if you have set up the conservation of energy equation correctly. For example, work done against friction
should be negative, potential energy at the bottom of a hill should be less than that at the top, and so on. Also check to see
that the numerical value obtained is reasonable. For example, the final speed of a skateboarder who coasts down a 3-m-
high ramp could reasonably be 20 km/h, but not 80 km/h.

Transformation of Energy
The transformation of energy from one form into others is happening all the time. The chemical energy in food is converted into
thermal energy through metabolism; light energy is converted into chemical energy through photosynthesis. In a larger example,
the chemical energy contained in coal is converted into thermal energy as it burns to turn water into steam in a boiler. This
thermal energy in the steam in turn is converted to mechanical energy as it spins a turbine, which is connected to a generator to
produce electrical energy. (In all of these examples, not all of the initial energy is converted into the forms mentioned. This
important point is discussed later in this section.)

Another example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell (see Figure 7.21) produces
electricity, which in turn can be used to run an electric motor. Energy is converted from the primary source of solar energy into
electrical energy and then into mechanical energy.
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Figure 7.21 Solar energy is converted into electrical energy by solar cells, which is used to run a motor in this solar-power aircraft. (credit: NASA)
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Table 7.1 Energy of Various Objects and Phenomena

Object/phenomenon Energy in joules

Big Bang 1068

Energy released in a supernova 1044

Fusion of all the hydrogen in Earth’s oceans 1034

Annual world energy use 4 1020

Large fusion bomb (9 megaton) 3.8 1016

1 kg hydrogen (fusion to helium) 6.4 1014

1 kg uranium (nuclear fission) 8.0 1013

Hiroshima-size fission bomb (10 kiloton) 4.2 1013

90,000-ton aircraft carrier at 30 knots 1.1 1010

1 barrel crude oil 5.9 109

1 ton TNT 4.2 109

1 gallon of gasoline 1.2 108

Daily home electricity use (developed countries) 7 107

Daily adult food intake (recommended) 1.2 107

1000-kg car at 90 km/h 3.1 105

1 g fat (9.3 kcal) 3.9 104

ATP hydrolysis reaction 3.2 104

1 g carbohydrate (4.1 kcal) 1.7 104

1 g protein (4.1 kcal) 1.7 104

Tennis ball at 100 km/h 22

Mosquito 10–2 g at 0.5 m/s 1.3 10−6

Single electron in a TV tube beam 4.0 10−15

Energy to break one DNA strand 10−19

Efficiency
Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the
energy input. The efficiency of an energy conversion process is defined as

(7.68)
Efficiency( ) =

useful energy or work output

total energy input
= out

in
.

Table 7.2 lists some efficiencies of mechanical devices and human activities. In a coal-fired power plant, for example, about 40%
of the chemical energy in the coal becomes useful electrical energy. The other 60% transforms into other (perhaps less useful)
energy forms, such as thermal energy, which is then released to the environment through combustion gases and cooling towers.
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Table 7.2 Efficiency of the Human Body and
Mechanical Devices

Activity/device Efficiency (%)[1]

Cycling and climbing 20

Swimming, surface 2

Swimming, submerged 4

Shoveling 3

Weightlifting 9

Steam engine 17

Gasoline engine 30

Diesel engine 35

Nuclear power plant 35

Coal power plant 42

Electric motor 98

Compact fluorescent light 20

Gas heater (residential) 90

Solar cell 10

PhET Explorations: Masses and Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can
even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energies for each
spring.

Figure 7.22 Masses and Springs (http://cnx.org/content/m55049/1.3/mass-spring-lab_en.jar)

7.7 Power

Learning Objectives
By the end of this section, you will be able to:

• Calculate power by calculating changes in energy over time.
• Examine power consumption and calculations of the cost of energy consumed.

What is Power?
Power—the word conjures up many images: a professional football player muscling aside his opponent, a dragster roaring away
from the starting line, a volcano blowing its lava into the atmosphere, or a rocket blasting off, as in Figure 7.23.

1. Representative values
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Figure 7.23 This powerful rocket on the Space Shuttle Endeavor did work and consumed energy at a very high rate. (credit: NASA)

These images of power have in common the rapid performance of work, consistent with the scientific definition of power ( ) as
the rate at which work is done.

Power

Power is the rate at which work is done.

(7.69)=

The SI unit for power is the watt ( W ), where 1 watt equals 1 joule/second (1 W = 1 J/s).

Because work is energy transfer, power is also the rate at which energy is expended. A 60-W light bulb, for example, expends 60
J of energy per second. Great power means a large amount of work or energy developed in a short time. For example, when a
powerful car accelerates rapidly, it does a large amount of work and consumes a large amount of fuel in a short time.

Calculating Power from Energy

Example 7.11 Calculating the Power to Climb Stairs

What is the power output for a 60.0-kg woman who runs up a 3.00 m high flight of stairs in 3.50 s, starting from rest but
having a final speed of 2.00 m/s? (See Figure 7.24.)

Figure 7.24 When this woman runs upstairs starting from rest, she converts the chemical energy originally from food into kinetic energy and
gravitational potential energy. Her power output depends on how fast she does this.

Strategy and Concept
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The work going into mechanical energy is = KE + PE . At the bottom of the stairs, we take both KE and PEg as

initially zero; thus, = KEf + PEg = 1
2 f

2 + , where is the vertical height of the stairs. Because all terms are

given, we can calculate and then divide it by time to get power.

Solution

Substituting the expression for into the definition of power given in the previous equation, = / yields

(7.70)
= =

1
2 f

2 +
.

Entering known values yields

(7.71)
=

0.5 60.0 kg (2.00 m/s)2 + 60.0 kg 9.80 m/s2 (3.00 m)

3.50 s

= 120 J + 1764 J
3.50 s

= 538 W.

Discussion

The woman does 1764 J of work to move up the stairs compared with only 120 J to increase her kinetic energy; thus, most
of her power output is required for climbing rather than accelerating.

It is impressive that this woman’s useful power output is slightly less than 1 horsepower (1 hp = 746 W) ! People can

generate more than a horsepower with their leg muscles for short periods of time by rapidly converting available blood sugar and
oxygen into work output. (A horse can put out 1 hp for hours on end.) Once oxygen is depleted, power output decreases and the
person begins to breathe rapidly to obtain oxygen to metabolize more food—this is known as the aerobic stage of exercise. If the
woman climbed the stairs slowly, then her power output would be much less, although the amount of work done would be the
same.

Making Connections: Take-Home Investigation—Measure Your Power Rating

Determine your own power rating by measuring the time it takes you to climb a flight of stairs. We will ignore the gain in
kinetic energy, as the above example showed that it was a small portion of the energy gain. Don’t expect that your output will
be more than about 0.5 hp.

Examples of Power
Examples of power are limited only by the imagination, because there are as many types as there are forms of work and energy.
(See Table 7.3 for some examples.) Sunlight reaching Earth’s surface carries a maximum power of about 1.3 kilowatts per

square meter (kW/m2). A tiny fraction of this is retained by Earth over the long term. Our consumption rate of fossil fuels is far

greater than the rate at which they are stored, so it is inevitable that they will be depleted. Power implies that energy is
transferred, perhaps changing form. It is never possible to change one form completely into another without losing some of it as
thermal energy. For example, a 60-W incandescent bulb converts only 5 W of electrical power to light, with 55 W dissipating into
thermal energy. Furthermore, the typical electric power plant converts only 35 to 40% of its fuel into electricity. The remainder
becomes a huge amount of thermal energy that must be dispersed as heat transfer, as rapidly as it is created. A coal-fired power

plant may produce 1000 megawatts; 1 megawatt (MW) is 106 W of electric power. But the power plant consumes chemical
energy at a rate of about 2500 MW, creating heat transfer to the surroundings at a rate of 1500 MW. (See Figure 7.25.)
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Figure 7.25 Tremendous amounts of electric power are generated by coal-fired power plants such as this one in China, but an even larger amount of
power goes into heat transfer to the surroundings. The large cooling towers here are needed to transfer heat as rapidly as it is produced. The transfer
of heat is not unique to coal plants but is an unavoidable consequence of generating electric power from any fuel—nuclear, coal, oil, natural gas, or the
like. (credit: Kleinolive, Wikimedia Commons)

Table 7.3 Power Output or Consumption

Object or Phenomenon Power in Watts

Supernova (at peak) 5 1037

Milky Way galaxy 1037

Crab Nebula pulsar 1028

The Sun 4 1026

Volcanic eruption (maximum) 4 1015

Lightning bolt 2 1012

Nuclear power plant (total electric and heat transfer) 3 109

Aircraft carrier (total useful and heat transfer) 108

Dragster (total useful and heat transfer) 2 106

Car (total useful and heat transfer) 8 104

Football player (total useful and heat transfer) 5 103

Clothes dryer 4 103

Person at rest (all heat transfer) 100

Typical incandescent light bulb (total useful and heat transfer) 60

Heart, person at rest (total useful and heat transfer) 8

Electric clock 3

Pocket calculator 10−3

Power and Energy Consumption
We usually have to pay for the energy we use. It is interesting and easy to estimate the cost of energy for an electrical appliance
if its power consumption rate and time used are known. The higher the power consumption rate and the longer the appliance is
used, the greater the cost of that appliance. The power consumption rate is = / = / , where is the energy supplied
by the electricity company. So the energy consumed over a time is
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(7.72)=

Electricity bills state the energy used in units of kilowatt-hours (kW ⋅ h) which is the product of power in kilowatts and time in

hours. This unit is convenient because electrical power consumption at the kilowatt level for hours at a time is typical.

Example 7.12 Calculating Energy Costs

What is the cost of running a 0.200-kW computer 6.00 h per day for 30.0 d if the cost of electricity is $0.120 per kW ⋅ h ?

Strategy

Cost is based on energy consumed; thus, we must find from = and then calculate the cost. Because electrical

energy is expressed in kW ⋅ h , at the start of a problem such as this it is convenient to convert the units into kW and
hours.

Solution

The energy consumed in kW ⋅ h is

(7.73)= = (0.200 kW)(6.00 h/d)(30.0 d)

= 36.0 kW ⋅ h,

and the cost is simply given by

(7.74)cost = (36.0 kW ⋅ h)($0.120 per kW ⋅ h) = $4.32 per month.

Discussion

The cost of using the computer in this example is neither exorbitant nor negligible. It is clear that the cost is a combination of
power and time. When both are high, such as for an air conditioner in the summer, the cost is high.

The motivation to save energy has become more compelling with its ever-increasing price. Armed with the knowledge that
energy consumed is the product of power and time, you can estimate costs for yourself and make the necessary value
judgments about where to save energy. Either power or time must be reduced. It is most cost-effective to limit the use of high-
power devices that normally operate for long periods of time, such as water heaters and air conditioners. This would not include
relatively high power devices like toasters, because they are on only a few minutes per day. It would also not include electric
clocks, in spite of their 24-hour-per-day usage, because they are very low power devices. It is sometimes possible to use devices
that have greater efficiencies—that is, devices that consume less power to accomplish the same task. One example is the
compact fluorescent light bulb, which produces over four times more light per watt of power consumed than its incandescent
cousin.

Modern civilization depends on energy, but current levels of energy consumption and production are not sustainable. The
likelihood of a link between global warming and fossil fuel use (with its concomitant production of carbon dioxide), has made
reduction in energy use as well as a shift to non-fossil fuels of the utmost importance. Even though energy in an isolated system
is a conserved quantity, the final result of most energy transformations is waste heat transfer to the environment, which is no
longer useful for doing work. As we will discuss in more detail in Thermodynamics, the potential for energy to produce useful
work has been “degraded” in the energy transformation.

7.8 Work, Energy, and Power in Humans

Learning Objectives
By the end of this section, you will be able to:

• Explain the human body’s consumption of energy when at rest versus when engaged in activities that do useful work.
• Calculate the conversion of chemical energy in food into useful work.

Energy Conversion in Humans
Our own bodies, like all living organisms, are energy conversion machines. Conservation of energy implies that the chemical
energy stored in food is converted into work, thermal energy, and/or stored as chemical energy in fatty tissue. (See Figure 7.26.)
The fraction going into each form depends both on how much we eat and on our level of physical activity. If we eat more than is
needed to do work and stay warm, the remainder goes into body fat.
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basal metabolic rate:

chemical energy:

conservation of mechanical energy:

conservative force:

efficiency:

electrical energy:

energy:

fossil fuels:

friction:

gravitational potential energy:

horsepower:

joule:

kilowatt-hour:

kinetic energy:

law of conservation of energy:

mechanical energy:

metabolic rate:

net work:

nonconservative force:

nuclear energy:

potential energy:

potential energy of a spring:

power:

bookkeeping device, and no exceptions have ever been found. It states that the total amount of energy in an isolated system will
always remain constant. Related to this principle, but remarkably different from it, is the important philosophy of energy
conservation. This concept has to do with seeking to decrease the amount of energy used by an individual or group through (1)
reduced activities (e.g., turning down thermostats, driving fewer kilometers) and/or (2) increasing conversion efficiencies in the
performance of a particular task—such as developing and using more efficient room heaters, cars that have greater miles-per-
gallon ratings, energy-efficient compact fluorescent lights, etc.

Since energy in an isolated system is not destroyed or created or generated, one might wonder why we need to be concerned
about our energy resources, since energy is a conserved quantity. The problem is that the final result of most energy
transformations is waste heat transfer to the environment and conversion to energy forms no longer useful for doing work. To
state it in another way, the potential for energy to produce useful work has been “degraded” in the energy transformation. (This
will be discussed in more detail in Thermodynamics.)

Glossary
the total energy conversion rate of a person at rest

the energy in a substance stored in the bonds between atoms and molecules that can be released in a
chemical reaction

the rule that the sum of the kinetic energies and potential energies remains constant if
only conservative forces act on and within a system

a force that does the same work for any given initial and final configuration, regardless of the path
followed

a measure of the effectiveness of the input of energy to do work; useful energy or work divided by the total input of
energy

the energy carried by a flow of charge

the ability to do work

oil, natural gas, and coal

the force between surfaces that opposes one sliding on the other; friction changes mechanical energy into thermal
energy

the energy an object has due to its position in a gravitational field

an older non-SI unit of power, with 1 hp = 746 W

SI unit of work and energy, equal to one newton-meter

(kW ⋅ h) unit used primarily for electrical energy provided by electric utility companies

the energy an object has by reason of its motion, equal to 1
2

2 for the translational (i.e., non-rotational)

motion of an object of mass moving at speed

the general law that total energy is constant in any process; energy may change in form or
be transferred from one system to another, but the total remains the same

the sum of kinetic energy and potential energy

the rate at which the body uses food energy to sustain life and to do different activities

work done by the net force, or vector sum of all the forces, acting on an object

a force whose work depends on the path followed between the given initial and final configurations

energy released by changes within atomic nuclei, such as the fusion of two light nuclei or the fission of a
heavy nucleus

energy due to position, shape, or configuration

the stored energy of a spring as a function of its displacement; when Hooke’s law applies, it is

given by the expression 1
2

2 where is the distance the spring is compressed or extended and is the spring

constant

the rate at which work is done
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radiant energy:

renewable forms of energy:

thermal energy:

useful work:

watt:

work:

work-energy theorem:

the energy carried by electromagnetic waves

those sources that cannot be used up, such as water, wind, solar, and biomass

the energy within an object due to the random motion of its atoms and molecules that accounts for the
object's temperature

work done on an external system

(W) SI unit of power, with 1 W = 1 J/s

the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the
direction of the displacement and the magnitude of the displacement

the result, based on Newton’s laws, that the net work done on an object is equal to its change in
kinetic energy

Section Summary

7.1 Work: The Scientific Definition
• Work is the transfer of energy by a force acting on an object as it is displaced.
• The work that a force F does on an object is the product of the magnitude of the force, times the magnitude of

the displacement, times the cosine of the angle between them. In symbols,

= cos .

• The SI unit for work and energy is the joule (J), where 1 J = 1 N ⋅ m = 1 kg ⋅ m2/s2 .

• The work done by a force is zero if the displacement is either zero or perpendicular to the force.
• The work done is positive if the force and displacement have the same direction, and negative if they have opposite

direction.

7.2 Kinetic Energy and the Work-Energy Theorem
• The net work net is the work done by the net force acting on an object.

• Work done on an object transfers energy to the object.

• The translational kinetic energy of an object of mass moving at speed is KE = 1
2

2 .

• The work-energy theorem states that the net work net on a system changes its kinetic energy,

net = 1
2

2 − 1
2 0

2 .

7.3 Gravitational Potential Energy
• Work done against gravity in lifting an object becomes potential energy of the object-Earth system.
• The change in gravitational potential energy, ΔPEg , is ΔPEg = , with being the increase in height and g the

acceleration due to gravity.
• The gravitational potential energy of an object near Earth’s surface is due to its position in the mass-Earth system. Only

differences in gravitational potential energy, ΔPEg , have physical significance.

• As an object descends without friction, its gravitational potential energy changes into kinetic energy corresponding to
increasing speed, so that ΔKE= −ΔPEg .

7.4 Conservative Forces and Potential Energy
• A conservative force is one for which work depends only on the starting and ending points of a motion, not on the path

taken.
• We can define potential energy (PE) for any conservative force, just as we defined PEg for the gravitational force.

• The potential energy of a spring is PEs = 1
2

2 , where is the spring’s force constant and is the displacement from

its undeformed position.
• Mechanical energy is defined to be KE + PE for a conservative force.

• When only conservative forces act on and within a system, the total mechanical energy is constant. In equation form,
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KE + PE = constant    
or

KEi + PEi = KEf + PEf

where i and f denote initial and final values. This is known as the conservation of mechanical energy.

7.5 Nonconservative Forces
• A nonconservative force is one for which work depends on the path.
• Friction is an example of a nonconservative force that changes mechanical energy into thermal energy.
• Work nc done by a nonconservative force changes the mechanical energy of a system. In equation form,

nc = ΔKE + ΔPE or, equivalently, KEi + PEi + nc = KEf + PEf .

• When both conservative and nonconservative forces act, energy conservation can be applied and used to calculate motion
in terms of the known potential energies of the conservative forces and the work done by nonconservative forces, instead
of finding the net work from the net force, or having to directly apply Newton’s laws.

7.6 Conservation of Energy
• The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be

transferred from one system to another, but the total remains the same.
• When all forms of energy are considered, conservation of energy is written in equation form as

KEi + PEi + nc + OEi = KEf + PEf + OEf , where OE is all other forms of energy besides mechanical energy.

• Commonly encountered forms of energy include electric energy, chemical energy, radiant energy, nuclear energy, and
thermal energy.

• Energy is often utilized to do work, but it is not possible to convert all the energy of a system to work.

• The efficiency of a machine or human is defined to be = out

in
, where out is useful work output and in is

the energy consumed.

7.7 Power
• Power is the rate at which work is done, or in equation form, for the average power for work done over a time ,

= / .

• The SI unit for power is the watt (W), where 1 W = 1 J/s .

• The power of many devices such as electric motors is also often expressed in horsepower (hp), where 1 hp = 746 W .

7.8 Work, Energy, and Power in Humans
• The human body converts energy stored in food into work, thermal energy, and/or chemical energy that is stored in fatty

tissue.
• The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate, and the

corresponding rate when at rest is called the basal metabolic rate (BMR)
• The energy included in the basal metabolic rate is divided among various systems in the body, with the largest fraction

going to the liver and spleen, and the brain coming next.
• About 75% of food calories are used to sustain basic body functions included in the basal metabolic rate.
• The energy consumption of people during various activities can be determined by measuring their oxygen use, because the

digestive process is basically one of oxidizing food.

7.9 World Energy Use
• The relative use of different fuels to provide energy has changed over the years, but fuel use is currently dominated by oil,

although natural gas and solar contributions are increasing.
• Although non-renewable sources dominate, some countries meet a sizeable percentage of their electricity needs from

renewable resources.
• The United States obtains only about 10% of its energy from renewable sources, mostly hydroelectric power.
• Economic well-being is dependent upon energy use, and in most countries higher standards of living, as measured by GDP

(Gross Domestic Product) per capita, are matched by higher levels of energy consumption per capita.
• Even though, in accordance with the law of conservation of energy, energy can never be created or destroyed, energy that

can be used to do work is always partly converted to less useful forms, such as waste heat to the environment, in all of our
uses of energy for practical purposes.

Conceptual Questions

7.1 Work: The Scientific Definition
1. Give an example of something we think of as work in everyday circumstances that is not work in the scientific sense. Is energy
transferred or changed in form in your example? If so, explain how this is accomplished without doing work.
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2. Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does
no work.

3. Describe a situation in which a force is exerted for a long time but does no work. Explain.

7.2 Kinetic Energy and the Work-Energy Theorem
4. The person in Figure 7.33 does work on the lawn mower. Under what conditions would the mower gain energy? Under what
conditions would it lose energy?

Figure 7.33

5. Work done on a system puts energy into it. Work done by a system removes energy from it. Give an example for each
statement.

6. When solving for speed in Example 7.4, we kept only the positive root. Why?

7.3 Gravitational Potential Energy
7. In Example 7.7, we calculated the final speed of a roller coaster that descended 20 m in height and had an initial speed of 5
m/s downhill. Suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then
rolled back down to a final point 20 m below the start. We would find in that case that it had the same final speed. Explain in
terms of conservation of energy.

8. Does the work you do on a book when you lift it onto a shelf depend on the path taken? On the time taken? On the height of
the shelf? On the mass of the book?

7.4 Conservative Forces and Potential Energy
9. What is a conservative force?

10. The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is negligible,
describe changes in the potential energy of a diving board as a swimmer dives from it, starting just before the swimmer steps on
the board until just after his feet leave it.

11. Define mechanical energy. What is the relationship of mechanical energy to nonconservative forces? What happens to
mechanical energy if only conservative forces act?

12. What is the relationship of potential energy to conservative force?

7.6 Conservation of Energy
13. Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out of
gasoline after a short distance. The driver lets the car coast farther down the hill, then up and over a small crest. He then coasts
down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify the forms of energy the car
has, and how they are changed and transferred in this series of events. (See Figure 7.34.)
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Figure 7.34 A car experiencing non-negligible friction coasts down a hill, over a small crest, then downhill again, and comes to a stop at a gas station.

14. Describe the energy transfers and transformations for a javelin, starting from the point at which an athlete picks up the javelin
and ending when the javelin is stuck into the ground after being thrown.

15. Do devices with efficiencies of less than one violate the law of conservation of energy? Explain.

16. List four different forms or types of energy. Give one example of a conversion from each of these forms to another form.

17. List the energy conversions that occur when riding a bicycle.

7.7 Power
18. Most electrical appliances are rated in watts. Does this rating depend on how long the appliance is on? (When off, it is a zero-
watt device.) Explain in terms of the definition of power.

19. Explain, in terms of the definition of power, why energy consumption is sometimes listed in kilowatt-hours rather than joules.
What is the relationship between these two energy units?

20. A spark of static electricity, such as that you might receive from a doorknob on a cold dry day, may carry a few hundred watts
of power. Explain why you are not injured by such a spark.

7.8 Work, Energy, and Power in Humans
21. Explain why it is easier to climb a mountain on a zigzag path rather than one straight up the side. Is your increase in
gravitational potential energy the same in both cases? Is your energy consumption the same in both?

22. Do you do work on the outside world when you rub your hands together to warm them? What is the efficiency of this activity?

23. Shivering is an involuntary response to lowered body temperature. What is the efficiency of the body when shivering, and is
this a desirable value?

24. Discuss the relative effectiveness of dieting and exercise in losing weight, noting that most athletic activities consume food
energy at a rate of 400 to 500 W, while a single cup of yogurt can contain 1360 kJ (325 kcal). Specifically, is it likely that exercise
alone will be sufficient to lose weight? You may wish to consider that regular exercise may increase the metabolic rate, whereas
protracted dieting may reduce it.

7.9 World Energy Use
25. What is the difference between energy conservation and the law of conservation of energy? Give some examples of each.

26. If the efficiency of a coal-fired electrical generating plant is 35%, then what do we mean when we say that energy is a
conserved quantity?
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Problems & Exercises

7.1 Work: The Scientific Definition
1. How much work does a supermarket checkout attendant
do on a can of soup he pushes 0.600 m horizontally with a
force of 5.00 N? Express your answer in joules and
kilocalories.

2. A 75.0-kg person climbs stairs, gaining 2.50 meters in
height. Find the work done to accomplish this task.

3. (a) Calculate the work done on a 1500-kg elevator car by
its cable to lift it 40.0 m at constant speed, assuming friction
averages 100 N. (b) What is the work done on the lift by the
gravitational force in this process? (c) What is the total work
done on the lift?

4. Suppose a car travels 108 km at a speed of 30.0 m/s, and
uses 2.0 gal of gasoline. Only 30% of the gasoline goes into
useful work by the force that keeps the car moving at
constant speed despite friction. (See Table 7.1 for the energy
content of gasoline.) (a) What is the magnitude of the force
exerted to keep the car moving at constant speed? (b) If the
required force is directly proportional to speed, how many
gallons will be used to drive 108 km at a speed of 28.0 m/s?

5. Calculate the work done by an 85.0-kg man who pushes a
crate 4.00 m up along a ramp that makes an angle of 20.0º

with the horizontal. (See Figure 7.35.) He exerts a force of
500 N on the crate parallel to the ramp and moves at a
constant speed. Be certain to include the work he does on the
crate and on his body to get up the ramp.

Figure 7.35 A man pushes a crate up a ramp.

6. How much work is done by the boy pulling his sister 30.0 m
in a wagon as shown in Figure 7.36? Assume no friction acts
on the wagon.

Figure 7.36 The boy does work on the system of the wagon and the
child when he pulls them as shown.

7. A shopper pushes a grocery cart 20.0 m at constant speed
on level ground, against a 35.0 N frictional force. He pushes
in a direction 25.0º below the horizontal. (a) What is the
work done on the cart by friction? (b) What is the work done
on the cart by the gravitational force? (c) What is the work
done on the cart by the shopper? (d) Find the force the

shopper exerts, using energy considerations. (e) What is the
total work done on the cart?

8. Suppose the ski patrol lowers a rescue sled and victim,
having a total mass of 90.0 kg, down a 60.0º slope at
constant speed, as shown in Figure 7.37. The coefficient of
friction between the sled and the snow is 0.100. (a) How
much work is done by friction as the sled moves 30.0 m along
the hill? (b) How much work is done by the rope on the sled in
this distance? (c) What is the work done by the gravitational
force on the sled? (d) What is the total work done?

Figure 7.37 A rescue sled and victim are lowered down a steep slope.

7.2 Kinetic Energy and the Work-Energy
Theorem
9. Compare the kinetic energy of a 20,000-kg truck moving at
110 km/h with that of an 80.0-kg astronaut in orbit moving at
27,500 km/h.

10. (a) How fast must a 3000-kg elephant move to have the
same kinetic energy as a 65.0-kg sprinter running at 10.0 m/
s? (b) Discuss how the larger energies needed for the
movement of larger animals would relate to metabolic rates.

11. Confirm the value given for the kinetic energy of an
aircraft carrier in Table 7.1. You will need to look up the
definition of a nautical mile (1 knot = 1 nautical mile/h).

12. (a) Calculate the force needed to bring a 950-kg car to
rest from a speed of 90.0 km/h in a distance of 120 m (a fairly
typical distance for a non-panic stop). (b) Suppose instead
the car hits a concrete abutment at full speed and is brought
to a stop in 2.00 m. Calculate the force exerted on the car and
compare it with the force found in part (a).

13. A car’s bumper is designed to withstand a 4.0-km/h
(1.1-m/s) collision with an immovable object without damage
to the body of the car. The bumper cushions the shock by
absorbing the force over a distance. Calculate the magnitude
of the average force on a bumper that collapses 0.200 m
while bringing a 900-kg car to rest from an initial speed of 1.1
m/s.

14. Boxing gloves are padded to lessen the force of a blow.
(a) Calculate the force exerted by a boxing glove on an
opponent’s face, if the glove and face compress 7.50 cm
during a blow in which the 7.00-kg arm and glove are brought
to rest from an initial speed of 10.0 m/s. (b) Calculate the
force exerted by an identical blow in the gory old days when
no gloves were used and the knuckles and face would
compress only 2.00 cm. (c) Discuss the magnitude of the
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force with glove on. Does it seem high enough to cause
damage even though it is lower than the force with no glove?

15. Using energy considerations, calculate the average force
a 60.0-kg sprinter exerts backward on the track to accelerate
from 2.00 to 8.00 m/s in a distance of 25.0 m, if he
encounters a headwind that exerts an average force of 30.0 N
against him.

7.3 Gravitational Potential Energy
16. A hydroelectric power facility (see Figure 7.38) converts
the gravitational potential energy of water behind a dam to
electric energy. (a) What is the gravitational potential energy

relative to the generators of a lake of volume 50.0 km3 (

mass = 5.00×1013 kg) , given that the lake has an

average height of 40.0 m above the generators? (b) Compare
this with the energy stored in a 9-megaton fusion bomb.

Figure 7.38 Hydroelectric facility (credit: Denis Belevich, Wikimedia
Commons)

17. (a) How much gravitational potential energy (relative to
the ground on which it is built) is stored in the Great Pyramid

of Cheops, given that its mass is about 7 × 109  kg and its

center of mass is 36.5 m above the surrounding ground? (b)
How does this energy compare with the daily food intake of a
person?

18. Suppose a 350-g kookaburra (a large kingfisher bird)
picks up a 75-g snake and raises it 2.5 m from the ground to
a branch. (a) How much work did the bird do on the snake?
(b) How much work did it do to raise its own center of mass to
the branch?

19. In Example 7.7, we found that the speed of a roller
coaster that had descended 20.0 m was only slightly greater
when it had an initial speed of 5.00 m/s than when it started
from rest. This implies that ΔPE >> KEi . Confirm this

statement by taking the ratio of ΔPE to KEi . (Note that

mass cancels.)

20. A 100-g toy car is propelled by a compressed spring that
starts it moving. The car follows the curved track in Figure
7.39. Show that the final speed of the toy car is 0.687 m/s if
its initial speed is 2.00 m/s and it coasts up the frictionless
slope, gaining 0.180 m in altitude.

Figure 7.39 A toy car moves up a sloped track. (credit: Leszek
Leszczynski, Flickr)

21. In a downhill ski race, surprisingly, little advantage is
gained by getting a running start. (This is because the initial
kinetic energy is small compared with the gain in gravitational
potential energy on even small hills.) To demonstrate this, find
the final speed and the time taken for a skier who skies 70.0
m along a 30º slope neglecting friction: (a) Starting from
rest. (b) Starting with an initial speed of 2.50 m/s. (c) Does the
answer surprise you? Discuss why it is still advantageous to
get a running start in very competitive events.

7.4 Conservative Forces and Potential Energy

22. A 5.00×105-kg subway train is brought to a stop from a

speed of 0.500 m/s in 0.400 m by a large spring bumper at
the end of its track. What is the force constant of the
spring?

23. A pogo stick has a spring with a force constant of

2.50 104 N/m , which can be compressed 12.0 cm. To
what maximum height can a child jump on the stick using only
the energy in the spring, if the child and stick have a total
mass of 40.0 kg? Explicitly show how you follow the steps in
the Problem-Solving Strategies for Energy.

7.5 Nonconservative Forces
24. A 60.0-kg skier with an initial speed of 12.0 m/s coasts up
a 2.50-m-high rise as shown in Figure 7.40. Find her final
speed at the top, given that the coefficient of friction between
her skis and the snow is 0.0800. (Hint: Find the distance
traveled up the incline assuming a straight-line path as shown
in the figure.)

Figure 7.40 The skier’s initial kinetic energy is partially used in coasting
to the top of a rise.

25. (a) How high a hill can a car coast up (engine
disengaged) if work done by friction is negligible and its initial
speed is 110 km/h? (b) If, in actuality, a 750-kg car with an
initial speed of 110 km/h is observed to coast up a hill to a
height 22.0 m above its starting point, how much thermal
energy was generated by friction? (c) What is the average
force of friction if the hill has a slope 2.5º above the
horizontal?
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7.6 Conservation of Energy
26. Using values from Table 7.1, how many DNA molecules
could be broken by the energy carried by a single electron in
the beam of an old-fashioned TV tube? (These electrons
were not dangerous in themselves, but they did create
dangerous x rays. Later model tube TVs had shielding that
absorbed x rays before they escaped and exposed viewers.)

27. Using energy considerations and assuming negligible air
resistance, show that a rock thrown from a bridge 20.0 m
above water with an initial speed of 15.0 m/s strikes the water
with a speed of 24.8 m/s independent of the direction thrown.

28. If the energy in fusion bombs were used to supply the
energy needs of the world, how many of the 9-megaton
variety would be needed for a year’s supply of energy (using
data from Table 7.1)? This is not as far-fetched as it may
sound—there are thousands of nuclear bombs, and their
energy can be trapped in underground explosions and
converted to electricity, as natural geothermal energy is.

29. (a) Use of hydrogen fusion to supply energy is a dream
that may be realized in the next century. Fusion would be a
relatively clean and almost limitless supply of energy, as can
be seen from Table 7.1. To illustrate this, calculate how many
years the present energy needs of the world could be
supplied by one millionth of the oceans’ hydrogen fusion
energy. (b) How does this time compare with historically
significant events, such as the duration of stable economic
systems?

7.7 Power
30. The Crab Nebula (see Figure 7.41) pulsar is the remnant
of a supernova that occurred in A.D. 1054. Using data from
Table 7.3, calculate the approximate factor by which the
power output of this astronomical object has declined since its
explosion.

Figure 7.41 Crab Nebula (credit: ESO, via Wikimedia Commons)

31. Suppose a star 1000 times brighter than our Sun (that is,
emitting 1000 times the power) suddenly goes supernova.
Using data from Table 7.3: (a) By what factor does its power
output increase? (b) How many times brighter than our entire
Milky Way galaxy is the supernova? (c) Based on your
answers, discuss whether it should be possible to observe
supernovas in distant galaxies. Note that there are on the

order of 1011 observable galaxies, the average brightness
of which is somewhat less than our own galaxy.

32. A person in good physical condition can put out 100 W of
useful power for several hours at a stretch, perhaps by
pedaling a mechanism that drives an electric generator.
Neglecting any problems of generator efficiency and practical
considerations such as resting time: (a) How many people
would it take to run a 4.00-kW electric clothes dryer? (b) How
many people would it take to replace a large electric power
plant that generates 800 MW?

33. What is the cost of operating a 3.00-W electric clock for a
year if the cost of electricity is $0.0900 per kW ⋅ h ?

34. A large household air conditioner may consume 15.0 kW
of power. What is the cost of operating this air conditioner
3.00 h per day for 30.0 d if the cost of electricity is $0.110 per
kW ⋅ h ?

35. (a) What is the average power consumption in watts of an
appliance that uses 5.00 kW ⋅ h of energy per day? (b)
How many joules of energy does this appliance consume in a
year?

36. (a) What is the average useful power output of a person

who does 6.00 106 J of useful work in 8.00 h? (b) Working
at this rate, how long will it take this person to lift 2000 kg of
bricks 1.50 m to a platform? (Work done to lift his body can be
omitted because it is not considered useful output here.)

37. A 500-kg dragster accelerates from rest to a final speed of
110 m/s in 400 m (about a quarter of a mile) and encounters
an average frictional force of 1200 N. What is its average
power output in watts and horsepower if this takes 7.30 s?

38. (a) How long will it take an 850-kg car with a useful power
output of 40.0 hp (1 hp = 746 W) to reach a speed of 15.0 m/
s, neglecting friction? (b) How long will this acceleration take
if the car also climbs a 3.00-m-high hill in the process?

39. (a) Find the useful power output of an elevator motor that
lifts a 2500-kg load a height of 35.0 m in 12.0 s, if it also
increases the speed from rest to 4.00 m/s. Note that the total
mass of the counterbalanced system is 10,000 kg—so that
only 2500 kg is raised in height, but the full 10,000 kg is
accelerated. (b) What does it cost, if electricity is $0.0900 per
kW ⋅ h ?

40. (a) What is the available energy content, in joules, of a
battery that operates a 2.00-W electric clock for 18 months?

(b) How long can a battery that can supply 8.00 104 J run
a pocket calculator that consumes energy at the rate of

1.00 10−3 W ?

41. (a) How long would it take a 1.50 105 -kg airplane with
engines that produce 100 MW of power to reach a speed of
250 m/s and an altitude of 12.0 km if air resistance were
negligible? (b) If it actually takes 900 s, what is the power? (c)
Given this power, what is the average force of air resistance if
the airplane takes 1200 s? (Hint: You must find the distance
the plane travels in 1200 s assuming constant acceleration.)

42. Calculate the power output needed for a 950-kg car to
climb a 2.00º slope at a constant 30.0 m/s while
encountering wind resistance and friction totaling 600 N.
Explicitly show how you follow the steps in the Problem-
Solving Strategies for Energy.

43. (a) Calculate the power per square meter reaching Earth’s
upper atmosphere from the Sun. (Take the power output of
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the Sun to be 4.00×1026 W.) (b) Part of this is absorbed

and reflected by the atmosphere, so that a maximum of

1.30 kW/m2 reaches Earth’s surface. Calculate the area in

km2 of solar energy collectors needed to replace an electric
power plant that generates 750 MW if the collectors convert
an average of 2.00% of the maximum power into electricity.
(This small conversion efficiency is due to the devices
themselves, and the fact that the sun is directly overhead only
briefly.) With the same assumptions, what area would be
needed to meet the United States’ energy needs

(1.05×1020 J)? Australia’s energy needs (5.4×1018 J)?

China’s energy needs (6.3×1019 J)? (These energy

consumption values are from 2006.)

7.8 Work, Energy, and Power in Humans
44. (a) How long can you rapidly climb stairs (116/min) on the
93.0 kcal of energy in a 10.0-g pat of butter? (b) How many
flights is this if each flight has 16 stairs?

45. (a) What is the power output in watts and horsepower of a
70.0-kg sprinter who accelerates from rest to 10.0 m/s in 3.00
s? (b) Considering the amount of power generated, do you
think a well-trained athlete could do this repetitively for long
periods of time?

46. Calculate the power output in watts and horsepower of a
shot-putter who takes 1.20 s to accelerate the 7.27-kg shot
from rest to 14.0 m/s, while raising it 0.800 m. (Do not include
the power produced to accelerate his body.)

Figure 7.42 Shot putter at the Dornoch Highland Gathering in 2007.
(credit: John Haslam, Flickr)

47. (a) What is the efficiency of an out-of-condition professor

who does 2.10 105  J of useful work while metabolizing
500 kcal of food energy? (b) How many food calories would a
well-conditioned athlete metabolize in doing the same work
with an efficiency of 20%?

48. Energy that is not utilized for work or heat transfer is
converted to the chemical energy of body fat containing about
39 kJ/g. How many grams of fat will you gain if you eat
10,000 kJ (about 2500 kcal) one day and do nothing but sit
relaxed for 16.0 h and sleep for the other 8.00 h? Use data
from Table 7.5 for the energy consumption rates of these
activities.

49. Using data from Table 7.5, calculate the daily energy
needs of a person who sleeps for 7.00 h, walks for 2.00 h,
attends classes for 4.00 h, cycles for 2.00 h, sits relaxed for

3.00 h, and studies for 6.00 h. (Studying consumes energy at
the same rate as sitting in class.)

50. What is the efficiency of a subject on a treadmill who puts
out work at the rate of 100 W while consuming oxygen at the
rate of 2.00 L/min? (Hint: See Table 7.5.)

51. Shoveling snow can be extremely taxing because the
arms have such a low efficiency in this activity. Suppose a
person shoveling a footpath metabolizes food at the rate of
800 W. (a) What is her useful power output? (b) How long will
it take her to lift 3000 kg of snow 1.20 m? (This could be the
amount of heavy snow on 20 m of footpath.) (c) How much
waste heat transfer in kilojoules will she generate in the
process?

52. Very large forces are produced in joints when a person
jumps from some height to the ground. (a) Calculate the
magnitude of the force produced if an 80.0-kg person jumps
from a 0.600–m-high ledge and lands stiffly, compressing joint
material 1.50 cm as a result. (Be certain to include the weight
of the person.) (b) In practice the knees bend almost
involuntarily to help extend the distance over which you stop.
Calculate the magnitude of the force produced if the stopping
distance is 0.300 m. (c) Compare both forces with the weight
of the person.

53. Jogging on hard surfaces with insufficiently padded shoes
produces large forces in the feet and legs. (a) Calculate the
magnitude of the force needed to stop the downward motion
of a jogger’s leg, if his leg has a mass of 13.0 kg, a speed of
6.00 m/s, and stops in a distance of 1.50 cm. (Be certain to
include the weight of the 75.0-kg jogger’s body.) (b) Compare
this force with the weight of the jogger.

54. (a) Calculate the energy in kJ used by a 55.0-kg woman
who does 50 deep knee bends in which her center of mass is
lowered and raised 0.400 m. (She does work in both
directions.) You may assume her efficiency is 20%. (b) What
is the average power consumption rate in watts if she does
this in 3.00 min?

55. Kanellos Kanellopoulos flew 119 km from Crete to
Santorini, Greece, on April 23, 1988, in the Daedalus 88, an
aircraft powered by a bicycle-type drive mechanism (see
Figure 7.43). His useful power output for the 234-min trip was
about 350 W. Using the efficiency for cycling from Table 7.2,
calculate the food energy in kilojoules he metabolized during
the flight.

Figure 7.43 The Daedalus 88 in flight. (credit: NASA photo by Beasley)

56. The swimmer shown in Figure 7.44 exerts an average
horizontal backward force of 80.0 N with his arm during each
1.80 m long stroke. (a) What is his work output in each
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stroke? (b) Calculate the power output of his arms if he does
120 strokes per minute.

Figure 7.44

57. Mountain climbers carry bottled oxygen when at very high
altitudes. (a) Assuming that a mountain climber uses oxygen
at twice the rate for climbing 116 stairs per minute (because
of low air temperature and winds), calculate how many liters
of oxygen a climber would need for 10.0 h of climbing. (These
are liters at sea level.) Note that only 40% of the inhaled
oxygen is utilized; the rest is exhaled. (b) How much useful
work does the climber do if he and his equipment have a
mass of 90.0 kg and he gains 1000 m of altitude? (c) What is
his efficiency for the 10.0-h climb?

58. The awe-inspiring Great Pyramid of Cheops was built
more than 4500 years ago. Its square base, originally 230 m
on a side, covered 13.1 acres, and it was 146 m high, with a

mass of about 7×109 kg . (The pyramid’s dimensions are

slightly different today due to quarrying and some sagging.)
Historians estimate that 20,000 workers spent 20 years to
construct it, working 12-hour days, 330 days per year. (a)
Calculate the gravitational potential energy stored in the
pyramid, given its center of mass is at one-fourth its height.
(b) Only a fraction of the workers lifted blocks; most were
involved in support services such as building ramps (see
Figure 7.45), bringing food and water, and hauling blocks to
the site. Calculate the efficiency of the workers who did the
lifting, assuming there were 1000 of them and they consumed
food energy at the rate of 300 kcal/h. What does your answer
imply about how much of their work went into block-lifting,
versus how much work went into friction and lifting and
lowering their own bodies? (c) Calculate the mass of food that
had to be supplied each day, assuming that the average
worker required 3600 kcal per day and that their diet was 5%
protein, 60% carbohydrate, and 35% fat. (These proportions
neglect the mass of bulk and nondigestible materials
consumed.)

Figure 7.45 Ancient pyramids were probably constructed using ramps
as simple machines. (credit: Franck Monnier, Wikimedia Commons)

59. (a) How long can you play tennis on the 800 kJ (about
200 kcal) of energy in a candy bar? (b) Does this seem like a

long time? Discuss why exercise is necessary but may not be
sufficient to cause a person to lose weight.

7.9 World Energy Use
60. Integrated Concepts

(a) Calculate the force the woman in Figure 7.46 exerts to do
a push-up at constant speed, taking all data to be known to
three digits. (b) How much work does she do if her center of
mass rises 0.240 m? (c) What is her useful power output if
she does 25 push-ups in 1 min? (Should work done lowering
her body be included? See the discussion of useful work in
Work, Energy, and Power in Humans.

Figure 7.46 Forces involved in doing push-ups. The woman’s weight
acts as a force exerted downward on her center of gravity (CG).

61. Integrated Concepts

A 75.0-kg cross-country skier is climbing a 3.0º slope at a
constant speed of 2.00 m/s and encounters air resistance of
25.0 N. Find his power output for work done against the
gravitational force and air resistance. (b) What average force
does he exert backward on the snow to accomplish this? (c) If
he continues to exert this force and to experience the same
air resistance when he reaches a level area, how long will it
take him to reach a velocity of 10.0 m/s?

62. Integrated Concepts

The 70.0-kg swimmer in Figure 7.44 starts a race with an
initial velocity of 1.25 m/s and exerts an average force of 80.0
N backward with his arms during each 1.80 m long stroke. (a)
What is his initial acceleration if water resistance is 45.0 N?
(b) What is the subsequent average resistance force from the
water during the 5.00 s it takes him to reach his top velocity of
2.50 m/s? (c) Discuss whether water resistance seems to
increase linearly with velocity.

63. Integrated Concepts

A toy gun uses a spring with a force constant of 300 N/m to
propel a 10.0-g steel ball. If the spring is compressed 7.00 cm
and friction is negligible: (a) How much force is needed to
compress the spring? (b) To what maximum height can the
ball be shot? (c) At what angles above the horizontal may a
child aim to hit a target 3.00 m away at the same height as
the gun? (d) What is the gun’s maximum range on level
ground?

64. Integrated Concepts

(a) What force must be supplied by an elevator cable to

produce an acceleration of 0.800 m/s2 against a 200-N
frictional force, if the mass of the loaded elevator is 1500 kg?
(b) How much work is done by the cable in lifting the elevator
20.0 m? (c) What is the final speed of the elevator if it starts
from rest? (d) How much work went into thermal energy?

65. Unreasonable Results

A car advertisement claims that its 900-kg car accelerated
from rest to 30.0 m/s and drove 100 km, gaining 3.00 km in
altitude, on 1.0 gal of gasoline. The average force of friction
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including air resistance was 700 N. Assume all values are
known to three significant figures. (a) Calculate the car’s
efficiency. (b) What is unreasonable about the result? (c)
Which premise is unreasonable, or which premises are
inconsistent?

66. Unreasonable Results

Body fat is metabolized, supplying 9.30 kcal/g, when dietary
intake is less than needed to fuel metabolism. The
manufacturers of an exercise bicycle claim that you can lose
0.500 kg of fat per day by vigorously exercising for 2.00 h per
day on their machine. (a) How many kcal are supplied by the
metabolization of 0.500 kg of fat? (b) Calculate the kcal/min
that you would have to utilize to metabolize fat at the rate of
0.500 kg in 2.00 h. (c) What is unreasonable about the
results? (d) Which premise is unreasonable, or which
premises are inconsistent?

67. Construct Your Own Problem

Consider a person climbing and descending stairs. Construct
a problem in which you calculate the long-term rate at which
stairs can be climbed considering the mass of the person, his
ability to generate power with his legs, and the height of a
single stair step. Also consider why the same person can
descend stairs at a faster rate for a nearly unlimited time in
spite of the fact that very similar forces are exerted going
down as going up. (This points to a fundamentally different
process for descending versus climbing stairs.)

68. Construct Your Own Problem

Consider humans generating electricity by pedaling a device
similar to a stationary bicycle. Construct a problem in which
you determine the number of people it would take to replace a
large electrical generation facility. Among the things to
consider are the power output that is reasonable using the
legs, rest time, and the need for electricity 24 hours per day.
Discuss the practical implications of your results.

69. Integrated Concepts

A 105-kg basketball player crouches down 0.400 m while
waiting to jump. After exerting a force on the floor through this
0.400 m, his feet leave the floor and his center of gravity rises
0.950 m above its normal standing erect position. (a) Using
energy considerations, calculate his velocity when he leaves
the floor. (b) What average force did he exert on the floor?
(Do not neglect the force to support his weight as well as that
to accelerate him.) (c) What was his power output during the
acceleration phase?

Test Prep for AP® Courses

7.1 Work: The Scientific Definition
1. Given Table 7.7 about how much force does the rocket
engine exert on the 3.0-kg payload?

Table 7.7

Distance traveled with rocket
engine firing (m)

Payload final
velocity (m/s)

500 310

490 300

1020 450

505 312

a. 150 N
b. 300 N

c. 450 N
d. 600 N

2. You have a cart track, a cart, several masses, and a
position-sensing pulley. Design an experiment to examine
how the force exerted on the cart does work as it moves
through a distance.

3. Look at Figure 7.10(c). You compress a spring by x, and
then release it. Next you compress the spring by 2x. How
much more work did you do the second time than the first?

a. Half as much
b. The same
c. Twice as much
d. Four times as much

4. You have a cart track, two carts, several masses, a
position-sensing pulley, and a piece of carpet (a rough
surface) that will fit over the track. Design an experiment to
examine how the force exerted on the cart does work as the
cart moves through a distance.

Chapter 7 | Work, Energy, and Energy Resources 311



5. A crane is lifting construction materials from the ground to
an elevation of 60 m. Over the first 10 m, the motor linearly
increases the force it exerts from 0 to 10 kN. It exerts that
constant force for the next 40 m, and then winds down to 0 N
again over the last 10 m, as shown in the figure. What is the
total work done on the construction materials?

Figure 7.47
a. 500 kJ
b. 600 kJ
c. 300 kJ
d. 18 MJ

7.2 Kinetic Energy and the Work-Energy
Theorem
6. A toy car is going around a loop-the-loop. Gravity ____ the
kinetic energy on the upward side of the loop, ____ the kinetic
energy at the top, and ____ the kinetic energy on the
downward side of the loop.

a. increases, decreases, has no effect on
b. decreases, has no effect on, increases
c. increases, has no effect on, decreases
d. decreases, increases, has no effect on

7. A roller coaster is set up with a track in the form of a
perfect cosine. Describe and graph what happens to the
kinetic energy of a cart as it goes through the first full period
of the track.

8. If wind is blowing horizontally toward a car with an angle of
30 degrees from the direction of travel, the kinetic energy will
____. If the wind is blowing at a car at 135 degrees from the
direction of travel, the kinetic energy will ____.

a. increase, increase
b. increase, decrease
c. decrease, increase
d. decrease, decrease

9. In what direction relative to the direction of travel can a
force act on a car (traveling on level ground), and not change
the kinetic energy? Can you give examples of such forces?

10. A 2000-kg airplane is coming in for a landing, with a
velocity 5 degrees below the horizontal and a drag force of 40
kN acting directly rearward. Kinetic energy will ____ due to
the net force of ____.

a. increase, 20 kN
b. decrease, 40 kN
c. increase, 45 kN
d. decrease, 45 kN

11. You are participating in the Iditarod, and your sled dogs
are pulling you across a frozen lake with a force of 1200 N
while a 300 N wind is blowing at you at 135 degrees from
your direction of travel. What is the net force, and will your
kinetic energy increase or decrease?

12. A model drag car is being accelerated along its track from
rest by a motor with a force of 75 N, but there is a drag force
of 30 N due to the track. What is the kinetic energy after 2 m
of travel?

a. 90 J

b. 150 J
c. 210 J
d. 60 J

13. You are launching a 2-kg potato out of a potato cannon.
The cannon is 1.5 m long and is aimed 30 degrees above the
horizontal. It exerts a 50 N force on the potato. What is the
kinetic energy of the potato as it leaves the muzzle of the
potato cannon?

14. When the force acting on an object is parallel to the
direction of the motion of the center of mass, the mechanical
energy ____. When the force acting on an object is
antiparallel to the direction of the center of mass, the
mechanical energy ____.

a. increases, increases
b. increases, decreases
c. decreases, increases
d. decreases, decreases

15. Describe a system in which the main forces acting are
parallel or antiparallel to the center of mass, and justify your
answer.

16. A child is pulling two red wagons, with the second one
tied to the first by a (non-stretching) rope. Each wagon has a
mass of 10 kg. If the child exerts a force of 30 N for 5.0 m,
how much has the kinetic energy of the two-wagon system
changed?

a. 300 J
b. 150 J
c. 75 J
d. 60 J

17. A child has two red wagons, with the rear one tied to the
front by a (non-stretching) rope. If the child pushes on the
rear wagon, what happens to the kinetic energy of each of the
wagons, and the two-wagon system?

18. Draw a graph of the force parallel to displacement exerted
on a stunt motorcycle going through a loop-the-loop versus
the distance traveled around the loop. Explain the net change
in energy.

7.3 Gravitational Potential Energy
19. A 1.0 kg baseball is flying at 10 m/s. How much kinetic
energy does it have? Potential energy?

a. 10 J, 20 J
b. 50 J, 20 J
c. unknown, 50 J
d. 50 J, unknown

20. A 2.0-kg potato has been launched out of a potato cannon
at 9.0 m/s. What is the kinetic energy? If you then learn that it
is 4.0 m above the ground, what is the total mechanical
energy relative to the ground?

a. 78 J, 3 J
b. 160 J, 81 J
c. 81 J, 160 J
d. 81 J, 3 J

21. You have a 120-g yo-yo that you are swinging at 0.9 m/s.
How much energy does it have? How high can it get above
the lowest point of the swing without your doing any additional
work, on Earth? How high could it get on the Moon, where
gravity is 1/6 Earth’s?

7.4 Conservative Forces and Potential Energy
22. Two 4.0 kg masses are connected to each other by a
spring with a force constant of 25 N/m and a rest length of 1.0
m. If the spring has been compressed to 0.80 m in length and
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the masses are traveling toward each other at 0.50 m/s
(each), what is the total energy in the system?

a. 1.0 J
b. 1.5 J
c. 9.0 J
d. 8.0 J

23. A spring with a force constant of 5000 N/m and a rest
length of 3.0 m is used in a catapult. When compressed to 1.0
m, it is used to launch a 50 kg rock. However, there is an
error in the release mechanism, so the rock gets launched
almost straight up. How high does it go, and how fast is it
going when it hits the ground?

24. What information do you need to calculate the kinetic
energy and potential energy of a spring? Potential energy due
to gravity? How many objects do you need information about
for each of these cases?

25. You are loading a toy dart gun, which has two settings,
the more powerful with the spring compressed twice as far as
the lower setting. If it takes 5.0 J of work to compress the dart
gun to the lower setting, how much work does it take for the
higher setting?

a. 20 J
b. 10 J
c. 2.5 J
d. 40 J

26. Describe a system you use daily with internal potential
energy.

27. Old-fashioned pendulum clocks are powered by masses
that need to be wound back to the top of the clock about once
a week to counteract energy lost due to friction and to the
chimes. One particular clock has three masses: 4.0 kg, 4.0
kg, and 6.0 kg. They can drop 1.3 meters. How much energy
does the clock use in a week?

a. 51 J
b. 76 J
c. 127 J
d. 178 J

28. A water tower stores not only water, but (at least part of)
the energy to move the water. How much? Make reasonable
estimates for how much water is in the tower, and other
quantities you need.

29. Old-fashioned pocket watches needed to be wound daily
so they wouldn’t run down and lose time, due to the friction in
the internal components. This required a large number of
turns of the winding key, but not much force per turn, and it
was possible to overwind and break the watch. How was the
energy stored?

a. A small mass raised a long distance
b. A large mass raised a short distance
c. A weak spring deformed a long way
d. A strong spring deformed a short way

30. Some of the very first clocks invented in China were
powered by water. Describe how you think this was done.

7.5 Nonconservative Forces
31. You are in a room in a basement with a smooth concrete
floor (friction force equals 40 N) and a nice rug (friction force
equals 55 N) that is 3 m by 4 m. However, you have to push a
very heavy box from one corner of the rug to the opposite
corner of the rug. Will you do more work against friction going
around the floor or across the rug, and how much extra?

a. Across the rug is 275 J extra
b. Around the floor is 5 J extra
c. Across the rug is 5 J extra

d. Around the floor is 280 J extra

32. In the Appalachians, along the interstate, there are ramps
of loose gravel for semis that have had their brakes fail to
drive into to stop. Design an experiment to measure how
effective this would be.

7.6 Conservation of Energy
33. You do 30 J of work to load a toy dart gun. However, the
dart is 10 cm long and feels a frictional force of 10 N while
going through the dart gun’s barrel. What is the kinetic energy
of the fired dart?

a. 30 J
b. 29 J
c. 28 J
d. 27 J

34. When an object is lifted by a crane, it begins and ends its
motion at rest. The same is true of an object pushed across a
rough surface. Explain why this happens. What are the
differences between these systems?

35. A child has two red wagons, with the rear one tied to the
front by a stretchy rope (a spring). If the child pulls on the
front wagon, the ____ increases.

a. kinetic energy of the wagons
b. potential energy stored in the spring
c. both A and B
d. not enough information

36. A child has two red wagons, with the rear one tied to the
front by a stretchy rope (a spring). If the child pulls on the
front wagon, the energy stored in the system increases. How
do the relative amounts of potential and kinetic energy in this
system change over time?

37. Which of the following are closed systems?
a. Earth
b. a car
c. a frictionless pendulum
d. a mass on a spring in a vacuum

38. Describe a real-world example of a closed system.

39. A 5.0-kg rock falls off of a 10 m cliff. If air resistance
exerts a force of 10 N, what is the kinetic energy when the
rock hits the ground?

a. 400 J
b. 12.6 m/s
c. 100 J
d. 500 J

40. Hydroelectricity is generated by storing water behind a
dam, and then letting some of it run through generators in the
dam to turn them. If the system is the water, what is the
environment that is doing work on it? If a dam has water 100
m deep behind it, how much energy was generated if 10,000
kg of water exited the dam at 2.0 m/s?

41. Before railroads were invented, goods often traveled
along canals, with mules pulling barges from the bank. If a
mule is exerting a 1200 N force for 10 km, and the rope
connecting the mule to the barge is at a 20 degree angle from
the direction of travel, how much work did the mule do on the
barge?

a. 12 MJ
b. 11 MJ
c. 4.1 MJ
d. 6 MJ

42. Describe an instance today in which you did work, by the
scientific definition. Then calculate how much work you did in
that instance, showing your work.
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8 LINEAR MOMENTUM AND COLLISIONS

Figure 8.1 Each rugby player has great momentum, which will affect the outcome of their collisions with each other and the ground. (credit: ozzzie,
Flickr)

Chapter Outline
8.1. Linear Momentum and Force

8.2. Impulse

8.3. Conservation of Momentum

8.4. Elastic Collisions in One Dimension

8.5. Inelastic Collisions in One Dimension

8.6. Collisions of Point Masses in Two Dimensions

8.7. Introduction to Rocket Propulsion

Connection for AP® courses
In this chapter, you will learn about the concept of momentum and the relationship between momentum and force (both vector
quantities) applied over a time interval. Have you ever considered why a glass dropped on a tile floor will often break, but a glass
dropped on carpet will often remain intact? Both involve changes in momentum, but the actual collision with the floor is different
in each case, just as an automobile collision without the benefit of an airbag can have a significantly different outcome than one
with an airbag.

You will learn that the interaction of objects (like a glass and the floor or two automobiles) results in forces, which in turn result in
changes in the momentum of each object. At the same time, you will see how the law of momentum conservation can be applied
to a system to help determine the outcome of a collision.

The content in this chapter supports:

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.D A force exerted on an object can change the momentum of the object.

Essential Knowledge 3.D.2 The change in momentum of an object occurs over a time interval.

Big Idea 4: Interactions between systems can result in changes in those systems.

Enduring Understanding 4.B Interactions with other objects or systems can change the total linear momentum of a system.

Essential Knowledge 4.B.1 The change in linear momentum for a constant-mass system is the product of the mass of the system
and the change in velocity of the center of mass.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.A Certain quantities are conserved, in the sense that the changes of those quantities in a given
system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.
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Essential Knowledge 5.A.2 For all systems under all circumstances, energy, charge, linear momentum, and angular momentum
are conserved.

Essential Knowledge 5.D.1 In a collision between objects, linear momentum is conserved. In an elastic collision, kinetic energy is
the same before and after.

Essential Knowledge 5.D.2 In a collision between objects, linear momentum is conserved. In an inelastic collision, kinetic energy
is not the same before and after the collision.

8.1 Linear Momentum and Force

Learning Objectives
By the end of this section, you will be able to:

• Define linear momentum.
• Explain the relationship between linear momentum and force.
• State Newton’s second law of motion in terms of linear momentum.
• Calculate linear momentum given mass and velocity.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.D.1.1 The student is able to justify the selection of data needed to determine the relationship between the direction of
the force acting on an object and the change in momentum caused by that force. (S.P. 4.1)

Linear Momentum
The scientific definition of linear momentum is consistent with most people’s intuitive understanding of momentum: a large, fast-
moving object has greater momentum than a smaller, slower object. Linear momentum is defined as the product of a system’s
mass multiplied by its velocity. In symbols, linear momentum is expressed as

(8.1)p = v.

Momentum is directly proportional to the object’s mass and also its velocity. Thus the greater an object’s mass or the greater its
velocity, the greater its momentum. Momentum p is a vector having the same direction as the velocity v . The SI unit for

momentum is kg · m/s .

Linear Momentum

Linear momentum is defined as the product of a system’s mass multiplied by its velocity:

(8.2)p = v.

Example 8.1 Calculating Momentum: A Football Player and a Football

(a) Calculate the momentum of a 110-kg football player running at 8.00 m/s. (b) Compare the player’s momentum with the
momentum of a hard-thrown 0.410-kg football that has a speed of 25.0 m/s.

Strategy

No information is given regarding direction, and so we can calculate only the magnitude of the momentum, . (As usual, a

symbol that is in italics is a magnitude, whereas one that is italicized, boldfaced, and has an arrow is a vector.) In both parts
of this example, the magnitude of momentum can be calculated directly from the definition of momentum given in the
equation, which becomes

(8.3)=

when only magnitudes are considered.

Solution for (a)

To determine the momentum of the player, substitute the known values for the player’s mass and speed into the equation.

(8.4)
player = 110 kg (8.00 m/s) = 880 kg · m/s

Solution for (b)

To determine the momentum of the ball, substitute the known values for the ball’s mass and speed into the equation.

(8.5)
ball = 0.410 kg (25.0 m/s) = 10.3 kg · m/s

The ratio of the player’s momentum to that of the ball is
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(8.6)player

ball
= 880

10.3
= 85.9.

Discussion

Although the ball has greater velocity, the player has a much greater mass. Thus the momentum of the player is much
greater than the momentum of the football, as you might guess. As a result, the player’s motion is only slightly affected if he
catches the ball. We shall quantify what happens in such collisions in terms of momentum in later sections.

Momentum and Newton’s Second Law
The importance of momentum, unlike the importance of energy, was recognized early in the development of classical physics.
Momentum was deemed so important that it was called the “quantity of motion.” Newton actually stated his second law of
motion in terms of momentum: The net external force equals the change in momentum of a system divided by the time over
which it changes. Using symbols, this law is

(8.7)
Fnet =

Δp

Δ

where Fnet is the net external force, Δp is the change in momentum, and Δ is the change in time.

Newton’s Second Law of Motion in Terms of Momentum

The net external force equals the change in momentum of a system divided by the time over which it changes.

(8.8)
Fnet =

Δp

Δ

Making Connections: Force and Momentum

Force and momentum are intimately related. Force acting over time can change momentum, and Newton’s second law of
motion, can be stated in its most broadly applicable form in terms of momentum. Momentum continues to be a key concept
in the study of atomic and subatomic particles in quantum mechanics.

This statement of Newton’s second law of motion includes the more familiar Fnet = a as a special case. We can derive this

form as follows. First, note that the change in momentum Δp is given by

(8.9)Δp = Δ v .

If the mass of the system is constant, then

(8.10)Δ( v) = Δv.

So that for constant mass, Newton’s second law of motion becomes

(8.11)
Fnet =

Δp

Δ
= Δv

Δ
.

Because Δv

Δ
= a , we get the familiar equation

(8.12)Fnet = a

when the mass of the system is constant.

Newton’s second law of motion stated in terms of momentum is more generally applicable because it can be applied to systems
where the mass is changing, such as rockets, as well as to systems of constant mass. We will consider systems with varying
mass in some detail; however, the relationship between momentum and force remains useful when mass is constant, such as in
the following example.

Example 8.2 Calculating Force: Venus Williams’ Racquet

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed
of 58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’ racquet, assuming
that the ball’s speed just after impact is 58 m/s, that the initial horizontal component of the velocity before impact is
negligible, and that the ball remained in contact with the racquet for 5.0 ms (milliseconds)?

Strategy
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This problem involves only one dimension because the ball starts from having no horizontal velocity component before
impact. Newton’s second law stated in terms of momentum is then written as

(8.13)
Fnet =

Δp

Δ
.

As noted above, when mass is constant, the change in momentum is given by

(8.14)Δ = Δ = ( f − i).

In this example, the velocity just after impact and the change in time are given; thus, once Δ is calculated, net =
Δ

Δ

can be used to find the force.

Solution

To determine the change in momentum, substitute the values for the initial and final velocities into the equation above.

(8.15)Δ = ( f – i)

= 0.057 kg (58 m/s – 0 m/s)

= 3.306 kg · m/s ≈ 3.3 kg · m/s

Now the magnitude of the net external force can determined by using net =
Δ

Δ
:

(8.16)
net =

Δ

Δ
=

3.306 kg ⋅ m/s

5.0×10−3 s

= 661 N ≈ 660 N,

where we have retained only two significant figures in the final step.

Discussion

This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact (note that
the ball also experienced the 0.56-N force of gravity, but that force was not due to the racquet). This problem could also be
solved by first finding the acceleration and then using net = , but one additional step would be required compared with

the strategy used in this example.

Making Connections: Illustrative Example

Figure 8.2 A puck has an elastic, glancing collision with the edge of an air hockey table.

In Figure 8.2, a puck is shown colliding with the edge of an air hockey table at a glancing angle. During the collision, the
edge of the table exerts a force F on the puck, and the velocity of the puck changes as a result of the collision. The change
in momentum is found by the equation:
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(8.17)Δp = Δv = v' - v = (v' + ( - v))

As shown, the direction of the change in velocity is the same as the direction of the change in momentum, which in turn is in
the same direction as the force exerted by the edge of the table. Note that there is only a horizontal change in velocity. There
is no difference in the vertical components of the initial and final velocity vectors; therefore, there is no vertical component to
the change in velocity vector or the change in momentum vector. This is consistent with the fact that the force exerted by the
edge of the table is purely in the horizontal direction.

8.2 Impulse

Learning Objectives
By the end of this section, you will be able to:

• Define impulse.
• Describe effects of impulses in everyday life.
• Determine the average effective force using graphical representation.
• Calculate average force and impulse given mass, velocity, and time.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.D.2.1 The student is able to justify the selection of routines for the calculation of the relationships between changes in
momentum of an object, average force, impulse, and time of interaction. (S.P. 2.1)

• 3.D.2.2 The student is able to predict the change in momentum of an object from the average force exerted on the
object and the interval of time during which the force is exerted. (S.P. 6.4)

• 3.D.2.3 The student is able to analyze data to characterize the change in momentum of an object from the average
force exerted on the object and the interval of time during which the force is exerted. (S.P. 5.1)

• 3.D.2.4 The student is able to design a plan for collecting data to investigate the relationship between changes in
momentum and the average force exerted on an object over time. (S.P. 4.1)

• 4.B.2.1 The student is able to apply mathematical routines to calculate the change in momentum of a system by
analyzing the average force exerted over a certain time on the system. (S.P. 2.2)

• 4.B.2.2 The student is able to perform analysis on data presented as a force-time graph and predict the change in
momentum of a system. (S.P. 5.1)

The effect of a force on an object depends on how long it acts, as well as how great the force is. In Example 8.1, a very large
force acting for a short time had a great effect on the momentum of the tennis ball. A small force could cause the same change
in momentum, but it would have to act for a much longer time. For example, if the ball were thrown upward, the gravitational
force (which is much smaller than the tennis racquet’s force) would eventually reverse the momentum of the ball. Quantitatively,
the effect we are talking about is the change in momentum Δp .

By rearranging the equation Fnet =
Δp

Δ
to be

(8.18)Δp = FnetΔ ,

we can see how the change in momentum equals the average net external force multiplied by the time this force acts. The
quantity Fnet Δ is given the name impulse. Impulse is the same as the change in momentum.

Impulse: Change in Momentum

Change in momentum equals the average net external force multiplied by the time this force acts.

(8.19)Δp = FnetΔ

The quantity Fnet Δ is given the name impulse.

There are many ways in which an understanding of impulse can save lives, or at least limbs. The dashboard padding in a
car, and certainly the airbags, allow the net force on the occupants in the car to act over a much longer time when there is a
sudden stop. The momentum change is the same for an occupant, whether an air bag is deployed or not, but the force (to
bring the occupant to a stop) will be much less if it acts over a larger time. Cars today have many plastic components. One
advantage of plastics is their lighter weight, which results in better gas mileage. Another advantage is that a car will crumple
in a collision, especially in the event of a head-on collision. A longer collision time means the force on the car will be less.
Deaths during car races decreased dramatically when the rigid frames of racing cars were replaced with parts that could
crumple or collapse in the event of an accident.

Bones in a body will fracture if the force on them is too large. If you jump onto the floor from a table, the force on your legs
can be immense if you land stiff-legged on a hard surface. Rolling on the ground after jumping from the table, or landing with
a parachute, extends the time over which the force (on you from the ground) acts.
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Making Connections: Illustrations of Force Exerted

Figure 8.3 This is a graph showing the force exerted by a fixed barrier on a block versus time.

A 1.2-kg block slides across a horizontal, frictionless surface with a constant speed of 3.0 m/s before striking a fixed barrier
and coming to a stop. In Figure 8.3, the force exerted by the barrier is assumed to be a constant 15 N during the 0.24-s
collision. The impulse can be calculated using the area under the curve.

(8.20)Δ = Δ = (15  N)(0.24  s) =  3.6  kg•m/s

Note that the initial momentum of the block is:

(8.21)= = (1.2  kg)( − 3.0  m/s) =  − 3.6 kg•m/s

We are assuming that the initial velocity is −3.0 m/s. We have established that the force exerted by the barrier is in the
positive direction, so the initial velocity of the block must be in the negative direction. Since the final momentum of the block
is zero, the impulse is equal to the change in momentum of the block.

Suppose that, instead of striking a fixed barrier, the block is instead stopped by a spring.Consider the force exerted by the
spring over the time interval from the beginning of the collision until the block comes to rest.

Figure 8.4 This is a graph showing the force exerted by a spring on a block versus time.

In this case, the impulse can be calculated again using the area under the curve (the area of a triangle):

(8.22)
= 1

2
(base)(height) = 1

2
(0.24  s)(30  N) =  3.6  kg•m/s

Again, this is equal to the difference between the initial and final momentum of the block, so the impulse is equal to the
change in momentum.
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Example 8.3 Calculating Magnitudes of Impulses: Two Billiard Balls Striking a Rigid Wall

Two identical billiard balls strike a rigid wall with the same speed, and are reflected without any change of speed. The first
ball strikes perpendicular to the wall. The second ball strikes the wall at an angle of 30º from the perpendicular, and

bounces off at an angle of 30º from perpendicular to the wall.

(a) Determine the direction of the force on the wall due to each ball.

(b) Calculate the ratio of the magnitudes of impulses on the two balls by the wall.

Strategy for (a)

In order to determine the force on the wall, consider the force on the ball due to the wall using Newton’s second law and
then apply Newton’s third law to determine the direction. Assume the -axis to be normal to the wall and to be positive in
the initial direction of motion. Choose the -axis to be along the wall in the plane of the second ball’s motion. The

momentum direction and the velocity direction are the same.

Solution for (a)

The first ball bounces directly into the wall and exerts a force on it in the direction. Therefore the wall exerts a force on
the ball in the direction. The second ball continues with the same momentum component in the direction, but

reverses its -component of momentum, as seen by sketching a diagram of the angles involved and keeping in mind the
proportionality between velocity and momentum.

These changes mean the change in momentum for both balls is in the direction, so the force of the wall on each ball is
along the direction.

Strategy for (b)

Calculate the change in momentum for each ball, which is equal to the impulse imparted to the ball.

Solution for (b)

Let be the speed of each ball before and after collision with the wall, and the mass of each ball. Choose the -axis
and -axis as previously described, and consider the change in momentum of the first ball which strikes perpendicular to

the wall.

(8.23)
xi = ; yi = 0

(8.24)
xf = − ; yf = 0

Impulse is the change in momentum vector. Therefore the -component of impulse is equal to −2 and the -

component of impulse is equal to zero.

Now consider the change in momentum of the second ball.

(8.25)
xi = cos 30º; yi = sin 30º

(8.26)
xf = – cos 30º; yf = − sin 30º

It should be noted here that while x changes sign after the collision, y does not. Therefore the -component of

impulse is equal to −2 cos 30º and the -component of impulse is equal to zero.

The ratio of the magnitudes of the impulse imparted to the balls is

(8.27)2
2 cos 30º

= 2
3

= 1.155.

Discussion

The direction of impulse and force is the same as in the case of (a); it is normal to the wall and along the negative
-direction. Making use of Newton’s third law, the force on the wall due to each ball is normal to the wall along the positive
-direction.

Our definition of impulse includes an assumption that the force is constant over the time interval Δ . Forces are usually not

constant. Forces vary considerably even during the brief time intervals considered. It is, however, possible to find an average
effective force eff that produces the same result as the corresponding time-varying force. Figure 8.5 shows a graph of what

an actual force looks like as a function of time for a ball bouncing off the floor. The area under the curve has units of momentum
and is equal to the impulse or change in momentum between times 1 and 2 . That area is equal to the area inside the
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rectangle bounded by eff , 1 , and 2 . Thus the impulses and their effects are the same for both the actual and effective

forces.

Figure 8.5 A graph of force versus time with time along the -axis and force along the -axis for an actual force and an equivalent effective force.

The areas under the two curves are equal.

Making Connections: Baseball

In most real-life collisions, the forces acting on an object are not constant. For example, when a bat strikes a baseball, the
force is very small at the beginning of the collision since only a small portion of the ball is initially in contact with the bat. As
the collision continues, the ball deforms so that a greater fraction of the ball is in contact with the bat, resulting in a greater
force. As the ball begins to leave the bat, the force drops to zero, much like the force curve in Figure 8.5. Although the
changing force is difficult to precisely calculate at each instant, the average force can be estimated very well in most cases.

Suppose that a 150-g baseball experiences an average force of 480 N in a direction opposite the initial 32 m/s speed of the
baseball over a time interval of 0.017 s. What is the final velocity of the baseball after the collision?

(8.28)Δ = Δ = (480)(0.017) =  8.16  kg•m/s

(8.29)− = 8.16  kg • m/s

(8.30)(0.150 kg) − (0.150 kg)( − 32 m/s) = 8.16  kg • m/s

(8.31)= 22 m/s

Note in the above example that the initial velocity of the baseball prior to the collision is negative, consistent with the
assumption we initially made that the force exerted by the bat is positive and in the direction opposite the initial velocity of
the baseball. In this case, even though the force acting on the baseball varies with time, the average force is a good
approximation of the effective force acting on the ball for the purposes of calculating the impulse and the change in
momentum.

Making Connections: Take-Home Investigation—Hand Movement and Impulse

Try catching a ball while “giving” with the ball, pulling your hands toward your body. Then, try catching a ball while keeping
your hands still. Hit water in a tub with your full palm. After the water has settled, hit the water again by diving your hand with
your fingers first into the water. (Your full palm represents a swimmer doing a belly flop and your diving hand represents a
swimmer doing a dive.) Explain what happens in each case and why. Which orientations would you advise people to avoid
and why?

Making Connections: Constant Force and Constant Acceleration

The assumption of a constant force in the definition of impulse is analogous to the assumption of a constant acceleration in
kinematics. In both cases, nature is adequately described without the use of calculus.

Applying the Science Practices: Verifying the Relationship between Force and Change in Linear Momentum

Design an experiment in order to experimentally verify the relationship between the impulse of a force and change in linear
momentum. For simplicity, it would be best to ensure that frictional forces are very small or zero in your experiment so that
the effect of friction can be neglected. As you design your experiment, consider the following:

• Would it be easier to analyze a one-dimensional collision or a two-dimensional collision?
• How will you measure the force?
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• Should you have two objects in motion or one object bouncing off a rigid surface?
• How will you measure the duration of the collision?
• How will you measure the initial and final velocities of the object(s)?
• Would it be easier to analyze an elastic or inelastic collision?
• Should you verify the relationship mathematically or graphically?

8.3 Conservation of Momentum

Learning Objectives
By the end of this section, you will be able to:

• Describe the law of conservation of linear momentum.
• Derive an expression for the conservation of momentum.
• Explain conservation of momentum with examples.
• Explain the law of conservation of momentum as it relates to atomic and subatomic particles.

The information presented in this section supports the following AP® learning objectives and science practices:

• 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts
for energy, charge, and linear momentum to those situations. (S.P. 6.4, 7.2)

• 5.D.1.4 The student is able to design an experimental test of an application of the principle of the conservation of linear
momentum, predict an outcome of the experiment using the principle, analyze data generated by that experiment
whose uncertainties are expressed numerically, and evaluate the match between the prediction and the outcome. (S.P.
4.2, 5.1, 5.3, 6.4)

• 5.D.2.1 The student is able to qualitatively predict, in terms of linear momentum and kinetic energy, how the outcome of
a collision between two objects changes depending on whether the collision is elastic or inelastic. (S.P. 6.4, 7.2)

• 5.D.2.2 The student is able to plan data collection strategies to test the law of conservation of momentum in a two-
object collision that is elastic or inelastic and analyze the resulting data graphically. (S.P.4.1, 4.2, 5.1)

• 5.D.3.1 The student is able to predict the velocity of the center of mass of a system when there is no interaction outside
of the system but there is an interaction within the system (i.e., the student simply recognizes that interactions within a
system do not affect the center of mass motion of the system and is able to determine that there is no external force).
(S.P. 6.4)

Momentum is an important quantity because it is conserved. Yet it was not conserved in the examples in Impulse and Linear
Momentum and Force, where large changes in momentum were produced by forces acting on the system of interest. Under
what circumstances is momentum conserved?

The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which
total momentum is constant, even if momentum changes for components of the system. If a football player runs into the goalpost
in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils —conserving
momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude more massive
than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and
Earth—for example, one car bumping into another, as shown in Figure 8.6. Both cars are coasting in the same direction when
the lead car (labeled 2) is bumped by the trailing car (labeled 1). The only unbalanced force on each car is the force of the

collision. (Assume that the effects due to friction are negligible.) Car 1 slows down as a result of the collision, losing some
momentum, while car 2 speeds up and gains some momentum. We shall now show that the total momentum of the two-car
system remains constant.
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Figure 8.6 A car of mass 1 moving with a velocity of 1 bumps into another car of mass 2 and velocity 2 that it is following. As a result, the

first car slows down to a velocity of v′1 and the second speeds up to a velocity of v′2 . The momentum of each car is changed, but the total

momentum tot of the two cars is the same before and after the collision (if you assume friction is negligible).

Using the definition of impulse, the change in momentum of car 1 is given by

(8.32)Δ 1 = 1Δ ,

where 1 is the force on car 1 due to car 2, and Δ is the time the force acts (the duration of the collision). Intuitively, it seems

obvious that the collision time is the same for both cars, but it is only true for objects traveling at ordinary speeds. This
assumption must be modified for objects travelling near the speed of light, without affecting the result that momentum is
conserved.

Similarly, the change in momentum of car 2 is

(8.33)Δ 2 = 2Δ

where 2 is the force on car 2 due to car 1, and we assume the duration of the collision Δ is the same for both cars. We know

from Newton’s third law that 2 = – 1 , and so

(8.34)Δ 2 = − 1Δ = −Δ 1.

Thus, the changes in momentum are equal and opposite, and

(8.35)Δ 1 + Δ 2 = 0.

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

(8.36)1 + 2 = constant,

(8.37)
1 + 2 = ′1 + ′2,

where ′1 and ′2 are the momenta of cars 1 and 2 after the collision. (We often use primes to denote the final state.)

This result—that momentum is conserved—has validity far beyond the preceding one-dimensional case. It can be similarly
shown that total momentum is conserved for any isolated system, with any number of objects in it. In equation form, the
conservation of momentum principle for an isolated system is written

(8.38)ptot = constant,

or

(8.39)ptot = p′tot,
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where ptot is the total momentum (the sum of the momenta of the individual objects in the system) and p′tot is the total

momentum some time later. (The total momentum can be shown to be the momentum of the center of mass of the system.) An
isolated system is defined to be one for which the net external force is zero Fnet = 0 .

Conservation of Momentum Principle
(8.40)ptot = constant

ptot = p′tot (isolated system)

Isolated System

An isolated system is defined to be one for which the net external force is zero Fnet = 0 .

Making Connections: Cart Collisions

Consider two air carts with equal mass (m) on a linear track. The first cart moves with a speed v towards the second cart,
which is initially at rest. We will take the initial direction of motion of the first cart as the positive direction.

The momentum of the system will be conserved in the collision. If the collision is elastic, then the first cart will stop after the
collision. Conservation of momentum therefore tells us that the second cart will have a final velocity v after the collision in
the same direction as the initial velocity of the first cart.

The kinetic energy of the system will be conserved since the masses are equal and the final velocity of cart 2 is equal to the
initial velocity of cart 1. What would a graph of total momentum vs. time look like in this case? What would a graph of total
kinetic energy vs. time look like in this case?

Consider the center of mass of this system as the frame of reference. As cart 1 approaches cart 2, the center of mass
remains exactly halfway between the two carts. The center of mass moves toward the stationary cart 2 at a speed

2
. After

the collision, the center of mass continues moving in the same direction, away from (now stationary) cart 1 at a speed
2

.

How would a graph of center-of-mass velocity vs. time compare to a graph of momentum vs. time?

Suppose instead that the two carts move with equal speeds v in opposite directions towards the center of mass. Again, they
have an elastic collision, so after the collision, they exchange velocities (each cart moving in the opposite direction of its
initial motion with the same speed). As the two carts approach, the center of mass is exactly between the two carts, at the
point where they will collide. In this case, how would a graph of center-of-mass velocity vs. time compare to a graph of the
momentum of the system vs. time?

Let us return to the example where the first cart is moving with a speed v toward the second cart, initially at rest. Suppose
the second cart has some putty on one end so that, when the collision occurs, the two carts stick together in an inelastic
collision. In this case, conservation of momentum tells us that the final velocity of the two-cart system will be half the initial
velocity of the first cart, in the same direction as the first cart’s initial motion. Kinetic energy will not be conserved in this
case, however. Compared to the moving cart before the collision, the overall moving mass after the collision is doubled, but
the velocity is halved.

The initial kinetic energy of the system is:

(8.41)
= 1

2
2(1st cart)+0(2nd cart)=1

2
2

The final kinetic energy of the two carts (2m) moving together (at speed v/2) is:

(8.42)
= 1

2
(2 )

2

2

=1
4

2

What would a graph of total momentum vs. time look like in this case? What would a graph of total kinetic energy vs. time
look like in this case?

Consider the center of mass of this system. As cart 1 approaches cart 2, the center of mass remains exactly halfway
between the two carts. The center of mass moves toward the stationary cart 2 at a speed

2
. After the collision, the two

carts move together at a speed
2

. How would a graph of center-of-mass velocity vs. time compare to a graph of

momentum vs. time?

Suppose instead that the two carts move with equal speeds v in opposite directions towards the center of mass. They have
putty on the end of each cart so that they stick together after the collision. As the two carts approach, the center of mass is
exactly between the two carts, at the point where they will collide. In this case, how would a graph of center-of-mass velocity
vs. time compare to a graph of the momentum of the system vs. time?
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Perhaps an easier way to see that momentum is conserved for an isolated system is to consider Newton’s second law in terms of

momentum, Fnet =
Δptot

Δ
. For an isolated system, Fnet = 0 ; thus, Δptot = 0 , and ptot is constant.

We have noted that the three length dimensions in nature— , , and —are independent, and it is interesting to note that

momentum can be conserved in different ways along each dimension. For example, during projectile motion and where air
resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero and momentum is
unchanged. But along the vertical direction, the net vertical force is not zero and the momentum of the projectile is not
conserved. (See Figure 8.7.) However, if the momentum of the projectile-Earth system is considered in the vertical direction, we
find that the total momentum is conserved.

Figure 8.7 The horizontal component of a projectile’s momentum is conserved if air resistance is negligible, even in this case where a space probe
separates. The forces causing the separation are internal to the system, so that the net external horizontal force – net is still zero. The vertical

component of the momentum is not conserved, because the net vertical force – net is not zero. In the vertical direction, the space probe-Earth

system needs to be considered and we find that the total momentum is conserved. The center of mass of the space probe takes the same path it would
if the separation did not occur.

The conservation of momentum principle can be applied to systems as different as a comet striking Earth and a gas containing
huge numbers of atoms and molecules. Conservation of momentum is violated only when the net external force is not zero. But
another larger system can always be considered in which momentum is conserved by simply including the source of the external
force. For example, in the collision of two cars considered above, the two-car system conserves momentum while each one-car
system does not.

Making Connections: Take-Home Investigation—Drop of Tennis Ball and a Basketball

Hold a tennis ball side by side and in contact with a basketball. Drop the balls together. (Be careful!) What happens? Explain
your observations. Now hold the tennis ball above and in contact with the basketball. What happened? Explain your
observations. What do you think will happen if the basketball ball is held above and in contact with the tennis ball?

Making Connections: Take-Home Investigation—Two Tennis Balls in a Ballistic Trajectory

Tie two tennis balls together with a string about a foot long. Hold one ball and let the other hang down and throw it in a
ballistic trajectory. Explain your observations. Now mark the center of the string with bright ink or attach a brightly colored
sticker to it and throw again. What happened? Explain your observations.

Some aquatic animals such as jellyfish move around based on the principles of conservation of momentum. A jellyfish fills its
umbrella section with water and then pushes the water out resulting in motion in the opposite direction to that of the jet of
water. Squids propel themselves in a similar manner but, in contrast with jellyfish, are able to control the direction in which
they move by aiming their nozzle forward or backward. Typical squids can move at speeds of 8 to 12 km/h.

The ballistocardiograph (BCG) was a diagnostic tool used in the second half of the 20th century to study the strength of the
heart. About once a second, your heart beats, forcing blood into the aorta. A force in the opposite direction is exerted on the
rest of your body (recall Newton’s third law). A ballistocardiograph is a device that can measure this reaction force. This
measurement is done by using a sensor (resting on the person) or by using a moving table suspended from the ceiling. This
technique can gather information on the strength of the heart beat and the volume of blood passing from the heart. However,
the electrocardiogram (ECG or EKG) and the echocardiogram (cardiac ECHO or ECHO; a technique that uses ultrasound to
see an image of the heart) are more widely used in the practice of cardiology.

326 Chapter 8 | Linear Momentum and Collisions

This content is available for free at http://cnx.org/content/col11844/1.13



Applying Science Practices: Verifying the Conservation of Linear Momentum

Design an experiment to verify the conservation of linear momentum in a one-dimensional collision, both elastic and
inelastic. For simplicity, try to ensure that friction is minimized so that it has a negligible effect on your experiment. As you
consider your experiment, consider the following questions:

• Predict how the final momentum of the system will compare to the initial momentum of the system that you will
measure. Justify your prediction.

• How will you measure the momentum of each object?
• Should you have two objects in motion or one object bouncing off a rigid surface?
• Should you verify the relationship mathematically or graphically?
• How will you estimate the uncertainty of your measurements? How will you express this uncertainty in your data?

When you have completed each experiment, compare the outcome to your prediction about the initial and final momentum
of the system and evaluate your results.

Making Connections: Conservation of Momentum and Collision

Conservation of momentum is quite useful in describing collisions. Momentum is crucial to our understanding of atomic and
subatomic particles because much of what we know about these particles comes from collision experiments.

Subatomic Collisions and Momentum
The conservation of momentum principle not only applies to the macroscopic objects, it is also essential to our explorations of
atomic and subatomic particles. Giant machines hurl subatomic particles at one another, and researchers evaluate the results by
assuming conservation of momentum (among other things).

On the small scale, we find that particles and their properties are invisible to the naked eye but can be measured with our
instruments, and models of these subatomic particles can be constructed to describe the results. Momentum is found to be a
property of all subatomic particles including massless particles such as photons that compose light. Momentum being a property
of particles hints that momentum may have an identity beyond the description of an object’s mass multiplied by the object’s
velocity. Indeed, momentum relates to wave properties and plays a fundamental role in what measurements are taken and how
we take these measurements. Furthermore, we find that the conservation of momentum principle is valid when considering
systems of particles. We use this principle to analyze the masses and other properties of previously undetected particles, such
as the nucleus of an atom and the existence of quarks that make up particles of nuclei. Figure 8.8 below illustrates how a
particle scattering backward from another implies that its target is massive and dense. Experiments seeking evidence that
quarks make up protons (one type of particle that makes up nuclei) scattered high-energy electrons off of protons (nuclei of
hydrogen atoms). Electrons occasionally scattered straight backward in a manner that implied a very small and very dense
particle makes up the proton—this observation is considered nearly direct evidence of quarks. The analysis was based partly on
the same conservation of momentum principle that works so well on the large scale.

Figure 8.8 A subatomic particle scatters straight backward from a target particle. In experiments seeking evidence for quarks, electrons were observed
to occasionally scatter straight backward from a proton.
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8.4 Elastic Collisions in One Dimension

Learning Objectives
By the end of this section, you will be able to:

• Describe an elastic collision of two objects in one dimension.
• Define internal kinetic energy.
• Derive an expression for conservation of internal kinetic energy in a one-dimensional collision.
• Determine the final velocities in an elastic collision given masses and initial velocities.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.B.1.1 The student is able to calculate the change in linear momentum of a two-object system with constant mass in
linear motion from a representation of the system (data, graphs, etc.). (S.P. 1.4, 2.2)

• 4.B.1.2 The student is able to analyze data to find the change in linear momentum for a constant-mass system using
the product of the mass and the change in velocity of the center of mass. (S.P. 5.1)

• 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts
for energy, charge, and linear momentum to those situations. (S.P. 6.4, 7.2)

• 5.D.1.1 The student is able to make qualitative predictions about natural phenomena based on conservation of linear
momentum and restoration of kinetic energy in elastic collisions. (S.P. 6.4, 7.2)

• 5.D.1.2 The student is able to apply the principles of conservation of momentum and restoration of kinetic energy to
reconcile a situation that appears to be isolated and elastic, but in which data indicate that linear momentum and kinetic
energy are not the same after the interaction, by refining a scientific question to identify interactions that have not been
considered. Students will be expected to solve qualitatively and/or quantitatively for one-dimensional situations and only
qualitatively in two-dimensional situations. (S.P. 2.2, 3.2, 5.1, 5.3)

• 5.D.1.5 The student is able to classify a given collision situation as elastic or inelastic, justify the selection of
conservation of linear momentum and restoration of kinetic energy as the appropriate principles for analyzing an elastic
collision, solve for missing variables, and calculate their values. (S.P. 2.1, 2.2)

• 5.D.1.6 The student is able to make predictions of the dynamical properties of a system undergoing a collision by
application of the principle of linear momentum conservation and the principle of the conservation of energy in
situations in which an elastic collision may also be assumed. (S.P. 6.4)

• 5.D.1.7 The student is able to classify a given collision situation as elastic or inelastic, justify the selection of
conservation of linear momentum and restoration of kinetic energy as the appropriate principles for analyzing an elastic
collision, solve for missing variables, and calculate their values. (S.P. 2.1, 2.2)

• 5.D.2.1 The student is able to qualitatively predict, in terms of linear momentum and kinetic energy, how the outcome of
a collision between two objects changes depending on whether the collision is elastic or inelastic. (S.P. 6.4, 7.2)

• 5.D.2.2 The student is able to plan data collection strategies to test the law of conservation of momentum in a two-
object collision that is elastic or inelastic and analyze the resulting data graphically. (S.P.4.1, 4.2, 5.1)

• 5.D.3.2 The student is able to make predictions about the velocity of the center of mass for interactions within a defined
one-dimensional system. (S.P. 6.4)

Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the
physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used
whenever the net external force on a system is zero.

We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision is
one that also conserves internal kinetic energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the
system. Figure 8.9 illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions
can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat
transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another
nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly
frictionless, more readily allowing nearly elastic collisions on them.

Elastic Collision

An elastic collision is one that conserves internal kinetic energy.

Internal Kinetic Energy

Internal kinetic energy is the sum of the kinetic energies of the objects in the system.
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Figure 8.9 An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for
conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for two
objects in a one-dimensional collision is

(8.43)
1 + 2 = ′1+ ′2 net = 0

or

(8.44)
1 1 + 2 2 = 1 ′1 + 2 ′2 net = 0 ,

where the primes (') indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so
the sum of kinetic energies before the collision equals the sum after the collision. Thus,

(8.45)1
2 1 1

2 + 1
2 2 2

2 = 1
2 1 ′1

2 + 1
2 2 ′2

2 (two-object elastic collision)

expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.

Making Connections: Collisions

Suppose data are collected on a collision between two masses sliding across a frictionless surface. Mass A (1.0 kg) moves
with a velocity of +12 m/s, and mass B (2.0 kg) moves with a velocity of −12 m/s. The two masses collide and stick together
after the collision. The table below shows the measured velocities of each mass at times before and after the collision:

Table 8.1

Time (s) Velocity A (m/s) Velocity B (m/s)

0 +12 −12

1.0 s +12 −12

2.0 s −4.0 −4.0

3.0 s −4.0 −4.0

The total mass of the system is 3.0 kg. The velocity of the center of mass of this system can be determined from the
conservation of momentum. Consider the system before the collision:

(8.46)( + ) = +

(8.47)(3.0) = (1)(12) + (2)( − 12)

(8.48)= − 4.0 m/s
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After the collision, the center-of-mass velocity is the same:

(8.49)( + ) = ( + )

(8.50)(3.0) = (3)( − 4.0)

(8.51)= − 4.0 m/s

The total momentum of the system before the collision is:

(8.52)+ = (1)(12) + (2)( − 12) = − 12 kg • m/s

The total momentum of the system after the collision is:

(8.53)( + ) = (3)( − 4) = − 12 kg • m/s

Thus, the change in momentum of the system is zero when measured this way. We get a similar result when we calculate
the momentum using the center-of-mass velocity. Since the center-of-mass velocity is the same both before and after the
collision, we calculate the same momentum for the system using this method both before and after the collision.

Example 8.4 Calculating Velocities Following an Elastic Collision

Calculate the velocities of two objects following an elastic collision, given that

(8.54)
1 = 0.500 kg, 2 = 3.50 kg, 1 = 4.00 m/s, and 2 = 0.

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is
slightly simpler than the situation shown in Figure 8.9 where both objects are initially moving. We are asked to find two
unknowns (the final velocities ′1 and ′2 ). To find two unknowns, we must use two independent equations. Because this

collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and
thus 2 = 0 . Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Solution

For this problem, note that 2 = 0 and use conservation of momentum. Thus,

(8.55)
1 = ′1 + ′2

or

(8.56)
1 1 = 1 ′1 + 2 ′2.

Using conservation of internal kinetic energy and that 2 = 0 ,

(8.57)1
2 1 1

2 = 1
2 1 ′1

2 + 1
2 2 ′2

2.

Solving the first equation (momentum equation) for ′2 , we obtain

(8.58)
′2 = 1

2 1 − ′1 .

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable ′2 , leaving

only ′1 as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic

equation; in this example, they are

(8.59)′1 = 4.00 m/s

and

(8.60)′1 = −3.00 m/s.

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In
this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the
collision and is discarded. The second solution ( ′1 = −3.00 m/s) is negative, meaning that the first object bounces

backward. When this negative value of ′1 is used to find the velocity of the second object after the collision, we get
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(8.61)
′2 = 1

2 1 − ′1 =
0.500 kg

3.50 kg
4.00 − (−3.00) m/s

or

(8.62)′2 = 1.00 m/s.

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The
larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is
initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the
internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it,
too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-
dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

Making Connections: Take-Home Investigation—Ice Cubes and Elastic Collision

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice
cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and
observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating
ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using
momentum.

PhET Explorations: Collision Lab

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial
conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Figure 8.10 Collision Lab (http://cnx.org/content/m55171/1.3/collision-lab_en.jar)

8.5 Inelastic Collisions in One Dimension

Learning Objectives
By the end of this section, you will be able to:

• Define inelastic collision.
• Explain perfectly inelastic collisions.
• Apply an understanding of collisions to sports.
• Determine recoil velocity and loss in kinetic energy given mass and initial velocity.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.B.1.1 The student is able to calculate the change in linear momentum of a two-object system with constant mass in
linear motion from a representation of the system (data, graphs, etc.). (S.P. 1.4, 2.2)

• 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts
for energy, charge, and linear momentum to those situations. (S.P. 6.4, 7.2)

• 5.D.1.3 The student is able to apply mathematical routines appropriately to problems involving elastic collisions in one
dimension and justify the selection of those mathematical routines based on conservation of momentum and restoration
of kinetic energy. (S.P. 2.1, 2.2)

• 5.D.1.5 The student is able to classify a given collision situation as elastic or inelastic, justify the selection of
conservation of linear momentum and restoration of kinetic energy as the appropriate principles for analyzing an elastic
collision, solve for missing variables, and calculate their values. (S.P. 2.1, 2.2)

• 5.D.2.1 The student is able to qualitatively predict, in terms of linear momentum and kinetic energy, how the outcome of
a collision between two objects changes depending on whether the collision is elastic or inelastic. (S.P. 6.4, 7.2)

• 5.D.2.2 The student is able to plan data collection strategies to test the law of conservation of momentum in a two-
object collision that is elastic or inelastic and analyze the resulting data graphically. (S.P.4.1, 4.2, 5.1)

• 5.D.2.3 The student is able to apply the conservation of linear momentum to a closed system of objects involved in an
inelastic collision to predict the change in kinetic energy. (S.P. 6.4, 7.2)
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• 5.D.2.4 The student is able to analyze data that verify conservation of momentum in collisions with and without an
external friction force. (S.P. 4.1, 4.2, 4.4, 5.1, 5.3)

• 5.D.2.5 The student is able to classify a given collision situation as elastic or inelastic, justify the selection of
conservation of linear momentum as the appropriate solution method for an inelastic collision, recognize that there is a
common final velocity for the colliding objects in the totally inelastic case, solve for missing variables, and calculate their
values. (S.P. 2.1 2.2)

• 5.D.2.6 The student is able to apply the conservation of linear momentum to an isolated system of objects involved in
an inelastic collision to predict the change in kinetic energy. (S.P. 6.4, 7.2)

We have seen that in an elastic collision, internal kinetic energy is conserved. An inelastic collision is one in which the internal
kinetic energy changes (it is not conserved). This lack of conservation means that the forces between colliding objects may
remove or add internal kinetic energy. Work done by internal forces may change the forms of energy within a system. For
inelastic collisions, such as when colliding objects stick together, this internal work may transform some internal kinetic energy
into heat transfer. Or it may convert stored energy into internal kinetic energy, such as when exploding bolts separate a satellite
from its launch vehicle.

Inelastic Collision

An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).

Figure 8.11 shows an example of an inelastic collision. Two objects that have equal masses head toward one another at equal

speeds and then stick together. Their total internal kinetic energy is initially 1
2

2 + 1
2

2 = 2 . The two objects come to

rest after sticking together, conserving momentum. But the internal kinetic energy is zero after the collision. A collision in which
the objects stick together is sometimes called a perfectly inelastic collision because it reduces internal kinetic energy more
than does any other type of inelastic collision. In fact, such a collision reduces internal kinetic energy to the minimum it can have
while still conserving momentum.

Perfectly Inelastic Collision

A collision in which the objects stick together is sometimes called “perfectly inelastic.”

Figure 8.11 An inelastic one-dimensional two-object collision. Momentum is conserved, but internal kinetic energy is not conserved. (a) Two objects of
equal mass initially head directly toward one another at the same speed. (b) The objects stick together (a perfectly inelastic collision), and so their final
velocity is zero. The internal kinetic energy of the system changes in any inelastic collision and is reduced to zero in this example.

Example 8.5 Calculating Velocity and Change in Kinetic Energy: Inelastic Collision of a Puck
and a Goalie

(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at
him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and
the puck-goalie system is negligible. (See Figure 8.12 )
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Figure 8.12 An ice hockey goalie catches a hockey puck and recoils backward. The initial kinetic energy of the puck is almost entirely converted
to thermal energy and sound in this inelastic collision.

Strategy

Momentum is conserved because the net external force on the puck-goalie system is zero. We can thus use conservation of
momentum to find the final velocity of the puck and goalie system. Note that the initial velocity of the goalie is zero and that
the final velocity of the puck and goalie are the same. Once the final velocity is found, the kinetic energies can be calculated
before and after the collision and compared as requested.

Solution for (a)

Momentum is conserved because the net external force on the puck-goalie system is zero.

Conservation of momentum is

(8.63)
1 + 2 = ′1 + ′2

or

(8.64)
1 1 + 2 2 = 1 ′1 + 2 ′2.

Because the goalie is initially at rest, we know 2 = 0 . Because the goalie catches the puck, the final velocities are equal,

or ′1 = ′2 = ′ . Thus, the conservation of momentum equation simplifies to

(8.65)
1 1 = ( 1 + 2) ′.

Solving for ′ yields

(8.66)
′ = 1

1 + 2
1.

Entering known values in this equation, we get

(8.67)
′ =

0.150 kg

70.0 kg + 0.150 kg
(35.0 m/s) = 7.48×10−2 m/s.

Discussion for (a)

This recoil velocity is small and in the same direction as the puck’s original velocity, as we might expect.

Solution for (b)

Before the collision, the internal kinetic energy KEint of the system is that of the hockey puck, because the goalie is initially

at rest. Therefore, KEint is initially

(8.68)
KEint = 1

2
2 = 1

2
0.150 kg (35.0 m/s)2

= 91.9 J.

After the collision, the internal kinetic energy is

(8.69)
KE′int = 1

2
( + ) 2 = 1

2
70.15 kg 7.48×10−2 m/s

2

= 0.196 J.

The change in internal kinetic energy is thus
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(8.70)KE′int − KEint = 0.196 J − 91.9 J

= − 91.7 J

where the minus sign indicates that the energy was lost.

Discussion for (b)

Nearly all of the initial internal kinetic energy is lost in this perfectly inelastic collision. KEint is mostly converted to thermal

energy and sound.

During some collisions, the objects do not stick together and less of the internal kinetic energy is removed—such as
happens in most automobile accidents. Alternatively, stored energy may be converted into internal kinetic energy during a
collision. Figure 8.13 shows a one-dimensional example in which two carts on an air track collide, releasing potential energy
from a compressed spring. Example 8.6 deals with data from such a collision.

Figure 8.13 An air track is nearly frictionless, so that momentum is conserved. Motion is one-dimensional. In this collision, examined in Example
8.6, the potential energy of a compressed spring is released during the collision and is converted to internal kinetic energy.

Collisions are particularly important in sports and the sporting and leisure industry utilizes elastic and inelastic collisions. Let
us look briefly at tennis. Recall that in a collision, it is momentum and not force that is important. So, a heavier tennis racquet
will have the advantage over a lighter one. This conclusion also holds true for other sports—a lightweight bat (such as a
softball bat) cannot hit a hardball very far.

The location of the impact of the tennis ball on the racquet is also important, as is the part of the stroke during which the
impact occurs. A smooth motion results in the maximizing of the velocity of the ball after impact and reduces sports injuries
such as tennis elbow. A tennis player tries to hit the ball on the “sweet spot” on the racquet, where the vibration and impact
are minimized and the ball is able to be given more velocity. Sports science and technologies also use physics concepts
such as momentum and rotational motion and vibrations.

Take-Home Experiment—Bouncing of Tennis Ball
1. Find a racquet (a tennis, badminton, or other racquet will do). Place the racquet on the floor and stand on the handle.

Drop a tennis ball on the strings from a measured height. Measure how high the ball bounces. Now ask a friend to hold
the racquet firmly by the handle and drop a tennis ball from the same measured height above the racquet. Measure
how high the ball bounces and observe what happens to your friend’s hand during the collision. Explain your
observations and measurements.

2. The coefficient of restitution ( ) is a measure of the elasticity of a collision between a ball and an object, and is

defined as the ratio of the speeds after and before the collision. A perfectly elastic collision has a of 1. For a ball

bouncing off the floor (or a racquet on the floor), can be shown to be = ( / )1 / 2 where is the height to

which the ball bounces and is the height from which the ball is dropped. Determine for the cases in Part 1 and
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for the case of a tennis ball bouncing off a concrete or wooden floor ( = 0.85 for new tennis balls used on a tennis
court).

Example 8.6 Calculating Final Velocity and Energy Release: Two Carts Collide

In the collision pictured in Figure 8.13, two carts collide inelastically. Cart 1 (denoted 1 carries a spring which is initially

compressed. During the collision, the spring releases its potential energy and converts it to internal kinetic energy. The mass
of cart 1 and the spring is 0.350 kg, and the cart and the spring together have an initial velocity of 2.00 m/s . Cart 2

(denoted 2 in Figure 8.13) has a mass of 0.500 kg and an initial velocity of −0.500 m/s . After the collision, cart 1 is

observed to recoil with a velocity of −4.00 m/s . (a) What is the final velocity of cart 2? (b) How much energy was released
by the spring (assuming all of it was converted into internal kinetic energy)?

Strategy

We can use conservation of momentum to find the final velocity of cart 2, because net = 0 (the track is frictionless and

the force of the spring is internal). Once this velocity is determined, we can compare the internal kinetic energy before and
after the collision to see how much energy was released by the spring.

Solution for (a)

As before, the equation for conservation of momentum in a two-object system is

(8.71)
1 1 + 2 2 = 1 ′1 + 2 ′2 .

The only unknown in this equation is ′2 . Solving for ′2 and substituting known values into the previous equation yields

(8.72)
′2 = 1 1 + 2 2 − 1 ′1

2

=
0.350 kg (2.00 m/s) + 0.500 kg (−0.500 m/s)

0.500 kg
−

0.350 kg (−4.00 m/s)

0.500 kg

= 3.70 m/s.

Solution for (b)

The internal kinetic energy before the collision is

(8.73)
KEint = 1

2 1 1
2 + 1

2 2 2
2

= 1
2

0.350 kg (2.00 m/s)2 + 1
2

0.500 kg ( – 0.500 m/s)2

= 0.763 J.

After the collision, the internal kinetic energy is

(8.74)
KE′int = 1

2 1 ′1
2 + 1

2 2 ′2
2

= 1
2

0.350 kg (-4.00 m/s)2 + 1
2

0.500 kg (3.70 m/s)2

= 6.22 J.

The change in internal kinetic energy is thus

(8.75)KE′int − KEint = 6.22 J − 0.763 J

= 5.46 J.

Discussion

The final velocity of cart 2 is large and positive, meaning that it is moving to the right after the collision. The internal kinetic
energy in this collision increases by 5.46 J. That energy was released by the spring.

8.6 Collisions of Point Masses in Two Dimensions

Learning Objectives
By the end of this section, you will be able to:

• Discuss two-dimensional collisions as an extension of one-dimensional analysis.
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• Define point masses.
• Derive an expression for conservation of momentum along the x-axis and y-axis.
• Describe elastic collisions of two objects with equal mass.
• Determine the magnitude and direction of the final velocity given initial velocity and scattering angle.

The information presented in this section supports the following AP® learning objectives and science practices:

• 5.D.1.2 The student is able to apply the principles of conservation of momentum and restoration of kinetic energy to
reconcile a situation that appears to be isolated and elastic, but in which data indicate that linear momentum and kinetic
energy are not the same after the interaction, by refining a scientific question to identify interactions that have not been
considered. Students will be expected to solve qualitatively and/or quantitatively for one-dimensional situations and only
qualitatively in two-dimensional situations.

• 5.D.3.3 The student is able to make predictions about the velocity of the center of mass for interactions within a defined
two-dimensional system.

In the previous two sections, we considered only one-dimensional collisions; during such collisions, the incoming and outgoing
velocities are all along the same line. But what about collisions, such as those between billiard balls, in which objects scatter to
the side? These are two-dimensional collisions, and we shall see that their study is an extension of the one-dimensional analysis
already presented. The approach taken (similar to the approach in discussing two-dimensional kinematics and dynamics) is to
choose a convenient coordinate system and resolve the motion into components along perpendicular axes. Resolving the motion
yields a pair of one-dimensional problems to be solved simultaneously.

One complication arising in two-dimensional collisions is that the objects might rotate before or after their collision. For example,
if two ice skaters hook arms as they pass by one another, they will spin in circles. We will not consider such rotation until later,
and so for now we arrange things so that no rotation is possible. To avoid rotation, we consider only the scattering of point
masses—that is, structureless particles that cannot rotate or spin.

We start by assuming that Fnet = 0 , so that momentum p is conserved. The simplest collision is one in which one of the

particles is initially at rest. (See Figure 8.14.) The best choice for a coordinate system is one with an axis parallel to the velocity
of the incoming particle, as shown in Figure 8.14. Because momentum is conserved, the components of momentum along the

- and -axes ( and ) will also be conserved, but with the chosen coordinate system, is initially zero and is the

momentum of the incoming particle. Both facts simplify the analysis. (Even with the simplifying assumptions of point masses, one
particle initially at rest, and a convenient coordinate system, we still gain new insights into nature from the analysis of two-
dimensional collisions.)

Figure 8.14 A two-dimensional collision with the coordinate system chosen so that 2 is initially at rest and 1 is parallel to the -axis. This

coordinate system is sometimes called the laboratory coordinate system, because many scattering experiments have a target that is stationary in the
laboratory, while particles are scattered from it to determine the particles that make-up the target and how they are bound together. The particles may
not be observed directly, but their initial and final velocities are.

Along the -axis, the equation for conservation of momentum is

(8.76)
1 + 2 = ′1 + ′2 .

Where the subscripts denote the particles and axes and the primes denote the situation after the collision. In terms of masses
and velocities, this equation is

(8.77)1 1 + 2 2 = 1 1 + 2 2 .

But because particle 2 is initially at rest, this equation becomes

(8.78)
1 1 = 1 ′1 + 2 ′2 .
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The components of the velocities along the -axis have the form cos . Because particle 1 initially moves along the -axis,
we find 1 = 1 .

Conservation of momentum along the -axis gives the following equation:

(8.79)
1 1 = 1 ′1 cos 1 + 2 ′2 cos 2,

where 1 and 2 are as shown in Figure 8.14.

Conservation of Momentum along the -axis

(8.80)
1 1 = 1 ′1 cos 1 + 2 ′2 cos 2

Along the -axis, the equation for conservation of momentum is

(8.81)
1 + 2 = ′1 + ′2

or

(8.82)
1 1 + 2 2 = 1 ′1 + 2 ′2 .

But 1 is zero, because particle 1 initially moves along the -axis. Because particle 2 is initially at rest, 2 is also zero. The

equation for conservation of momentum along the -axis becomes

(8.83)0 = 1 ′1 + 2 ′2 .

The components of the velocities along the -axis have the form sin .

Thus, conservation of momentum along the -axis gives the following equation:

(8.84)0 = 1 ′1 sin 1 + 2 ′2 sin 2.

Conservation of Momentum along the -axis

(8.85)0 = 1 ′1 sin 1 + 2 ′2 sin 2

The equations of conservation of momentum along the -axis and -axis are very useful in analyzing two-dimensional

collisions of particles, where one is originally stationary (a common laboratory situation). But two equations can only be used to
find two unknowns, and so other data may be necessary when collision experiments are used to explore nature at the subatomic
level.

Making Connections: Real World Connections

We have seen, in one-dimensional collisions when momentum is conserved, that the center-of-mass velocity of the system
remains unchanged as a result of the collision. If you calculate the momentum and center-of-mass velocity before the
collision, you will get the same answer as if you calculate both quantities after the collision. This logic also works for two-
dimensional collisions.

For example, consider two cars of equal mass. Car A is driving east (+x-direction) with a speed of 40 m/s. Car B is driving
north (+y-direction) with a speed of 80 m/s. What is the velocity of the center-of-mass of this system before and after an
inelastic collision, in which the cars move together as one mass after the collision?

Since both cars have equal mass, the center-of-mass velocity components are just the average of the components of the
individual velocities before the collision. The x-component of the center of mass velocity is 20 m/s, and the y-component is
40 m/s.

Using momentum conservation for the collision in both the x-component and y-component yields similar answers:

(8.86)(40) + (0) = (2 ) final( )

(8.87)
final( ) = 20 m/s

(8.88)(0) + (80) = (2 ) final( )

(8.89)
final( ) = 40 m/s
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Since the two masses move together after the collision, the velocity of this combined object is equal to the center-of-mass
velocity. Thus, the center-of-mass velocity before and after the collision is identical, even in two-dimensional collisions, when
momentum is conserved.

Example 8.7 Determining the Final Velocity of an Unseen Object from the Scattering of Another
Object

Suppose the following experiment is performed. A 0.250-kg object ( 1) is slid on a frictionless surface into a dark room,

where it strikes an initially stationary object with mass of 0.400 kg ( 2) . The 0.250-kg object emerges from the room at an

angle of 45.0º with its incoming direction.

The speed of the 0.250-kg object is originally 2.00 m/s and is 1.50 m/s after the collision. Calculate the magnitude and
direction of the velocity ( ′2 and 2) of the 0.400-kg object after the collision.

Strategy

Momentum is conserved because the surface is frictionless. The coordinate system shown in Figure 8.15 is one in which

2 is originally at rest and the initial velocity is parallel to the -axis, so that conservation of momentum along the - and

-axes is applicable.

Everything is known in these equations except ′2 and 2 , which are precisely the quantities we wish to find. We can find

two unknowns because we have two independent equations: the equations describing the conservation of momentum in the
- and -directions.

Solution

Solving 1 1 = 1 ′1 cos 1 + 2 ′2 cos 2 for 2′ cos 2 and 0 = 1 ′1 sin 1 + 2 ′2 sin 2 for

′2 sin 2 and taking the ratio yields an equation (in which θ2 is the only unknown quantity. Applying the identity

tan = sin
cos

, we obtain:

(8.90)
tan 2 =

′1 sin 1

′1 cos 1 − 1
.

Entering known values into the previous equation gives

(8.91)
tan 2 =

(1.50 m/s)(0.7071)
(1.50 m/s)(0.7071) − 2.00 m/s

= −1.129.

Thus,

(8.92)
2 = tan−1(−1.129) = 311.5º ≈ 312º.

Angles are defined as positive in the counter clockwise direction, so this angle indicates that 2 is scattered to the right in

Figure 8.15, as expected (this angle is in the fourth quadrant). Either equation for the - or -axis can now be used to

solve for ′2 , but the latter equation is easiest because it has fewer terms.

(8.93)
′2 = − 1

2
′1

sin 1

sin 2

Entering known values into this equation gives

(8.94)
′2 = −

0.250 kg

0.400 kg
(1.50 m/s) 0.7071

−0.7485
.

Thus,

(8.95)′2 = 0.886 m/s.

Discussion

It is instructive to calculate the internal kinetic energy of this two-object system before and after the collision. (This
calculation is left as an end-of-chapter problem.) If you do this calculation, you will find that the internal kinetic energy is less
after the collision, and so the collision is inelastic. This type of result makes a physicist want to explore the system further.
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Figure 8.15 A collision taking place in a dark room is explored in Example 8.7. The incoming object 1 is scattered by an initially stationary object.

Only the stationary object’s mass 2 is known. By measuring the angle and speed at which 1 emerges from the room, it is possible to calculate

the magnitude and direction of the initially stationary object’s velocity after the collision.

Elastic Collisions of Two Objects with Equal Mass
Some interesting situations arise when the two colliding objects have equal mass and the collision is elastic. This situation is
nearly the case with colliding billiard balls, and precisely the case with some subatomic particle collisions. We can thus get a
mental image of a collision of subatomic particles by thinking about billiards (or pool). (Refer to Figure 8.14 for masses and
angles.) First, an elastic collision conserves internal kinetic energy. Again, let us assume object 2 ( 2) is initially at rest. Then,

the internal kinetic energy before and after the collision of two objects that have equal masses is

(8.96)1
2 1

2 = 1
2

′1
2 + 1

2
′2

2.

Because the masses are equal, 1 = 2 = . Algebraic manipulation (left to the reader) of conservation of momentum in the

- and -directions can show that

(8.97)1
2 1

2 = 1
2

′1
2 + 1

2
′2

2 + ′1 ′2 cos 1 − 2 .

(Remember that 2 is negative here.) The two preceding equations can both be true only if

(8.98)′1 ′2 cos 1 − 2 = 0.

There are three ways that this term can be zero. They are

• ′1 = 0 : head-on collision; incoming ball stops

• ′2 = 0 : no collision; incoming ball continues unaffected

• cos( 1 − 2) = 0 : angle of separation ( 1 − 2) is 90º after the collision

All three of these ways are familiar occurrences in billiards and pool, although most of us try to avoid the second. If you play
enough pool, you will notice that the angle between the balls is very close to 90º after the collision, although it will vary from this
value if a great deal of spin is placed on the ball. (Large spin carries in extra energy and a quantity called angular momentum,
which must also be conserved.) The assumption that the scattering of billiard balls is elastic is reasonable based on the
correctness of the three results it produces. This assumption also implies that, to a good approximation, momentum is conserved
for the two-ball system in billiards and pool. The problems below explore these and other characteristics of two-dimensional
collisions.
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Connections to Nuclear and Particle Physics

Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as we shall see in
Medical Applications of Nuclear Physics and Particle Physics. Ernest Rutherford, for example, discovered the nature of
the atomic nucleus from such experiments.

8.7 Introduction to Rocket Propulsion

Learning Objectives
By the end of this section, you will be able to:

• State Newton’s third law of motion.
• Explain the principle involved in propulsion of rockets and jet engines.
• Derive an expression for the acceleration of the rocket.
• Discuss the factors that affect the rocket’s acceleration.
• Describe the function of a space shuttle.

Rockets range in size from fireworks so small that ordinary people use them to immense Saturn Vs that once propelled massive
payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses is
explained by the same physical principle—Newton’s third law of motion. Matter is forcefully ejected from a system, producing an
equal and opposite reaction on what remains. Another common example is the recoil of a gun. The gun exerts a force on a bullet
to accelerate it and consequently experiences an equal and opposite force, causing the gun’s recoil or kick.

Making Connections: Take-Home Experiment—Propulsion of a Balloon

Hold a balloon and fill it with air. Then, let the balloon go. In which direction does the air come out of the balloon and in which
direction does the balloon get propelled? If you fill the balloon with water and then let the balloon go, does the balloon’s
direction change? Explain your answer.

Figure 8.16 shows a rocket accelerating straight up. In part (a), the rocket has a mass and a velocity relative to Earth, and

hence a momentum . In part (b), a time Δ has elapsed in which the rocket has ejected a mass Δ of hot gas at a

velocity e relative to the rocket. The remainder of the mass ( − Δ ) now has a greater velocity ( + Δ ) . The momentum

of the entire system (rocket plus expelled gas) has actually decreased because the force of gravity has acted for a time Δ ,

producing a negative impulse Δ = − Δ . (Remember that impulse is the net external force on a system multiplied by the

time it acts, and it equals the change in momentum of the system.) So, the center of mass of the system is in free fall but, by
rapidly expelling mass, part of the system can accelerate upward. It is a commonly held misconception that the rocket exhaust
pushes on the ground. If we consider thrust; that is, the force exerted on the rocket by the exhaust gases, then a rocket’s thrust is
greater in outer space than in the atmosphere or on the launch pad. In fact, gases are easier to expel into a vacuum.

By calculating the change in momentum for the entire system over Δ , and equating this change to the impulse, the following
expression can be shown to be a good approximation for the acceleration of the rocket.

(8.99)
= e Δ

Δ
−

“The rocket” is that part of the system remaining after the gas is ejected, and is the acceleration due to gravity.

Acceleration of a Rocket

Acceleration of a rocket is

(8.100)
= e Δ

Δ
−

where is the acceleration of the rocket, e is the escape velocity, is the mass of the rocket, Δ is the mass of the

ejected gas, and Δ is the time in which the gas is ejected.
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Figure 8.16 (a) This rocket has a mass and an upward velocity . The net external force on the system is − , if air resistance is neglected.

(b) A time Δ later the system has two main parts, the ejected gas and the remainder of the rocket. The reaction force on the rocket is what
overcomes the gravitational force and accelerates it upward.

A rocket’s acceleration depends on three major factors, consistent with the equation for acceleration of a rocket . First, the
greater the exhaust velocity of the gases relative to the rocket, e , the greater the acceleration is. The practical limit for e is

about 2.5×103 m/s for conventional (non-nuclear) hot-gas propulsion systems. The second factor is the rate at which mass is

ejected from the rocket. This is the factor Δ / Δ in the equation. The quantity (Δ / Δ ) e , with units of newtons, is called

"thrust.” The faster the rocket burns its fuel, the greater its thrust, and the greater its acceleration. The third factor is the mass
of the rocket. The smaller the mass is (all other factors being the same), the greater the acceleration. The rocket mass
decreases dramatically during flight because most of the rocket is fuel to begin with, so that acceleration increases continuously,
reaching a maximum just before the fuel is exhausted.

Factors Affecting a Rocket’s Acceleration
• The greater the exhaust velocity e of the gases relative to the rocket, the greater the acceleration.

• The faster the rocket burns its fuel, the greater its acceleration.
• The smaller the rocket’s mass (all other factors being the same), the greater the acceleration.

Example 8.8 Calculating Acceleration: Initial Acceleration of a Moon Launch

A Saturn V’s mass at liftoff was 2.80×106 kg , its fuel-burn rate was 1.40×104 kg/s , and the exhaust velocity was

2.40×103 m/s . Calculate its initial acceleration.

Strategy

This problem is a straightforward application of the expression for acceleration because is the unknown and all of the
terms on the right side of the equation are given.

Solution

Substituting the given values into the equation for acceleration yields

Chapter 8 | Linear Momentum and Collisions 341



(8.101)
= e Δ

Δ
−

= 2.40×103 m/s

2.80×106 kg
1.40×104 kg/s − 9.80 m/s2

= 2.20 m/s2 .

Discussion

This value is fairly small, even for an initial acceleration. The acceleration does increase steadily as the rocket burns fuel,

because decreases while e and Δ
Δ

remain constant. Knowing this acceleration and the mass of the rocket, you can

show that the thrust of the engines was 3.36×107 N .

To achieve the high speeds needed to hop continents, obtain orbit, or escape Earth’s gravity altogether, the mass of the rocket
other than fuel must be as small as possible. It can be shown that, in the absence of air resistance and neglecting gravity, the
final velocity of a one-stage rocket initially at rest is

(8.102)
= e ln 0

r

where ln 0 / r is the natural logarithm of the ratio of the initial mass of the rocket ( 0) to what is left ( r) after all of the

fuel is exhausted. (Note that is actually the change in velocity, so the equation can be used for any segment of the flight. If we
start from rest, the change in velocity equals the final velocity.) For example, let us calculate the mass ratio needed to escape

Earth’s gravity starting from rest, given that the escape velocity from Earth is about 11.2×103 m/s , and assuming an exhaust

velocity e = 2.5×103 m/s .

(8.103)
ln 0

r
=

e
= 11.2×103 m/s

2.5×103 m/s
= 4.48

Solving for 0 / r gives

(8.104)0
r

= 4.48 = 88.

Thus, the mass of the rocket is

(8.105)
r = 0

88
.

This result means that only 1 / 88 of the mass is left when the fuel is burnt, and 87 / 88 of the initial mass was fuel. Expressed
as percentages, 98.9% of the rocket is fuel, while payload, engines, fuel tanks, and other components make up only 1.10%.
Taking air resistance and gravitational force into account, the mass r remaining can only be about 0 / 180 . It is difficult to

build a rocket in which the fuel has a mass 180 times everything else. The solution is multistage rockets. Each stage only needs
to achieve part of the final velocity and is discarded after it burns its fuel. The result is that each successive stage can have
smaller engines and more payload relative to its fuel. Once out of the atmosphere, the ratio of payload to fuel becomes more
favorable, too.

The space shuttle was an attempt at an economical vehicle with some reusable parts, such as the solid fuel boosters and the
craft itself. (See Figure 8.17) The shuttle’s need to be operated by humans, however, made it at least as costly for launching
satellites as expendable, unmanned rockets. Ideally, the shuttle would only have been used when human activities were required
for the success of a mission, such as the repair of the Hubble space telescope. Rockets with satellites can also be launched from
airplanes. Using airplanes has the double advantage that the initial velocity is significantly above zero and a rocket can avoid
most of the atmosphere’s resistance.
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change in momentum:

conservation of momentum principle:

elastic collision:

impulse:

inelastic collision:

internal kinetic energy:

isolated system:

linear momentum:

perfectly inelastic collision:

point masses:

quark:

Figure 8.17 The space shuttle had a number of reusable parts. Solid fuel boosters on either side were recovered and refueled after each flight, and the
entire orbiter returned to Earth for use in subsequent flights. The large liquid fuel tank was expended. The space shuttle was a complex assemblage of
technologies, employing both solid and liquid fuel and pioneering ceramic tiles as reentry heat shields. As a result, it permitted multiple launches as
opposed to single-use rockets. (credit: NASA)

PhET Explorations: Lunar Lander

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of
this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel
consumption rate, and lunar gravity. The real lunar lander is very hard to control.

Figure 8.18 Lunar Lander (http://cnx.org/content/m55174/1.2/lunar-lander_en.jar)

Glossary
the difference between the final and initial momentum; the mass times the change in velocity

when the net external force is zero, the total momentum of the system is conserved
or constant

a collision that also conserves internal kinetic energy

the average net external force times the time it acts; equal to the change in momentum

a collision in which internal kinetic energy is not conserved

the sum of the kinetic energies of the objects in a system

a system in which the net external force is zero

the product of mass and velocity

a collision in which the colliding objects stick together

structureless particles with no rotation or spin

fundamental constituent of matter and an elementary particle

Chapter 8 | Linear Momentum and Collisions 343

http://cnx.org/content/m55174/1.2/lunar-lander_en.jar


second law of motion: physical law that states that the net external force equals the change in momentum of a system
divided by the time over which it changes

Section Summary

8.1 Linear Momentum and Force
• Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity.
• In symbols, linear momentum p is defined to be

p = v,

where is the mass of the system and v is its velocity.

• The SI unit for momentum is kg · m/s .

• Newton’s second law of motion in terms of momentum states that the net external force equals the change in momentum of
a system divided by the time over which it changes.

• In symbols, Newton’s second law of motion is defined to be

Fnet =
Δp

Δ
,

Fnet is the net external force, Δp is the change in momentum, and Δ is the change time.

8.2 Impulse
• Impulse, or change in momentum, equals the average net external force multiplied by the time this force acts:

Δp = FnetΔ .
• Forces are usually not constant over a period of time.

8.3 Conservation of Momentum
• The conservation of momentum principle is written

ptot = constant

or

ptot = p′tot (isolated system),

ptot is the initial total momentum and p′tot is the total momentum some time later.

• An isolated system is defined to be one for which the net external force is zero Fnet = 0 .

• During projectile motion and where air resistance is negligible, momentum is conserved in the horizontal direction because
horizontal forces are zero.

• Conservation of momentum applies only when the net external force is zero.
• The conservation of momentum principle is valid when considering systems of particles.

8.4 Elastic Collisions in One Dimension
• An elastic collision is one that conserves internal kinetic energy.
• Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities

and masses in one dimensional two-body collisions.

8.5 Inelastic Collisions in One Dimension
• An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).
• A collision in which the objects stick together is sometimes called perfectly inelastic because it reduces internal kinetic

energy more than does any other type of inelastic collision.
• Sports science and technologies also use physics concepts such as momentum and rotational motion and vibrations.

8.6 Collisions of Point Masses in Two Dimensions
• The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into

components along perpendicular axes. Choose a coordinate system with the -axis parallel to the velocity of the incoming
particle.

• Two-dimensional collisions of point masses where mass 2 is initially at rest conserve momentum along the initial direction
of mass 1 (the -axis), stated by 1 1 = 1 ′1 cos 1 + 2 ′2 cos 2 and along the direction perpendicular to the

initial direction (the -axis) stated by 0 = 1 ′1 + 2 ′2 .

• The internal kinetic before and after the collision of two objects that have equal masses is

1
2 1

2 = 1
2

′1
2 + 1

2
′2

2 + ′1 ′2 cos 1 − 2 .
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• Point masses are structureless particles that cannot spin.

8.7 Introduction to Rocket Propulsion
• Newton’s third law of motion states that to every action, there is an equal and opposite reaction.

• Acceleration of a rocket is = e Δ
Δ

− .

• A rocket’s acceleration depends on three main factors. They are

1. The greater the exhaust velocity of the gases, the greater the acceleration.
2. The faster the rocket burns its fuel, the greater its acceleration.
3. The smaller the rocket's mass, the greater the acceleration.

Conceptual Questions

8.1 Linear Momentum and Force
1. An object that has a small mass and an object that has a large mass have the same momentum. Which object has the largest
kinetic energy?

2. An object that has a small mass and an object that has a large mass have the same kinetic energy. Which mass has the
largest momentum?

3. Professional Application

Football coaches advise players to block, hit, and tackle with their feet on the ground rather than by leaping through the air.
Using the concepts of momentum, work, and energy, explain how a football player can be more effective with his feet on the
ground.

4. How can a small force impart the same momentum to an object as a large force?

8.2 Impulse
5. Professional Application

Explain in terms of impulse how padding reduces forces in a collision. State this in terms of a real example, such as the
advantages of a carpeted vs. tile floor for a day care center.

6. While jumping on a trampoline, sometimes you land on your back and other times on your feet. In which case can you reach a
greater height and why?

7. Professional Application

Tennis racquets have “sweet spots.” If the ball hits a sweet spot then the player's arm is not jarred as much as it would be
otherwise. Explain why this is the case.

8.3 Conservation of Momentum
8. Professional Application

If you dive into water, you reach greater depths than if you do a belly flop. Explain this difference in depth using the concept of
conservation of energy. Explain this difference in depth using what you have learned in this chapter.

9. Under what circumstances is momentum conserved?

10. Can momentum be conserved for a system if there are external forces acting on the system? If so, under what conditions? If
not, why not?

11. Momentum for a system can be conserved in one direction while not being conserved in another. What is the angle between
the directions? Give an example.

12. Professional Application

Explain in terms of momentum and Newton’s laws how a car’s air resistance is due in part to the fact that it pushes air in its
direction of motion.

13. Can objects in a system have momentum while the momentum of the system is zero? Explain your answer.

14. Must the total energy of a system be conserved whenever its momentum is conserved? Explain why or why not.

8.4 Elastic Collisions in One Dimension
15. What is an elastic collision?

8.5 Inelastic Collisions in One Dimension
16. What is an inelastic collision? What is a perfectly inelastic collision?

17. Mixed-pair ice skaters performing in a show are standing motionless at arms length just before starting a routine. They reach
out, clasp hands, and pull themselves together by only using their arms. Assuming there is no friction between the blades of their
skates and the ice, what is their velocity after their bodies meet?
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18. A small pickup truck that has a camper shell slowly coasts toward a red light with negligible friction. Two dogs in the back of
the truck are moving and making various inelastic collisions with each other and the walls. What is the effect of the dogs on the
motion of the center of mass of the system (truck plus entire load)? What is their effect on the motion of the truck?

8.6 Collisions of Point Masses in Two Dimensions

19. Figure 8.19 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1 ) at which the

small object can emerge after colliding elastically with the cube. How does 1 depend on , the so-called impact parameter?

Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the
small object. (b) Answer the same questions if the small object instead collides with a massive sphere.

Figure 8.19 A small object approaches a collision with a much more massive cube, after which its velocity has the direction 1 . The angles at which

the small object can be scattered are determined by the shape of the object it strikes and the impact parameter .

8.7 Introduction to Rocket Propulsion
20. Professional Application

Suppose a fireworks shell explodes, breaking into three large pieces for which air resistance is negligible. How is the motion of
the center of mass affected by the explosion? How would it be affected if the pieces experienced significantly more air resistance
than the intact shell?

21. Professional Application

During a visit to the International Space Station, an astronaut was positioned motionless in the center of the station, out of reach
of any solid object on which he could exert a force. Suggest a method by which he could move himself away from this position,
and explain the physics involved.

22. Professional Application

It is possible for the velocity of a rocket to be greater than the exhaust velocity of the gases it ejects. When that is the case, the
gas velocity and gas momentum are in the same direction as that of the rocket. How is the rocket still able to obtain thrust by
ejecting the gases?
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Problems & Exercises

8.1 Linear Momentum and Force
1. (a) Calculate the momentum of a 2000-kg elephant
charging a hunter at a speed of 7.50 m/s . (b) Compare the
elephant’s momentum with the momentum of a 0.0400-kg
tranquilizer dart fired at a speed of 600 m/s . (c) What is the

momentum of the 90.0-kg hunter running at 7.40 m/s after
missing the elephant?

2. (a) What is the mass of a large ship that has a momentum

of 1.60×109 kg · m/s , when the ship is moving at a speed

of 48.0 km/h? (b) Compare the ship’s momentum to the
momentum of a 1100-kg artillery shell fired at a speed of
1200 m/s .

3. (a) At what speed would a 2.00×104-kg airplane have to

fly to have a momentum of 1.60×109 kg · m/s (the same as

the ship’s momentum in the problem above)? (b) What is the
plane’s momentum when it is taking off at a speed of
60.0 m/s ? (c) If the ship is an aircraft carrier that launches
these airplanes with a catapult, discuss the implications of
your answer to (b) as it relates to recoil effects of the catapult
on the ship.

4. (a) What is the momentum of a garbage truck that is

1.20×104 kg and is moving at 10.0 m/s ? (b) At what

speed would an 8.00-kg trash can have the same momentum
as the truck?

5. A runaway train car that has a mass of 15,000 kg travels at
a speed of 5.4 m/s down a track. Compute the time required
for a force of 1500 N to bring the car to rest.

6. The mass of Earth is 5.972×1024 kg and its orbital

radius is an average of 1.496×1011 m . Calculate its linear
momentum.

8.2 Impulse
7. A bullet is accelerated down the barrel of a gun by hot
gases produced in the combustion of gun powder. What is the
average force exerted on a 0.0300-kg bullet to accelerate it to
a speed of 600 m/s in a time of 2.00 ms (milliseconds)?

8. Professional Application

A car moving at 10 m/s crashes into a tree and stops in 0.26
s. Calculate the force the seat belt exerts on a passenger in
the car to bring him to a halt. The mass of the passenger is
70 kg.

9. A person slaps her leg with her hand, bringing her hand to
rest in 2.50 milliseconds from an initial speed of 4.00 m/s. (a)
What is the average force exerted on the leg, taking the
effective mass of the hand and forearm to be 1.50 kg? (b)
Would the force be any different if the woman clapped her
hands together at the same speed and brought them to rest in
the same time? Explain why or why not.

10. Professional Application

A professional boxer hits his opponent with a 1000-N
horizontal blow that lasts for 0.150 s. (a) Calculate the
impulse imparted by this blow. (b) What is the opponent’s final
velocity, if his mass is 105 kg and he is motionless in midair
when struck near his center of mass? (c) Calculate the recoil

velocity of the opponent’s 10.0-kg head if hit in this manner,
assuming the head does not initially transfer significant
momentum to the boxer’s body. (d) Discuss the implications
of your answers for parts (b) and (c).

11. Professional Application

Suppose a child drives a bumper car head on into the side
rail, which exerts a force of 4000 N on the car for 0.200 s. (a)
What impulse is imparted by this force? (b) Find the final
velocity of the bumper car if its initial velocity was 2.80 m/s
and the car plus driver have a mass of 200 kg. You may
neglect friction between the car and floor.

12. Professional Application

One hazard of space travel is debris left by previous
missions. There are several thousand objects orbiting Earth
that are large enough to be detected by radar, but there are
far greater numbers of very small objects, such as flakes of
paint. Calculate the force exerted by a 0.100-mg chip of paint
that strikes a spacecraft window at a relative speed of

4.00×103 m/s , given the collision lasts 6.00×10 – 8 s .

13. Professional Application

A 75.0-kg person is riding in a car moving at 20.0 m/s when
the car runs into a bridge abutment. (a) Calculate the average
force on the person if he is stopped by a padded dashboard
that compresses an average of 1.00 cm. (b) Calculate the
average force on the person if he is stopped by an air bag
that compresses an average of 15.0 cm.

14. Professional Application

Military rifles have a mechanism for reducing the recoil forces
of the gun on the person firing it. An internal part recoils over
a relatively large distance and is stopped by damping
mechanisms in the gun. The larger distance reduces the
average force needed to stop the internal part. (a) Calculate
the recoil velocity of a 1.00-kg plunger that directly interacts
with a 0.0200-kg bullet fired at 600 m/s from the gun. (b) If
this part is stopped over a distance of 20.0 cm, what average
force is exerted upon it by the gun? (c) Compare this to the
force exerted on the gun if the bullet is accelerated to its
velocity in 10.0 ms (milliseconds).

15. A cruise ship with a mass of 1.00×107 kg strikes a pier

at a speed of 0.750 m/s. It comes to rest 6.00 m later,
damaging the ship, the pier, and the tugboat captain’s
finances. Calculate the average force exerted on the pier
using the concept of impulse. (Hint: First calculate the time it
took to bring the ship to rest.)

16. Calculate the final speed of a 110-kg rugby player who is
initially running at 8.00 m/s but collides head-on with a
padded goalpost and experiences a backward force of

1.76×104 N for 5.50×10–2 s .

17. Water from a fire hose is directed horizontally against a
wall at a rate of 50.0 kg/s and a speed of 42.0 m/s. Calculate
the magnitude of the force exerted on the wall, assuming the
water’s horizontal momentum is reduced to zero.

18. A 0.450-kg hammer is moving horizontally at 7.00 m/s
when it strikes a nail and comes to rest after driving the nail
1.00 cm into a board. (a) Calculate the duration of the impact.
(b) What was the average force exerted on the nail?

19. Starting with the definitions of momentum and kinetic
energy, derive an equation for the kinetic energy of a particle
expressed as a function of its momentum.
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20. A ball with an initial velocity of 10 m/s moves at an angle
60º above the -direction. The ball hits a vertical wall and

bounces off so that it is moving 60º above the − -direction
with the same speed. What is the impulse delivered by the
wall?

21. When serving a tennis ball, a player hits the ball when its
velocity is zero (at the highest point of a vertical toss). The
racquet exerts a force of 540 N on the ball for 5.00 ms, giving
it a final velocity of 45.0 m/s. Using these data, find the mass
of the ball.

22. A punter drops a ball from rest vertically 1 meter down
onto his foot. The ball leaves the foot with a speed of 18 m/s
at an angle 55º above the horizontal. What is the impulse
delivered by the foot (magnitude and direction)?

8.3 Conservation of Momentum
23. Professional Application

Train cars are coupled together by being bumped into one
another. Suppose two loaded train cars are moving toward
one another, the first having a mass of 150,000 kg and a
velocity of 0.300 m/s, and the second having a mass of
110,000 kg and a velocity of −0.120 m/s . (The minus
indicates direction of motion.) What is their final velocity?

24. Suppose a clay model of a koala bear has a mass of
0.200 kg and slides on ice at a speed of 0.750 m/s. It runs
into another clay model, which is initially motionless and has
a mass of 0.350 kg. Both being soft clay, they naturally stick
together. What is their final velocity?

25. Professional Application

Consider the following question: A car moving at 10 m/s

crashes into a tree and stops in 0.26 s. Calculate the force

the seatbelt exerts on a passenger in the car to bring him to a

halt. The mass of the passenger is 70 kg. Would the answer
to this question be different if the car with the 70-kg
passenger had collided with a car that has a mass equal to
and is traveling in the opposite direction and at the same
speed? Explain your answer.

26. What is the velocity of a 900-kg car initially moving at 30.0
m/s, just after it hits a 150-kg deer initially running at 12.0 m/s
in the same direction? Assume the deer remains on the car.

27. A 1.80-kg falcon catches a 0.650-kg dove from behind in
midair. What is their velocity after impact if the falcon’s
velocity is initially 28.0 m/s and the dove’s velocity is 7.00 m/s
in the same direction?

8.4 Elastic Collisions in One Dimension
28. Two identical objects (such as billiard balls) have a one-
dimensional collision in which one is initially motionless. After
the collision, the moving object is stationary and the other
moves with the same speed as the other originally had. Show
that both momentum and kinetic energy are conserved.

29. Professional Application

Two manned satellites approach one another at a relative
speed of 0.250 m/s, intending to dock. The first has a mass of

4.00×103 kg , and the second a mass of 7.50×103 kg . If

the two satellites collide elastically rather than dock, what is
their final relative velocity?

30. A 70.0-kg ice hockey goalie, originally at rest, catches a
0.150-kg hockey puck slapped at him at a velocity of 35.0 m/
s. Suppose the goalie and the ice puck have an elastic
collision and the puck is reflected back in the direction from

which it came. What would their final velocities be in this
case?

8.5 Inelastic Collisions in One Dimension
31. A 0.240-kg billiard ball that is moving at 3.00 m/s strikes
the bumper of a pool table and bounces straight back at 2.40
m/s (80% of its original speed). The collision lasts 0.0150 s.
(a) Calculate the average force exerted on the ball by the
bumper. (b) How much kinetic energy in joules is lost during
the collision? (c) What percent of the original energy is left?

32. During an ice show, a 60.0-kg skater leaps into the air and
is caught by an initially stationary 75.0-kg skater. (a) What is
their final velocity assuming negligible friction and that the
60.0-kg skater’s original horizontal velocity is 4.00 m/s? (b)
How much kinetic energy is lost?

33. Professional Application

Using mass and speed data from Example 8.1 and assuming
that the football player catches the ball with his feet off the
ground with both of them moving horizontally, calculate: (a)
the final velocity if the ball and player are going in the same
direction and (b) the loss of kinetic energy in this case. (c)
Repeat parts (a) and (b) for the situation in which the ball and
the player are going in opposite directions. Might the loss of
kinetic energy be related to how much it hurts to catch the
pass?

34. A battleship that is 6.00×107 kg and is originally at rest

fires a 1100-kg artillery shell horizontally with a velocity of 575
m/s. (a) If the shell is fired straight aft (toward the rear of the
ship), there will be negligible friction opposing the ship’s
recoil. Calculate its recoil velocity. (b) Calculate the increase
in internal kinetic energy (that is, for the ship and the shell).
This energy is less than the energy released by the gun
powder—significant heat transfer occurs.

35. Professional Application

Two manned satellites approaching one another, at a relative
speed of 0.250 m/s, intending to dock. The first has a mass of

4.00×103 kg , and the second a mass of 7.50×103 kg .

(a) Calculate the final velocity (after docking) by using the
frame of reference in which the first satellite was originally at
rest. (b) What is the loss of kinetic energy in this inelastic
collision? (c) Repeat both parts by using the frame of
reference in which the second satellite was originally at rest.
Explain why the change in velocity is different in the two
frames, whereas the change in kinetic energy is the same in
both.

36. Professional Application

A 30,000-kg freight car is coasting at 0.850 m/s with
negligible friction under a hopper that dumps 110,000 kg of
scrap metal into it. (a) What is the final velocity of the loaded
freight car? (b) How much kinetic energy is lost?

37. Professional Application

Space probes may be separated from their launchers by
exploding bolts. (They bolt away from one another.) Suppose
a 4800-kg satellite uses this method to separate from the
1500-kg remains of its launcher, and that 5000 J of kinetic
energy is supplied to the two parts. What are their
subsequent velocities using the frame of reference in which
they were at rest before separation?

38. A 0.0250-kg bullet is accelerated from rest to a speed of
550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is much
worse if you hold the gun loosely a few centimeters from your
shoulder rather than holding it tightly against your shoulder.
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(a) Calculate the recoil velocity of the rifle if it is held loosely
away from the shoulder. (b) How much kinetic energy does
the rifle gain? (c) What is the recoil velocity if the rifle is held
tightly against the shoulder, making the effective mass 28.0
kg? (d) How much kinetic energy is transferred to the rifle-
shoulder combination? The pain is related to the amount of
kinetic energy, which is significantly less in this latter situation.
(e) Calculate the momentum of a 110-kg football player
running at 8.00 m/s. Compare the player’s momentum with
the momentum of a hard-thrown 0.410-kg football that has a
speed of 25.0 m/s. Discuss its relationship to this problem.

39. Professional Application

One of the waste products of a nuclear reactor is

plutonium-239 239 Pu . This nucleus is radioactive and

decays by splitting into a helium-4 nucleus and a uranium-235

nucleus 4 He + 235 U , the latter of which is also

radioactive and will itself decay some time later. The energy

emitted in the plutonium decay is 8.40×10 – 13 J and is
entirely converted to kinetic energy of the helium and uranium

nuclei. The mass of the helium nucleus is 6.68×10 – 27 kg ,

while that of the uranium is 3.92×10 – 25 kg (note that the

ratio of the masses is 4 to 235). (a) Calculate the velocities of
the two nuclei, assuming the plutonium nucleus is originally at
rest. (b) How much kinetic energy does each nucleus carry
away? Note that the data given here are accurate to three
digits only.

40. Professional Application

The Moon’s craters are remnants of meteorite collisions.
Suppose a fairly large asteroid that has a mass of

5.00×1012 kg (about a kilometer across) strikes the Moon

at a speed of 15.0 km/s. (a) At what speed does the Moon
recoil after the perfectly inelastic collision (the mass of the

Moon is 7.36×1022 kg ) ? (b) How much kinetic energy is

lost in the collision? Such an event may have been observed
by medieval English monks who reported observing a red
glow and subsequent haze about the Moon. (c) In October
2009, NASA crashed a rocket into the Moon, and analyzed
the plume produced by the impact. (Significant amounts of
water were detected.) Answer part (a) and (b) for this real-life
experiment. The mass of the rocket was 2000 kg and its
speed upon impact was 9000 km/h. How does the plume
produced alter these results?

41. Professional Application

Two football players collide head-on in midair while trying to
catch a thrown football. The first player is 95.0 kg and has an
initial velocity of 6.00 m/s, while the second player is 115 kg
and has an initial velocity of –3.50 m/s. What is their velocity
just after impact if they cling together?

42. What is the speed of a garbage truck that is

1.20×104 kg and is initially moving at 25.0 m/s just after it

hits and adheres to a trash can that is 80.0 kg and is initially
at rest?

43. During a circus act, an elderly performer thrills the crowd
by catching a cannon ball shot at him. The cannon ball has a
mass of 10.0 kg and the horizontal component of its velocity
is 8.00 m/s when the 65.0-kg performer catches it. If the
performer is on nearly frictionless roller skates, what is his
recoil velocity?

44. (a) During an ice skating performance, an initially
motionless 80.0-kg clown throws a fake barbell away. The
clown’s ice skates allow her to recoil frictionlessly. If the clown
recoils with a velocity of 0.500 m/s and the barbell is thrown
with a velocity of 10.0 m/s, what is the mass of the barbell?
(b) How much kinetic energy is gained by this maneuver? (c)
Where does the kinetic energy come from?

8.6 Collisions of Point Masses in Two
Dimensions
45. Two identical pucks collide on an air hockey table. One
puck was originally at rest. (a) If the incoming puck has a
speed of 6.00 m/s and scatters to an angle of 30.0º ,what is
the velocity (magnitude and direction) of the second puck?
(You may use the result that 1 − 2 = 90º for elastic

collisions of objects that have identical masses.) (b) Confirm
that the collision is elastic.

46. Confirm that the results of the example Example 8.7 do
conserve momentum in both the - and -directions.

47. A 3000-kg cannon is mounted so that it can recoil only in
the horizontal direction. (a) Calculate its recoil velocity when it
fires a 15.0-kg shell at 480 m/s at an angle of 20.0º above
the horizontal. (b) What is the kinetic energy of the cannon?
This energy is dissipated as heat transfer in shock absorbers
that stop its recoil. (c) What happens to the vertical
component of momentum that is imparted to the cannon
when it is fired?

48. Professional Application

A 5.50-kg bowling ball moving at 9.00 m/s collides with a
0.850-kg bowling pin, which is scattered at an angle of 85.0º

to the initial direction of the bowling ball and with a speed of
15.0 m/s. (a) Calculate the final velocity (magnitude and
direction) of the bowling ball. (b) Is the collision elastic? (c)
Linear kinetic energy is greater after the collision. Discuss
how spin on the ball might be converted to linear kinetic
energy in the collision.

49. Professional Application

Ernest Rutherford (the first New Zealander to be awarded the
Nobel Prize in Chemistry) demonstrated that nuclei were very

small and dense by scattering helium-4 nuclei 4 He from

gold-197 nuclei 197 Au . The energy of the incoming helium

nucleus was 8.00×10−13 J , and the masses of the helium

and gold nuclei were 6.68×10−27 kg and

3.29×10−25 kg , respectively (note that their mass ratio is 4

to 197). (a) If a helium nucleus scatters to an angle of 120º

during an elastic collision with a gold nucleus, calculate the
helium nucleus’s final speed and the final velocity (magnitude
and direction) of the gold nucleus. (b) What is the final kinetic
energy of the helium nucleus?

50. Professional Application

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1200 kg and is
approaching at 8.00 m/s due south. The second car has a

mass of 850 kg and is approaching at 17.0 m/s due west.
(a) Calculate the final velocity (magnitude and direction) of
the cars. (b) How much kinetic energy is lost in the collision?
(This energy goes into deformation of the cars.) Note that
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because both cars have an initial velocity, you cannot use the
equations for conservation of momentum along the -axis
and -axis; instead, you must look for other simplifying

aspects.

51. Starting with equations

1 1 = 1 ′1 cos 1 + 2 ′2 cos 2 and

0 = 1 ′1 sin 1 + 2 ′2 sin 2 for conservation of

momentum in the - and -directions and assuming that

one object is originally stationary, prove that for an elastic
collision of two objects of equal masses,
1
2 1

2 = 1
2

′1
2+1

2
′2

2+ ′1 ′2 cos 1 − 2

as discussed in the text.

52. Integrated Concepts

A 90.0-kg ice hockey player hits a 0.150-kg puck, giving the
puck a velocity of 45.0 m/s. If both are initially at rest and if
the ice is frictionless, how far does the player recoil in the
time it takes the puck to reach the goal 15.0 m away?

8.7 Introduction to Rocket Propulsion
53. Professional Application

Antiballistic missiles (ABMs) are designed to have very large
accelerations so that they may intercept fast-moving incoming
missiles in the short time available. What is the takeoff
acceleration of a 10,000-kg ABM that expels 196 kg of gas

per second at an exhaust velocity of 2.50×103 m/s?

54. Professional Application

What is the acceleration of a 5000-kg rocket taking off from
the Moon, where the acceleration due to gravity is only

1.6 m/s2 , if the rocket expels 8.00 kg of gas per second at

an exhaust velocity of 2.20×103 m/s?

55. Professional Application

Calculate the increase in velocity of a 4000-kg space probe
that expels 3500 kg of its mass at an exhaust velocity of

2.00×103 m/s . You may assume the gravitational force is
negligible at the probe’s location.

56. Professional Application

Ion-propulsion rockets have been proposed for use in space.
They employ atomic ionization techniques and nuclear energy
sources to produce extremely high exhaust velocities,

perhaps as great as 8.00×106 m/s . These techniques
allow a much more favorable payload-to-fuel ratio. To
illustrate this fact: (a) Calculate the increase in velocity of a
20,000-kg space probe that expels only 40.0-kg of its mass at
the given exhaust velocity. (b) These engines are usually
designed to produce a very small thrust for a very long
time—the type of engine that might be useful on a trip to the
outer planets, for example. Calculate the acceleration of such

an engine if it expels 4.50×10−6 kg/s at the given velocity,

assuming the acceleration due to gravity is negligible.

57. Derive the equation for the vertical acceleration of a
rocket.

58. Professional Application

(a) Calculate the maximum rate at which a rocket can expel
gases if its acceleration cannot exceed seven times that of

gravity. The mass of the rocket just as it runs out of fuel is

75,000-kg, and its exhaust velocity is 2.40×103 m/s .
Assume that the acceleration of gravity is the same as on

Earth’s surface 9.80 m/s2 . (b) Why might it be necessary

to limit the acceleration of a rocket?

59. Given the following data for a fire extinguisher-toy wagon
rocket experiment, calculate the average exhaust velocity of
the gases expelled from the extinguisher. Starting from rest,
the final velocity is 10.0 m/s. The total mass is initially 75.0 kg
and is 70.0 kg after the extinguisher is fired.

60. How much of a single-stage rocket that is 100,000 kg can
be anything but fuel if the rocket is to have a final speed of
8.00 km/s , given that it expels gases at an exhaust velocity

of 2.20×103 m/s?

61. Professional Application

(a) A 5.00-kg squid initially at rest ejects 0.250-kg of fluid with
a velocity of 10.0 m/s. What is the recoil velocity of the squid
if the ejection is done in 0.100 s and there is a 5.00-N
frictional force opposing the squid’s movement. (b) How much
energy is lost to work done against friction?

62. Unreasonable Results

Squids have been reported to jump from the ocean and travel
30.0 m (measured horizontally) before re-entering the
water. (a) Calculate the initial speed of the squid if it leaves
the water at an angle of 20.0º , assuming negligible lift from
the air and negligible air resistance. (b) The squid propels
itself by squirting water. What fraction of its mass would it
have to eject in order to achieve the speed found in the
previous part? The water is ejected at 12.0 m/s ;
gravitational force and friction are neglected. (c) What is
unreasonable about the results? (d) Which premise is
unreasonable, or which premises are inconsistent?

63. Construct Your Own Problem

Consider an astronaut in deep space cut free from her space
ship and needing to get back to it. The astronaut has a few
packages that she can throw away to move herself toward the
ship. Construct a problem in which you calculate the time it
takes her to get back by throwing all the packages at one time
compared to throwing them one at a time. Among the things
to be considered are the masses involved, the force she can
exert on the packages through some distance, and the
distance to the ship.

64. Construct Your Own Problem

Consider an artillery projectile striking armor plating.
Construct a problem in which you find the force exerted by
the projectile on the plate. Among the things to be considered
are the mass and speed of the projectile and the distance
over which its speed is reduced. Your instructor may also
wish for you to consider the relative merits of depleted
uranium versus lead projectiles based on the greater density
of uranium.
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Test Prep for AP® Courses

8.1 Linear Momentum and Force
1. A boy standing on a frictionless ice rink is initially at rest.
He throws a snowball in the +x-direction, and it travels on a
ballistic trajectory, hitting the ground some distance away.
Which of the following is true about the boy while he is in the
act of throwing the snowball?

a. He feels an upward force to compensate for the
downward trajectory of the snowball.

b. He feels a backward force exerted by the snowball he is
throwing.

c. He feels no net force.
d. He feels a forward force, the same force that propels the

snowball.

2. A 150-g baseball is initially moving 80 mi/h in the –x-
direction. After colliding with a baseball bat for 20 ms, the
baseball moves 80 mi/h in the +x-direction. What is the
magnitude and direction of the average force exerted by the
bat on the baseball?

8.2 Impulse
3. A 1.0-kg ball of putty is released from rest and falls
vertically 1.5 m until it strikes a hard floor, where it comes to
rest in a 0.045-s time interval. What is the magnitude and
direction of the average force exerted on the ball by the floor
during the collision?

a. 33 N, up
b. 120 N, up
c. 120 N, down
d. 240 N, down

4. A 75-g ball is dropped from rest from a height of 2.2 m. It
bounces off the floor and rebounds to a maximum height of
1.7 m. If the ball is in contact with the floor for 0.024 s, what is
the magnitude and direction of the average force exerted on
the ball by the floor during the collision?

5. A 2.4-kg ceramic bowl falls to the floor. During the 0.018-s
impact, the bowl experiences an average force of 750 N from
the floor. The bowl is at rest after the impact. From what initial
height did the bowl fall?

a. 1.6 m
b. 2.8 m
c. 3.2 m
d. 5.6 m

6. Whether or not an object (such as a plate, glass, or bone)
breaks upon impact depends on the average force exerted on
that object by the surface. When a 1.2-kg glass figure hits the
floor, it will break if it experiences an average force of 330 N.
When it hits a tile floor, the glass comes to a stop in 0.015 s.
From what minimum height must the glass fall to experience
sufficient force to break? How would your answer change if
the figure were falling to a padded or carpeted surface?
Explain.

7. A 2.5-kg block slides across a frictionless table toward a
horizontal spring.As the block bounces off the spring, a probe
measures the velocity of the block (initially negative, moving
away from the probe) over time as follows:

Table 8.2

Velocity (m/s) Time (s)

−12.0 0

−10.0 0.10

−6.0 0.20

0 0.30

6.0 0.40

10.0 0.50

12.0 0.60

What is the average force exerted on the block by the spring
over the entire 0.60-s time interval of the collision?

a. 50 N
b. 60 N
c. 100 N
d. 120 N

8. During an automobile crash test, the average force exerted
by a solid wall on a 2500-kg car that hits the wall is measured
to be 740,000 N over a 0.22-s time interval. What was the
initial speed of the car prior to the collision, assuming the car
is at rest at the end of the time interval?

9. A test car is driving toward a solid crash-test barrier with a
speed of 45 mi/h. Two seconds prior to impact, the car begins
to brake, but it is still moving when it hits the wall. After the
collision with the wall, the car crumples somewhat and comes
to a complete stop. In order to estimate the average force
exerted by the wall on the car, what information would you
need to collect?

a. The (negative) acceleration of the car before it hits the
wall and the distance the car travels while braking.

b. The (negative) acceleration of the car before it hits the
wall and the velocity of the car just before impact.

c. The velocity of the car just before impact and the
duration of the collision with the wall.

d. The duration of the collision with the wall and the
distance the car travels while braking.

10. Design an experiment to verify the relationship between
the average force exerted on an object and the change in
momentum of that object. As part of your explanation, list the
equipment you would use and describe your experimental
setup. What would you measure and how? How exactly
would you verify the relationship? Explain.

11. A 22-g puck hits the wall of an air hockey table
perpendicular to the wall with an initial speed of 14 m/s.The
puck is in contact with the wall for 0.0055 s, and it rebounds
from the wall with a speed of 14 m/s in the opposite
direction.What is the magnitude of the average force exerted
by the wall on the puck?

a. 0.308 N
b. 0.616 N
c. 56 N
d. 112 N

12. A 22-g puck hits the wall of an air hockey table
perpendicular to the wall with an initial speed of 7 m/s. The
puck is in contact with the wall for 0.011 s, and the wall exerts
an average force of 28 N on the puck during that time.
Calculate the magnitude and direction of the change in
momentum of the puck.

13.
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Figure 8.20 This is a graph showing the force exerted by a rigid wall
versus time. The graph in Figure 8.20 represents the force
exerted on a particle during a collision. What is the magnitude
of the change in momentum of the particle as a result of the
collision?

a. 1.2 kg • m/s
b. 2.4 kg • m/s
c. 3.6 kg • m/s
d. 4.8 kg • m/s

14.

Figure 8.21 This is a graph showing the force exerted by a rigid wall
versus time. The graph in Figure 8.21 represents the force
exerted on a particle during a collision. What is the magnitude
of the change in momentum of the particle as a result of the
collision?

8.3 Conservation of Momentum
15. Which of the following is an example of an open system?

a. Two air cars colliding on a track elastically.
b. Two air cars colliding on a track and sticking together.
c. A bullet being fired into a hanging wooden block and

becoming embedded in the block, with the system then
acting as a ballistic pendulum.

d. A bullet being fired into a hillside and becoming buried
in the earth.

16. A 40-kg girl runs across a mat with a speed of 5.0 m/s
and jumps onto a 120-kg hanging platform initially at rest,
causing the girl and platform to swing back and forth like a
pendulum together after her jump. What is the combined
velocity of the girl and platform after the jump? What is the
combined momentum of the girl and platform both before and
after the collision?

A 50-kg boy runs across a mat with a speed of 6.0 m/s and
collides with a soft barrier on the wall, rebounding off the wall
and falling to the ground. The boy is at rest after the collision.
What is the momentum of the boy before and after the
collision? Is momentum conserved in this collision? Explain.
Which of these is an example of an open system and which is
an example of a closed system? Explain your answer.

17. A student sets up an experiment to measure the
momentum of a system of two air cars, A and B, of equal
mass, moving on a linear, frictionless track. Before the
collision, car A has a certain speed, and car B is at rest.

Which of the following will be true about the total momentum
of the two cars?

a. It will be greater before the collision.
b. It will be equal before and after the collision.
c. It will be greater after the collision.
d. The answer depends on whether the collision is elastic

or inelastic.

18. A group of students has two carts, A and B, with wheels
that turn with negligible friction. The carts can travel along a
straight horizontal track. Cart A has known mass mA. The
students are asked to use a one-dimensional collision
between the carts to determine the mass of cart B. Before the
collision, cart A travels to the right and cart B is initially at rest.
After the collision, the carts stick together.

a. Describe an experimental procedure to determine the
velocities of the carts before and after a collision,
including all the additional equipment you would need.
You may include a labeled diagram of your setup to help
in your description. Indicate what measurements you
would take and how you would take them. Include
enough detail so that another student could carry out
your procedure.

b. There will be sources of error in the measurements
taken in the experiment, both before and after the
collision. For your experimental procedure, will the
uncertainty in the calculated value of the mass of cart B

be affected more by the error in the measurements
taken before the collision or by those taken after the
collision, or will it be equally affected by both sets of
measurements? Justify your answer.

A group of students took measurements for one collision. A
graph of the students’ data is shown below.

Figure 8.22 The image shows a graph with position in meters on the
vertical axis and time in seconds on the horizontal axis.

c. Given mA = 0.50 kg, use the graph to calculate the
mass of cart B. Explicitly indicate the principles used in
your calculations.

d. The students are now asked to Consider the kinetic
energy changes in an inelastic collision, specifically
whether the initial values of one of the physical
quantities affect the fraction of mechanical energy
dissipated in the collision. How could you modify the
experiment to investigate this question? Be sure to
explicitly describe the calculations you would make,
specifying all equations you would use (but do not
actually do any algebra or arithmetic).

19. Cart A is moving with an initial velocity +v (in the positive
direction) toward cart B, initially at rest. Both carts have equal
mass and are on a frictionless surface. Which of the following
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statements correctly characterizes the velocity of the center of
mass of the system before and after the collision?

a. +
2

before, −
2

after

b. +
2

before, 0 after

c. +
2

before, +
2

after

d. 0 before, 0 after

20. Cart A is moving with a velocity of +10 m/s toward cart B,
which is moving with a velocity of +4 m/s. Both carts have
equal mass and are moving on a frictionless surface. The two
carts have an inelastic collision and stick together after the
collision. Calculate the velocity of the center of mass of the
system before and after the collision. If there were friction
present in this problem, how would this external force affect
the center-of-mass velocity both before and after the
collision?

8.4 Elastic Collisions in One Dimension
21. Two cars (A and B) of mass 1.5 kg collide. Car A is
initially moving at 12 m/s, and car B is initially moving in the
same direction with a speed of 6 m/s. The two cars are
moving along a straight line before and after the collision.
What will be the change in momentum of this system after the
collision?

a. −27 kg • m/s
b. zero
c. +27 kg • m/s
d. It depends on whether the collision is elastic or inelastic.

22. Two cars (A and B) of mass 1.5 kg collide. Car A is
initially moving at 24 m/s, and car B is initially moving in the
opposite direction with a speed of 12 m/s. The two cars are
moving along a straight line before and after the collision. (a)
If the two cars have an elastic collision, calculate the change
in momentum of the two-car system. (b) If the two cars have a
completely inelastic collision, calculate the change in
momentum of the two-car system.

23. Puck A (200 g) slides across a frictionless surface to
collide with puck B (800 g), initially at rest. The velocity of
each puck is measured during the experiment as follows:

Table 8.3

Time Velocity A Velocity B

0 +8.0 m/s 0

1.0 s +8.0 m/s 0

2.0 s −2.0 m/s +2.5 m/s

3.0 s −2.0 m/s +2.5 m/s

What is the change in momentum of the center of mass of the
system as a result of the collision?

a. +1.6 kg•m/s
b. +0.8 kg•m/s
c. 0
d. −1.6 kg•m/s

24. For the table above, calculate the center-of-mass velocity
of the system both before and after the collision, then
calculate the center-of-mass momentum of the system both
before and after the collision. From this, determine the
change in the momentum of the system as a result of the
collision.

25. Two cars (A and B) of equal mass have an elastic
collision. Prior to the collision, car A is moving at 15 m/s in the
+x-direction, and car B is moving at 10 m/s in the –x-direction.
Assuming that both cars continue moving along the x-axis
after the collision, what will be the velocity of car A after the
collision?

a. same as the original 15 m/s speed, opposite direction
b. equal to car B’s velocity prior to the collision
c. equal to the average of the two velocities, in its original

direction
d. equal to the average of the two velocities, in the

opposite direction

26. Two cars (A and B) of equal mass have an elastic
collision. Prior to the collision, car A is moving at 20 m/s in the
+x-direction, and car B is moving at 10 m/s in the –x-direction.
Assuming that both cars continue moving along the x-axis
after the collision, what will be the velocities of each car after
the collision?

27. A rubber ball is dropped from rest at a fixed height. It
bounces off a hard floor and rebounds upward, but it only
reaches 90% of its original fixed height. What is the best way
to explain the loss of kinetic energy of the ball during the
collision?

a. Energy was required to deform the ball’s shape during
the collision with the floor.

b. Energy was lost due to work done by the ball pushing
on the floor during the collision.

c. Energy was lost due to friction between the ball and the
floor.

d. Energy was lost due to the work done by gravity during
the motion.

28. A tennis ball strikes a wall with an initial speed of 15 m/s.
The ball bounces off the wall but rebounds with slightly less
speed (14 m/s) after the collision. Explain (a) what else
changed its momentum in response to the ball’s change in
momentum so that overall momentum is conserved, and (b)
how some of the ball’s kinetic energy was lost.

29. Two objects, A and B, have equal mass. Prior to the
collision, mass A is moving 10 m/s in the +x-direction, and
mass B is moving 4 m/s in the +x-direction. Which of the
following results represents an inelastic collision between A
and B?

a. After the collision, mass A is at rest, and mass B moves
14 m/s in the +x-direction.

b. After the collision, mass A moves 4 m/s in the –x-
direction, and mass B moves 18 m/s in the +x-direction.

c. After the collision, the two masses stick together and
move 7 m/s in the +x-direction.

d. After the collision, mass A moves 4 m/s in the +x-
direction, and mass B moves 10 m/s in the +x-direction.

30. Mass A is three times more massive than mass B. Mass
A is initially moving 12 m/s in the +x-direction. Mass B is
initially moving 12 m/s in the –x-direction. Assuming that the
collision is elastic, calculate the final velocity of both masses
after the collision. Show that your results are consistent with
conservation of momentum and conservation of kinetic
energy.

31. Two objects (A and B) of equal mass collide elastically.
Mass A is initially moving 5.0 m/s in the +x-direction prior to
the collision. Mass B is initially moving 3.0 m/s in the –x-
direction prior to the collision. After the collision, mass A will
be moving with a velocity of 3.0 m/s in the –x-direction. What
will be the velocity of mass B after the collision?

a. 3.0 m/s in the +x-direction
b. 5.0 m/s in the +x-direction
c. 3.0 m/s in the –x-direction
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d. 5.0 m/s in the –x-direction

32. Two objects (A and B) of equal mass collide elastically.
Mass A is initially moving 4.0 m/s in the +x-direction prior to
the collision. Mass B is initially moving 8.0 m/s in the –x-
direction prior to the collision. After the collision, mass A will
be moving with a velocity of 8.0 m/s in the –x-direction. (a)
Use the principle of conservation of momentum to predict the
velocity of mass B after the collision. (b) Use the fact that
kinetic energy is conserved in elastic collisions to predict the
velocity of mass B after the collision.

33. Two objects of equal mass collide. Object A is initially
moving in the +x-direction with a speed of 12 m/s, and object
B is initially at rest. After the collision, object A is at rest, and
object B is moving away with some unknown velocity. There
are no external forces acting on the system of two masses.
What statement can we make about this collision?

a. Both momentum and kinetic energy are conserved.
b. Momentum is conserved, but kinetic energy is not

conserved.
c. Neither momentum nor kinetic energy is conserved.
d. More information is needed in order to determine which

is conserved.

34. Two objects of equal mass collide. Object A is initially
moving with a velocity of 15 m/s in the +x-direction, and
object B is initially at rest. After the collision, object A is at
rest. There are no external forces acting on the system of two
masses. (a) Use momentum conservation to deduce the
velocity of object B after the collision. (b) Is this collision
elastic? Justify your answer.

35. Which of the following statements is true about an
inelastic collision?

a. Momentum is conserved, and kinetic energy is
conserved.

b. Momentum is conserved, and kinetic energy is not
conserved.

c. Momentum is not conserved, and kinetic energy is
conserved.

d. Momentum is not conserved, and kinetic energy is not
conserved.

36. Explain how the momentum and kinetic energy of a
system of two colliding objects changes as a result of (a) an
elastic collision and (b) an inelastic collision.

37. Figure 8.9 shows the positions of two colliding objects
measured before, during, and after a collision. Mass A is 1.0
kg. Mass B is 3.0 kg. Which of the following statements is
true?

a. This is an elastic collision, with a total momentum of 0
kg • m/s.

b. This is an elastic collision, with a total momentum of
1.67 kg • m/s.

c. This is an inelastic collision, with a total momentum of 0
kg • m/s.

d. This is an inelastic collision, with a total momentum of
1.67 kg • m/s.

38. For the above graph, determine the initial and final
momentum for both objects, assuming mass A is 1.0 kg and
mass B is 3.0 kg. Also, determine the initial and final kinetic
energies for both objects. Based on your results, explain
whether momentum is conserved in this collision, and state
whether the collision is elastic or inelastic.

39. Mass A (1.0 kg) slides across a frictionless surface with a
velocity of 8 m/s in the positive direction. Mass B (3.0 kg) is
initially at rest. The two objects collide and stick together.
What will be the change in the center-of-mass velocity of the
system as a result of the collision?

a. There will be no change in the center-of-mass velocity.
b. The center-of-mass velocity will decrease by 2 m/s.
c. The center-of-mass velocity will decrease by 6 m/s.
d. The center-of-mass velocity will decrease by 8 m/s.

40. Mass A (1.0 kg) slides across a frictionless surface with a
velocity of 4 m/s in the positive direction. Mass B (1.0 kg)
slides across the same surface in the opposite direction with
a velocity of −8 m/s. The two objects collide and stick together
after the collision. Predict how the center-of-mass velocity will
change as a result of the collision, and explain your
prediction. Calculate the center-of-mass velocity of the
system both before and after the collision and explain why it
remains the same or why it has changed.

8.5 Inelastic Collisions in One Dimension
41. Mass A (2.0 kg) has an initial velocity of 4 m/s in the +x-
direction. Mass B (2.0 kg) has an initial velocity of 5 m/s in the
–x-direction. If the two masses have an elastic collision, what
will be the final velocities of the masses after the collision?

a. Both will move 0.5 m/s in the –x-direction.
b. Mass A will stop; mass B will move 9 m/s in the +x-

direction.
c. Mass B will stop; mass A will move 9 m/s in the –x-

direction.
d. Mass A will move 5 m/s in the –x-direction; mass B will

move 4 m/s in the +x-direction.

42. Mass A has an initial velocity of 22 m/s in the +x-direction.
Mass B is three times more massive than mass A and has an
initial velocity of 22 m/s in the –x-direction. If the two masses
have an elastic collision, what will be the final velocities of the
masses after the collision?

43. Mass A (2.0 kg) is moving with an initial velocity of 15 m/s
in the +x-direction, and it collides with mass B (5.0 kg), initially
at rest. After the collision, the two objects stick together and
move as one. What is the change in kinetic energy of the
system as a result of the collision?

a. no change
b. decrease by 225 J
c. decrease by 161 J
d. decrease by 64 J

44. Mass A (2.0 kg) is moving with an initial velocity of 15 m/s
in the +x-direction, and it collides with mass B (4.0 kg), initially
moving 7.0 m/s in the +x-direction. After the collision, the two
objects stick together and move as one. What is the change
in kinetic energy of the system as a result of the collision?

45. Mass A slides across a rough table with an initial velocity
of 12 m/s in the +x-direction. By the time mass A collides with
mass B (a stationary object with equal mass), mass A has
slowed to 10 m/s. After the collision, the two objects stick
together and move as one. Immediately after the collision, the
velocity of the system is measured to be 5 m/s in the +x-
direction, and the system eventually slides to a stop. Which of
the following statements is true about this motion?

a. Momentum is conserved during the collision, but it is not
conserved during the motion before and after the
collision.

b. Momentum is not conserved at any time during this
analysis.

c. Momentum is conserved at all times during this
analysis.

d. Momentum is not conserved during the collision, but it is
conserved during the motion before and after the
collision.

46. Mass A is initially moving with a velocity of 12 m/s in the
+x-direction. Mass B is twice as massive as mass A and is
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initially at rest. After the two objects collide, the two masses
move together as one with a velocity of 4 m/s in the +x-
direction. Is momentum conserved in this collision?

47. Mass A is initially moving with a velocity of 24 m/s in the
+x-direction. Mass B is twice as massive as mass A and is
initially at rest. The two objects experience a totally inelastic
collision. What is the final speed of both objects after the
collision?

a. A is not moving; B is moving 24 m/s in the +x-direction.
b. Neither A nor B is moving.
c. A is moving 24 m/s in the –x-direction. B is not moving.
d. Both A and B are moving together 8 m/s in the +x-

direction.

48. Mass A is initially moving with some unknown velocity in
the +x-direction. Mass B is twice as massive as mass A and
initially at rest. The two objects collide, and after the collision,
they move together with a speed of 6 m/s in the +x-direction.
(a) Is this collision elastic or inelastic? Explain. (b) Determine
the initial velocity of mass A.

49. Mass A is initially moving with a velocity of 2 m/s in the
+x-direction. Mass B is initially moving with a velocity of 6 m/s
in the –x-direction. The two objects have equal masses. After
they collide, mass A moves with a speed of 4 m/s in the –x-
direction. What is the final velocity of mass B after the
collision?

a. 6 m/s in the +x-direction
b. 4 m/s in the +x-direction
c. zero
d. 4 m/s in the –x-direction

50. Mass A is initially moving with a velocity of 15 m/s in the
+x-direction. Mass B is twice as massive and is initially
moving with a velocity of 10 m/s in the –x-direction. The two
objects collide, and after the collision, mass A moves with a
speed of 15 m/s in the –x-direction. (a) What is the final
velocity of mass B after the collision? (b) Calculate the
change in kinetic energy as a result of the collision, assuming
mass A is 5.0 kg.

8.6 Collisions of Point Masses in Two
Dimensions
51. Two cars of equal mass approach an intersection. Car A
is moving east at a speed of 45 m/s. Car B is moving south at
a speed of 35 m/s. They collide inelastically and stick together
after the collision, moving as one object. Which of the
following statements is true about the center-of-mass velocity
of this system?

a. The center-of-mass velocity will decrease after the
collision as a result of lost energy (but not drop to zero).

b. The center-of-mass velocity will remain the same after
the collision since momentum is conserved.

c. The center-of-mass velocity will drop to zero since the
two objects stick together.

d. The magnitude of the center-of-mass velocity will
remain the same, but the direction of the velocity will
change.

52. Car A has a mass of 2000 kg and approaches an
intersection with a velocity of 38 m/s directed to the east. Car
B has a mass of 3500 kg and approaches the intersection
with a velocity of 53 m/s directed 63° north of east. The two
cars collide and stick together after the collision. Will the
center-of-mass velocity change as a result of the collision?
Explain why or why not. Calculate the center-of-mass velocity
before and after the collision.

Chapter 8 | Linear Momentum and Collisions 355



356 Chapter 8 | Linear Momentum and Collisions

This content is available for free at http://cnx.org/content/col11844/1.13



9 STATICS AND TORQUE

Figure 9.1 On a short time scale, rocks like these in Australia's Kings Canyon are static, or motionless relative to the Earth. (credit:
freeaussiestock.com)

Chapter Outline
9.1. The First Condition for Equilibrium

9.2. The Second Condition for Equilibrium

9.3. Stability

9.4. Applications of Statics, Including Problem-Solving Strategies

9.5. Simple Machines

9.6. Forces and Torques in Muscles and Joints

Connection for AP® Courses
What might desks, bridges, buildings, trees, and mountains have in common? What do these objects have in common with a car
moving at a constant velocity? While it may be apparent that the objects in the first group are all motionless relative to Earth, they
also share something with the moving car and all objects moving at a constant velocity. All of these objects, stationary and
moving, share an acceleration of zero. How can this be? Consider Newton's second law, F = ma. When acceleration is zero, as
is the case for both stationary objects and objects moving at a constant velocity, the net external force must also be zero (Big
Idea 3). Forces are acting on both stationary objects and on objects moving at a constant velocity, but the forces are balanced.
That is, they are in equilibrium. In equilibrium, the net force is zero.

The first two sections of this chapter will focus on the two conditions necessary for equilibrium. They will not only help you to
distinguish between stationary bridges and cars moving at constant velocity, but will introduce a second equilibrium condition,
this time involving rotation. As you explore the second equilibrium condition, you will learn about torque, in support of both
Enduring Understanding 3.F and Essential Knowledge 3.F.1. Much like a force, torque provides the capability for acceleration;
however, with careful attention, torques may also be balanced and equilibrium can be reached.

The remainder of this chapter will discuss a variety of interesting equilibrium applications. From the art of balancing, to simple
machines, to the muscles in your body, the world around you relies upon the principles of equilibrium to remain stable. This
chapter will help you to see just how closely related these events truly are.
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The content in this chapter supports:

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.F A force exerted on an object can cause a torque on that object.

Essential Knowledge 3.F.1 Only the force component perpendicular to the line connecting the axis of rotation and the point of
application of the force results in a torque about that axis.

9.1 The First Condition for Equilibrium

Learning Objectives
By the end of this section, you will be able to:

• State the first condition of equilibrium.
• Explain static equilibrium.
• Explain dynamic equilibrium.

The first condition necessary to achieve equilibrium is the one already mentioned: the net external force on the system must be
zero. Expressed as an equation, this is simply

(9.1)net F = 0

Note that if net is zero, then the net external force in any direction is zero. For example, the net external forces along the
typical x- and y-axes are zero. This is written as

(9.2)net = 0 and = 0

Figure 9.2 and Figure 9.3 illustrate situations where net = 0 for both static equilibrium (motionless), and dynamic
equilibrium (constant velocity).

Figure 9.2 This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case.

Figure 9.3 This car is in dynamic equilibrium because it is moving at constant velocity. There are horizontal and vertical forces, but the net external
force in any direction is zero. The applied force app between the tires and the road is balanced by air friction, and the weight of the car is supported

by the normal forces, here shown to be equal for all four tires.

However, it is not sufficient for the net external force of a system to be zero for a system to be in equilibrium. Consider the two
situations illustrated in Figure 9.4 and Figure 9.5 where forces are applied to an ice hockey stick lying flat on ice. The net
external force is zero in both situations shown in the figure; but in one case, equilibrium is achieved, whereas in the other, it is
not. In Figure 9.4, the ice hockey stick remains motionless. But in Figure 9.5, with the same forces applied in different places,
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the stick experiences accelerated rotation. Therefore, we know that the point at which a force is applied is another factor in
determining whether or not equilibrium is achieved. This will be explored further in the next section.

Figure 9.4 An ice hockey stick lying flat on ice with two equal and opposite horizontal forces applied to it. Friction is negligible, and the gravitational
force is balanced by the support of the ice (a normal force). Thus, net = 0 . Equilibrium is achieved, which is static equilibrium in this case.

Figure 9.5 The same forces are applied at other points and the stick rotates—in fact, it experiences an accelerated rotation. Here net = 0 but the

system is not at equilibrium. Hence, the net = 0 is a necessary—but not sufficient—condition for achieving equilibrium.

PhET Explorations: Torque

Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration, moment of
inertia, angular momentum and torque.

Figure 9.6 Torque (http://cnx.org/content/m55176/1.2/torque_en.jar)

9.2 The Second Condition for Equilibrium

Learning Objectives
By the end of this section, you will be able to:

• State the second condition that is necessary to achieve equilibrium.
• Explain torque and the factors on which it depends.
• Describe the role of torque in rotational mechanics.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 2.3)
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Torque

The second condition necessary to achieve equilibrium involves avoiding accelerated rotation (maintaining a constant
angular velocity. A rotating body or system can be in equilibrium if its rate of rotation is constant and remains unchanged by
the forces acting on it. To understand what factors affect rotation, let us think about what happens when you open an
ordinary door by rotating it on its hinges.

Several familiar factors determine how effective you are in opening the door. See Figure 9.7. First of all, the larger the force, the
more effective it is in opening the door—obviously, the harder you push, the more rapidly the door opens. Also, the point at which
you push is crucial. If you apply your force too close to the hinges, the door will open slowly, if at all. Most people have been
embarrassed by making this mistake and bumping up against a door when it did not open as quickly as expected. Finally, the
direction in which you push is also important. The most effective direction is perpendicular to the door—we push in this direction
almost instinctively.

Figure 9.7 Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed from overhead). Torque
has both magnitude and direction. (a) Counterclockwise torque is produced by this force, which means that the door will rotate in a counterclockwise
due to F . Note that ⊥ is the perpendicular distance of the pivot from the line of action of the force. (b) A smaller counterclockwise torque is

produced by a smaller force F′ acting at the same distance from the hinges (the pivot point). (c) The same force as in (a) produces a smaller
counterclockwise torque when applied at a smaller distance from the hinges. (d) The same force as in (a), but acting in the opposite direction, produces
a clockwise torque. (e) A smaller counterclockwise torque is produced by the same magnitude force acting at the same point but in a different direction.
Here, is less than 90º . (f) Torque is zero here since the force just pulls on the hinges, producing no rotation. In this case, = 0º .

The magnitude, direction, and point of application of the force are incorporated into the definition of the physical quantity called
torque. Torque is the rotational equivalent of a force. It is a measure of the effectiveness of a force in changing or accelerating a
rotation (changing the angular velocity over a period of time). In equation form, the magnitude of torque is defined to be

(9.3)= sin

where (the Greek letter tau) is the symbol for torque, is the distance from the pivot point to the point where the force is

applied, is the magnitude of the force, and is the angle between the force and the vector directed from the point of
application to the pivot point, as seen in Figure 9.7 and Figure 9.8. An alternative expression for torque is given in terms of the
perpendicular lever arm ⊥ as shown in Figure 9.7 and Figure 9.8, which is defined as

(9.4)
⊥ = sin

so that

(9.5)= ⊥ .
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Figure 9.8 A force applied to an object can produce a torque, which depends on the location of the pivot point. (a) The three factors , , and for

pivot point A on a body are shown here— is the distance from the chosen pivot point to the point where the force is applied, and is the angle

between F and the vector directed from the point of application to the pivot point. If the object can rotate around point A, it will rotate
counterclockwise. This means that torque is counterclockwise relative to pivot A. (b) In this case, point B is the pivot point. The torque from the applied
force will cause a clockwise rotation around point B, and so it is a clockwise torque relative to B.

The perpendicular lever arm ⊥ is the shortest distance from the pivot point to the line along which F acts; it is shown as a

dashed line in Figure 9.7 and Figure 9.8. Note that the line segment that defines the distance ⊥ is perpendicular to F , as its

name implies. It is sometimes easier to find or visualize ⊥ than to find both and . In such cases, it may be more

convenient to use τ = r
⊥

F rather than = sin for torque, but both are equally valid.

The SI unit of torque is newtons times meters, usually written as N · m . For example, if you push perpendicular to the door

with a force of 40 N at a distance of 0.800 m from the hinges, you exert a torque of 32 N·m(0.800 m×40 N×sin 90º) relative

to the hinges. If you reduce the force to 20 N, the torque is reduced to 16 N·m , and so on.

The torque is always calculated with reference to some chosen pivot point. For the same applied force, a different choice for the
location of the pivot will give you a different value for the torque, since both and depend on the location of the pivot. Any
point in any object can be chosen to calculate the torque about that point. The object may not actually pivot about the chosen
“pivot point.”

Note that for rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise relative to the
chosen pivot point, as illustrated for points B and A, respectively, in Figure 9.8. If the object can rotate about point A, it will rotate
counterclockwise, which means that the torque for the force is shown as counterclockwise relative to A. But if the object can
rotate about point B, it will rotate clockwise, which means the torque for the force shown is clockwise relative to B. Also, the
magnitude of the torque is greater when the lever arm is longer.

Making Connections: Pivoting Block

A solid block of length d is pinned to a wall on its right end. Three forces act on the block as shown below: FA, FB, and FC.
While all three forces are of equal magnitude, and all three are equal distances away from the pivot point, all three forces will
create a different torque upon the object.

FA is vectored perpendicular to its distance from the pivot point; as a result, the magnitude of its torque can be found by the
equation τ=FA*d. Vector FB is parallel to the line connecting the point of application of force and the pivot point. As a result, it
does not provide an ability to rotate the object and, subsequently, its torque is zero. FC, however, is directed at an angle ϴ to
the line connecting the point of application of force and the pivot point. In this instance, only the component perpendicular to
this line is exerting a torque. This component, labeled F⊥, can be found using the equation F⊥=FCsinθ. The component of
the force parallel to this line, labeled F∥, does not provide an ability to rotate the object and, as a result, does not provide a
torque. Therefore, the resulting torque created by FC is τ=F⊥*d.
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Figure 9.9 Forces on a block pinned to a wall. A solid block of length d is pinned to a wall on its right end. Three forces act on the block: FA, FB,
and FC.

Now, the second condition necessary to achieve equilibrium is that the net external torque on a system must be zero. An external
torque is one that is created by an external force. You can choose the point around which the torque is calculated. The point can
be the physical pivot point of a system or any other point in space—but it must be the same point for all torques. If the second
condition (net external torque on a system is zero) is satisfied for one choice of pivot point, it will also hold true for any other
choice of pivot point in or out of the system of interest. (This is true only in an inertial frame of reference.) The second condition
necessary to achieve equilibrium is stated in equation form as

(9.6)net = 0

where net means total. Torques, which are in opposite directions are assigned opposite signs. A common convention is to call
counterclockwise (ccw) torques positive and clockwise (cw) torques negative.

When two children balance a seesaw as shown in Figure 9.10, they satisfy the two conditions for equilibrium. Most people have
perfect intuition about seesaws, knowing that the lighter child must sit farther from the pivot and that a heavier child can keep a
lighter one off the ground indefinitely.

Figure 9.10 Two children balancing a seesaw satisfy both conditions for equilibrium. The lighter child sits farther from the pivot to create a torque equal
in magnitude to that of the heavier child.

Example 9.1 She Saw Torques On A Seesaw

The two children shown in Figure 9.10 are balanced on a seesaw of negligible mass. (This assumption is made to keep the
example simple—more involved examples will follow.) The first child has a mass of 26.0 kg and sits 1.60 m from the pivot.(a)
If the second child has a mass of 32.0 kg, how far is she from the pivot? (b) What is p , the supporting force exerted by the

pivot?

Strategy

Both conditions for equilibrium must be satisfied. In part (a), we are asked for a distance; thus, the second condition
(regarding torques) must be used, since the first (regarding only forces) has no distances in it. To apply the second condition
for equilibrium, we first identify the system of interest to be the seesaw plus the two children. We take the supporting pivot to
be the point about which the torques are calculated. We then identify all external forces acting on the system.
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Solution (a)

The three external forces acting on the system are the weights of the two children and the supporting force of the pivot. Let
us examine the torque produced by each. Torque is defined to be

(9.7)= sin .

Here = 90º , so that sin = 1 for all three forces. That means ⊥ = for all three. The torques exerted by the three

forces are first,

(9.8)1 = 1 1

second,

(9.9)2 = – 2 2

and third,

(9.10)p = p p

= 0 ⋅ p

= 0.

Note that a minus sign has been inserted into the second equation because this torque is clockwise and is therefore
negative by convention. Since p acts directly on the pivot point, the distance p is zero. A force acting on the pivot

cannot cause a rotation, just as pushing directly on the hinges of a door will not cause it to rotate. Now, the second condition
for equilibrium is that the sum of the torques on both children is zero. Therefore

(9.11)2 = – 1,

or

(9.12)2 2 = 1 1.

Weight is mass times the acceleration due to gravity. Entering for , we get

(9.13)2 2 = 1 1 .

Solve this for the unknown 2 :

(9.14)
2 = 1

1

2
.

The quantities on the right side of the equation are known; thus, 2 is

(9.15)
2 = (1.60 m)

26.0 kg

32.0 kg
= 1.30 m.

As expected, the heavier child must sit closer to the pivot (1.30 m versus 1.60 m) to balance the seesaw.

Solution (b)

This part asks for a force p . The easiest way to find it is to use the first condition for equilibrium, which is

(9.16)net F = 0.

The forces are all vertical, so that we are dealing with a one-dimensional problem along the vertical axis; hence, the
condition can be written as

(9.17)net = 0

where we again call the vertical axis the y-axis. Choosing upward to be the positive direction, and using plus and minus
signs to indicate the directions of the forces, we see that

(9.18)p – 1 – 2 = 0.

This equation yields what might have been guessed at the beginning:

(9.19)p = 1 + 2.

So, the pivot supplies a supporting force equal to the total weight of the system:

(9.20)p = 1 + 2 .
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Entering known values gives

(9.21)
p = 26.0 kg 9.80 m/s2 + 32.0 kg 9.80 m/s2

= 568 N.

Discussion

The two results make intuitive sense. The heavier child sits closer to the pivot. The pivot supports the weight of the two
children. Part (b) can also be solved using the second condition for equilibrium, since both distances are known, but only if
the pivot point is chosen to be somewhere other than the location of the seesaw's actual pivot!

Several aspects of the preceding example have broad implications. First, the choice of the pivot as the point around which
torques are calculated simplified the problem. Since p is exerted on the pivot point, its lever arm is zero. Hence, the torque

exerted by the supporting force p is zero relative to that pivot point. The second condition for equilibrium holds for any choice

of pivot point, and so we choose the pivot point to simplify the solution of the problem.

Second, the acceleration due to gravity canceled in this problem, and we were left with a ratio of masses. This will not always be

the case. Always enter the correct forces—do not jump ahead to enter some ratio of masses.

Third, the weight of each child is distributed over an area of the seesaw, yet we treated the weights as if each force were exerted
at a single point. This is not an approximation—the distances 1 and 2 are the distances to points directly below the center of

gravity of each child. As we shall see in the next section, the mass and weight of a system can act as if they are located at a
single point.

Finally, note that the concept of torque has an importance beyond static equilibrium. Torque plays the same role in rotational

motion that force plays in linear motion. We will examine this in the next chapter.

Take-Home Experiment

Take a piece of modeling clay and put it on a table, then mash a cylinder down into it so that a ruler can balance on the
round side of the cylinder while everything remains still. Put a penny 8 cm away from the pivot. Where would you need to put
two pennies to balance? Three pennies?

9.3 Stability

Learning Objectives
By the end of this section, you will be able to:

• State the types of equilibrium.
• Describe stable and unstable equilibriums.
• Describe neutral equilibrium.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 2.3)
• 3.F.1.4 The student is able to design an experiment and analyze data testing a question about torques in a balanced

rigid system. (S.P. 4.1, 4.2, 5.1)
• 3.F.1.5 The student is able to calculate torques on a two-dimensional system in static equilibrium, by examining a

representation or model (such as a diagram or physical construction). (S.P. 1.4, 2.2)

It is one thing to have a system in equilibrium; it is quite another for it to be stable. The toy doll perched on the man's hand in
Figure 9.11, for example, is not in stable equilibrium. There are three types of equilibrium: stable, unstable, and neutral. Figures
throughout this module illustrate various examples.

Figure 9.11 presents a balanced system, such as the toy doll on the man's hand, which has its center of gravity (cg) directly over
the pivot, so that the torque of the total weight is zero. This is equivalent to having the torques of the individual parts balanced
about the pivot point, in this case the hand. The cgs of the arms, legs, head, and torso are labeled with smaller type.
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Figure 9.11 A man balances a toy doll on one hand.

A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in a
direction opposite to the direction of the displacement. For example, a marble at the bottom of a bowl will experience a restoring

force when displaced from its equilibrium position. This force moves it back toward the equilibrium position. Most systems are in
stable equilibrium, especially for small displacements. For another example of stable equilibrium, see the pencil in Figure 9.12.

Figure 9.12 This pencil is in the condition of equilibrium. The net force on the pencil is zero and the total torque about any pivot is zero.

A system is in unstable equilibrium if, when displaced, it experiences a net force or torque in the same direction as the
displacement from equilibrium. A system in unstable equilibrium accelerates away from its equilibrium position if displaced even
slightly. An obvious example is a ball resting on top of a hill. Once displaced, it accelerates away from the crest. See the next
several figures for examples of unstable equilibrium.

Figure 9.13 If the pencil is displaced slightly to the side (counterclockwise), it is no longer in equilibrium. Its weight produces a clockwise torque that
returns the pencil to its equilibrium position.
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Figure 9.14 If the pencil is displaced too far, the torque caused by its weight changes direction to counterclockwise and causes the displacement to
increase.

Figure 9.15 This figure shows unstable equilibrium, although both conditions for equilibrium are satisfied.

Figure 9.16 If the pencil is displaced even slightly, a torque is created by its weight that is in the same direction as the displacement, causing the
displacement to increase.

A system is in neutral equilibrium if its equilibrium is independent of displacements from its original position. A marble on a flat
horizontal surface is an example. Combinations of these situations are possible. For example, a marble on a saddle is stable for
displacements toward the front or back of the saddle and unstable for displacements to the side. Figure 9.17 shows another
example of neutral equilibrium.
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Figure 9.17 (a) Here we see neutral equilibrium. The cg of a sphere on a flat surface lies directly above the point of support, independent of the
position on the surface. The sphere is therefore in equilibrium in any location, and if displaced, it will remain put. (b) Because it has a circular cross
section, the pencil is in neutral equilibrium for displacements perpendicular to its length.

When we consider how far a system in stable equilibrium can be displaced before it becomes unstable, we find that some
systems in stable equilibrium are more stable than others. The pencil in Figure 9.12 and the person in Figure 9.18(a) are in
stable equilibrium, but become unstable for relatively small displacements to the side. The critical point is reached when the cg is
no longer above the base of support. Additionally, since the cg of a person's body is above the pivots in the hips, displacements
must be quickly controlled. This control is a central nervous system function that is developed when we learn to hold our bodies
erect as infants. For increased stability while standing, the feet should be spread apart, giving a larger base of support. Stability
is also increased by lowering one's center of gravity by bending the knees, as when a football player prepares to receive a ball or
braces themselves for a tackle. A cane, a crutch, or a walker increases the stability of the user, even more as the base of support
widens. Usually, the cg of a female is lower (closer to the ground) than a male. Young children have their center of gravity
between their shoulders, which increases the challenge of learning to walk.

Figure 9.18 (a) The center of gravity of an adult is above the hip joints (one of the main pivots in the body) and lies between two narrowly-separated
feet. Like a pencil standing on its eraser, this person is in stable equilibrium in relation to sideways displacements, but relatively small displacements
take his cg outside the base of support and make him unstable. Humans are less stable relative to forward and backward displacements because the
feet are not very long. Muscles are used extensively to balance the body in the front-to-back direction. (b) While bending in the manner shown, stability
is increased by lowering the center of gravity. Stability is also increased if the base is expanded by placing the feet farther apart.

Animals such as chickens have easier systems to control. Figure 9.19 shows that the cg of a chicken lies below its hip joints and
between its widely separated and broad feet. Even relatively large displacements of the chicken's cg are stable and result in
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restoring forces and torques that return the cg to its equilibrium position with little effort on the chicken's part. Not all birds are like
chickens, of course. Some birds, such as the flamingo, have balance systems that are almost as sophisticated as that of
humans.

Figure 9.19 shows that the cg of a chicken is below the hip joints and lies above a broad base of support formed by widely-
separated and large feet. Hence, the chicken is in very stable equilibrium, since a relatively large displacement is needed to
render it unstable. The body of the chicken is supported from above by the hips and acts as a pendulum between the hips.
Therefore, the chicken is stable for front-to-back displacements as well as for side-to-side displacements.

Figure 9.19 The center of gravity of a chicken is below the hip joints. The chicken is in stable equilibrium. The body of the chicken is supported from
above by the hips and acts as a pendulum between them.

Engineers and architects strive to achieve extremely stable equilibriums for buildings and other systems that must withstand
wind, earthquakes, and other forces that displace them from equilibrium. Although the examples in this section emphasize
gravitational forces, the basic conditions for equilibrium are the same for all types of forces. The net external force must be zero,
and the net torque must also be zero.

Take-Home Experiment

Stand straight with your heels, back, and head against a wall. Bend forward from your waist, keeping your heels and bottom
against the wall, to touch your toes. Can you do this without toppling over? Explain why and what you need to do to be able
to touch your toes without losing your balance. Is it easier for a woman to do this?

9.4 Applications of Statics, Including Problem-Solving Strategies

Learning Objectives
By the end of this section, you will be able to:

• Discuss the applications of statics in real life.
• State and discuss various problem-solving strategies in statics.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 2.3)
• 3.F.1.4 The student is able to design an experiment and analyze data testing a question about torques in a balanced

rigid system. (S.P. 4.1, 4.2, 5.1)
• 3.F.1.5 The student is able to calculate torques on a two-dimensional system in static equilibrium, by examining a

representation or model (such as a diagram or physical construction). (S.P. 1.4, 2.2)

Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We begin with
a discussion of problem-solving strategies specifically used for statics. Since statics is a special case of Newton's laws, both the
general problem-solving strategies and the special strategies for Newton's laws, discussed in Problem-Solving Strategies, still
apply.

Problem-Solving Strategy: Static Equilibrium Situations
1. The first step is to determine whether or not the system is in static equilibrium. This condition is always the case

when the acceleration of the system is zero and accelerated rotation does not occur.

2. It is particularly important to draw a free body diagram for the system of interest. Carefully label all forces, and note
their relative magnitudes, directions, and points of application whenever these are known.

3. Solve the problem by applying either or both of the conditions for equilibrium (represented by the equations
net = 0 and net = 0 , depending on the list of known and unknown factors. If the second condition is involved,
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choose the pivot point to simplify the solution. Any pivot point can be chosen, but the most useful ones cause torques
by unknown forces to be zero. (Torque is zero if the force is applied at the pivot (then = 0 ), or along a line through

the pivot point (then = 0 )). Always choose a convenient coordinate system for projecting forces.

4. Check the solution to see if it is reasonable by examining the magnitude, direction, and units of the answer. The
importance of this last step never diminishes, although in unfamiliar applications, it is usually more difficult to judge
reasonableness. These judgments become progressively easier with experience.

Now let us apply this problem-solving strategy for the pole vaulter shown in the three figures below. The pole is uniform and has
a mass of 5.00 kg. In Figure 9.20, the pole's cg lies halfway between the vaulter's hands. It seems reasonable that the force
exerted by each hand is equal to half the weight of the pole, or 24.5 N. This obviously satisfies the first condition for equilibrium
(net = 0) . The second condition (net = 0) is also satisfied, as we can see by choosing the cg to be the pivot point. The

weight exerts no torque about a pivot point located at the cg, since it is applied at that point and its lever arm is zero. The equal
forces exerted by the hands are equidistant from the chosen pivot, and so they exert equal and opposite torques. Similar
arguments hold for other systems where supporting forces are exerted symmetrically about the cg. For example, the four legs of
a uniform table each support one-fourth of its weight.

In Figure 9.20, a pole vaulter holding a pole with its cg halfway between his hands is shown. Each hand exerts a force equal to
half the weight of the pole, = = / 2 . (b) The pole vaulter moves the pole to his left, and the forces that the hands exert

are no longer equal. See Figure 9.20. If the pole is held with its cg to the left of the person, then he must push down with his
right hand and up with his left. The forces he exerts are larger here because they are in opposite directions and the cg is at a
long distance from either hand.

Similar observations can be made using a meter stick held at different locations along its length.

Figure 9.20 A pole vaulter holds a pole horizontally with both hands.

Figure 9.21 A pole vaulter is holding a pole horizontally with both hands. The center of gravity is near his right hand.
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Figure 9.22 A pole vaulter is holding a pole horizontally with both hands. The center of gravity is to the left side of the vaulter.

If the pole vaulter holds the pole as shown in Figure 9.20, the situation is not as simple. The total force he exerts is still equal to
the weight of the pole, but it is not evenly divided between his hands. (If = , then the torques about the cg would not be

equal since the lever arms are different.) Logically, the right hand should support more weight, since it is closer to the cg. In fact,
if the right hand is moved directly under the cg, it will support all the weight. This situation is exactly analogous to two people
carrying a load; the one closer to the cg carries more of its weight. Finding the forces and is straightforward, as the next

example shows.

If the pole vaulter holds the pole from near the end of the pole (Figure 9.22), the direction of the force applied by the right hand
of the vaulter reverses its direction.

Example 9.2 What Force Is Needed to Support a Weight Held Near Its CG?

For the situation shown in Figure 9.20, calculate: (a) , the force exerted by the right hand, and (b) , the force

exerted by the left hand. The hands are 0.900 m apart, and the cg of the pole is 0.600 m from the left hand.

Strategy

Figure 9.20 includes a free body diagram for the pole, the system of interest. There is not enough information to use the first
condition for equilibrium (net = 0 ), since two of the three forces are unknown and the hand forces cannot be assumed to

be equal in this case. There is enough information to use the second condition for equilibrium (net = 0) if the pivot point

is chosen to be at either hand, thereby making the torque from that hand zero. We choose to locate the pivot at the left hand
in this part of the problem, to eliminate the torque from the left hand.

Solution for (a)

There are now only two nonzero torques, those from the gravitational force ( w ) and from the push or pull of the right hand

( ). Stating the second condition in terms of clockwise and counterclockwise torques,

(9.22)net cw = –net ccw.

or the algebraic sum of the torques is zero.

Here this is

(9.23)= –τw

since the weight of the pole creates a counterclockwise torque and the right hand counters with a clockwise toque. Using the
definition of torque, = sin , noting that = 90º , and substituting known values, we obtain

(9.24)(0.900 m) = (0.600 m)( ).

Thus,

(9.25)= (0.667) 5.00 kg 9.80 m/s2

= 32.7 N.

Solution for (b)

The first condition for equilibrium is based on the free body diagram in the figure. This implies that by Newton's second law:

(9.26)+ – = 0
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From this we can conclude:

(9.27)+ = =

Solving for , we obtain

(9.28)= −

= − 32.7 N

= 5.00 kg 9.80 m/s2 − 32.7 N

= 16.3 N

Discussion

FL is seen to be exactly half of , as we might have guessed, since is applied twice as far from the cg as .

If the pole vaulter holds the pole as he might at the start of a run, shown in Figure 9.22, the forces change again. Both are
considerably greater, and one force reverses direction.

Take-Home Experiment

This is an experiment to perform while standing in a bus or a train. Stand facing sideways. How do you move your body to
readjust the distribution of your mass as the bus accelerates and decelerates? Now stand facing forward. How do you move
your body to readjust the distribution of your mass as the bus accelerates and decelerates? Why is it easier and safer to
stand facing sideways rather than forward? Note: For your safety (and those around you), make sure you are holding onto
something while you carry out this activity!

PhET Explorations: Balancing Act

Play with objects on a teeter totter to learn about balance. Test what you've learned by trying the Balance Challenge game.

Figure 9.23 Balancing Act (http://phet.colorado.edu/en/simulation/balancing-act)

9.5 Simple Machines

Learning Objectives
By the end of this section, you will be able to:

• Describe different simple machines.
• Calculate the mechanical advantage.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.1.1 The student is able to use representations of the relationship between force and torque. (S.P. 1.4)
• 3.F.1.2 The student is able to compare the torques on an object caused by various forces. (S.P. 1.4)
• 3.F.1.3 The student is able to estimate the torque on an object caused by various forces in comparison to other

situations. (S.P. 2.3)
• 3.F.1.5 The student is able to calculate torques on a two-dimensional system in static equilibrium, by examining a

representation or model (such as a diagram or physical construction). (S.P. 1.4, 2.2)

Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a distance
through which we apply the force. The word for “machine” comes from the Greek word meaning “to help make things easier.”
Levers, gears, pulleys, wedges, and screws are some examples of machines. Energy is still conserved for these devices
because a machine cannot do more work than the energy put into it. However, machines can reduce the input force that is
needed to perform the job. The ratio of output to input force magnitudes for any simple machine is called its mechanical
advantage (MA).

(9.29)
MA = o

i
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center of gravity:

dynamic equilibrium:

mechanical advantage:

neutral equilibrium:

perpendicular lever arm:

SI units of torque:

stable equilibrium:

static equilibrium:

static equilibrium:

torque:

unstable equilibrium:

Figure 9.31 This figure shows that large forces are exerted by the back muscles and experienced in the vertebrae when a person lifts with their back,
since these muscles have small effective perpendicular lever arms. The data shown here are analyzed in the preceding example, Example 9.5.

What are the benefits of having most skeletal muscles attached so close to joints? One advantage is speed because small
muscle contractions can produce large movements of limbs in a short period of time. Other advantages are flexibility and agility,
made possible by the large numbers of joints and the ranges over which they function. For example, it is difficult to imagine a
system with biceps muscles attached at the wrist that would be capable of the broad range of movement we vertebrates
possess.

There are some interesting complexities in real systems of muscles, bones, and joints. For instance, the pivot point in many
joints changes location as the joint is flexed, so that the perpendicular lever arms and the mechanical advantage of the system
change, too. Thus the force the biceps muscle must exert to hold up a book varies as the forearm is flexed. Similar mechanisms
operate in the legs, which explain, for example, why there is less leg strain when a bicycle seat is set at the proper height. The
methods employed in this section give a reasonable description of real systems provided enough is known about the dimensions
of the system. There are many other interesting examples of force and torque in the body—a few of these are the subject of end-
of-chapter problems.

Glossary
the point where the total weight of the body is assumed to be concentrated

a state of equilibrium in which the net external force and torque on a system moving with constant
velocity are zero

the ratio of output to input forces for any simple machine

a state of equilibrium that is independent of a system's displacements from its original position

the shortest distance from the pivot point to the line along which F lies

newton times meters, usually written as N·m

a system, when displaced, experiences a net force or torque in a direction opposite to the direction of the
displacement

a state of equilibrium in which the net external force and torque acting on a system is zero

equilibrium in which the acceleration of the system is zero and accelerated rotation does not occur

turning or twisting effectiveness of a force

a system, when displaced, experiences a net force or torque in the same direction as the displacement
from equilibrium

Section Summary

9.1 The First Condition for Equilibrium
• Statics is the study of forces in equilibrium.
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• Two conditions must be met to achieve equilibrium, which is defined to be motion without linear or rotational acceleration.
• The first condition necessary to achieve equilibrium is that the net external force on the system must be zero, so that

net F = 0 .

9.2 The Second Condition for Equilibrium
• The second condition assures those torques are also balanced. Torque is the rotational equivalent of a force in producing a

rotation and is defined to be
= sin

where is torque, is the distance from the pivot point to the point where the force is applied, is the magnitude of the

force, and is the angle between F and the vector directed from the point where the force acts to the pivot point. The
perpendicular lever arm ⊥ is defined to be

⊥ = sin

so that

= ⊥ .

• The perpendicular lever arm ⊥ is the shortest distance from the pivot point to the line along which acts. The SI unit

for torque is newton-meter (N·m) . The second condition necessary to achieve equilibrium is that the net external torque

on a system must be zero:
net = 0

By convention, counterclockwise torques are positive, and clockwise torques are negative.

9.3 Stability
• A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in a

direction opposite the direction of the displacement.
• A system is in unstable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in the same

direction as the displacement from equilibrium.
• A system is in neutral equilibrium if its equilibrium is independent of displacements from its original position.

9.4 Applications of Statics, Including Problem-Solving Strategies
• Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We have

discussed the problem-solving strategies specifically useful for statics. Statics is a special case of Newton's laws, both the
general problem-solving strategies and the special strategies for Newton's laws, discussed in Problem-Solving
Strategies, still apply.

9.5 Simple Machines
• Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a

distance through which we have to apply the force.
• The ratio of output to input forces for any simple machine is called its mechanical advantage
• A few simple machines are the lever, nail puller, wheelbarrow, crank, etc.

9.6 Forces and Torques in Muscles and Joints
• Statics plays an important part in understanding everyday strains in our muscles and bones.
• Many lever systems in the body have a mechanical advantage of significantly less than one, as many of our muscles are

attached close to joints.
• Someone with good posture stands or sits in such as way that their center of gravity lies directly above the pivot point in

their hips, thereby avoiding back strain and damage to disks.

Conceptual Questions

9.1 The First Condition for Equilibrium
1. What can you say about the velocity of a moving body that is in dynamic equilibrium? Draw a sketch of such a body using
clearly labeled arrows to represent all external forces on the body.

2. Under what conditions can a rotating body be in equilibrium? Give an example.

9.2 The Second Condition for Equilibrium
3. What three factors affect the torque created by a force relative to a specific pivot point?

4. A wrecking ball is being used to knock down a building. One tall unsupported concrete wall remains standing. If the wrecking
ball hits the wall near the top, is the wall more likely to fall over by rotating at its base or by falling straight down? Explain your
answer. How is it most likely to fall if it is struck with the same force at its base? Note that this depends on how firmly the wall is
attached at its base.
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5. Mechanics sometimes put a length of pipe over the handle of a wrench when trying to remove a very tight bolt. How does this
help? (It is also hazardous since it can break the bolt.)

9.3 Stability
6. A round pencil lying on its side as in Figure 9.14 is in neutral equilibrium relative to displacements perpendicular to its length.
What is its stability relative to displacements parallel to its length?

7. Explain the need for tall towers on a suspension bridge to ensure stable equilibrium.

9.4 Applications of Statics, Including Problem-Solving Strategies
8. When visiting some countries, you may see a person balancing a load on the head. Explain why the center of mass of the load
needs to be directly above the person's neck vertebrae.

9.5 Simple Machines
9. Scissors are like a double-lever system. Which of the simple machines in Figure 9.24 and Figure 9.25 is most analogous to
scissors?

10. Suppose you pull a nail at a constant rate using a nail puller as shown in Figure 9.24. Is the nail puller in equilibrium? What if
you pull the nail with some acceleration – is the nail puller in equilibrium then? In which case is the force applied to the nail puller
larger and why?

11. Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by
muscles inside the body?

12. Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can
these forces be even greater than muscle forces (see previous Question)?

9.6 Forces and Torques in Muscles and Joints
13. Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by
muscles inside the body?

14. Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can
these forces be even greater than muscle forces?

15. Certain types of dinosaurs were bipedal (walked on two legs). What is a good reason that these creatures invariably had long
tails if they had long necks?

16. Swimmers and athletes during competition need to go through certain postures at the beginning of the race. Consider the
balance of the person and why start-offs are so important for races.

17. If the maximum force the biceps muscle can exert is 1000 N, can we pick up an object that weighs 1000 N? Explain your
answer.

18. Suppose the biceps muscle was attached through tendons to the upper arm close to the elbow and the forearm near the
wrist. What would be the advantages and disadvantages of this type of construction for the motion of the arm?

19. Explain one of the reasons why pregnant women often suffer from back strain late in their pregnancy.
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Problems & Exercises

9.2 The Second Condition for Equilibrium
1. (a) When opening a door, you push on it perpendicularly
with a force of 55.0 N at a distance of 0.850m from the
hinges. What torque are you exerting relative to the hinges?
(b) Does it matter if you push at the same height as the
hinges?

2. When tightening a bolt, you push perpendicularly on a
wrench with a force of 165 N at a distance of 0.140 m from
the center of the bolt. (a) How much torque are you exerting
in newton × meters (relative to the center of the bolt)? (b)
Convert this torque to footpounds.

3. Two children push on opposite sides of a door during play.
Both push horizontally and perpendicular to the door. One
child pushes with a force of 17.5 N at a distance of 0.600 m
from the hinges, and the second child pushes at a distance of
0.450 m. What force must the second child exert to keep the
door from moving? Assume friction is negligible.

4. Use the second condition for equilibrium (net τ = 0) to

calculate p in Example 9.1, employing any data given or

solved for in part (a) of the example.

5. Repeat the seesaw problem in Example 9.1 with the
center of mass of the seesaw 0.160 m to the left of the pivot
(on the side of the lighter child) and assuming a mass of 12.0
kg for the seesaw. The other data given in the example
remain unchanged. Explicitly show how you follow the steps
in the Problem-Solving Strategy for static equilibrium.

9.3 Stability
6. Suppose a horse leans against a wall as in Figure 9.32.
Calculate the force exerted on the wall assuming that force is
horizontal while using the data in the schematic
representation of the situation. Note that the force exerted on
the wall is equal in magnitude and opposite in direction to the
force exerted on the horse, keeping it in equilibrium. The total
mass of the horse and rider is 500 kg. Take the data to be
accurate to three digits.

Figure 9.32

7. Two children of mass 20 kg and 30 kg sit balanced on a
seesaw with the pivot point located at the center of the
seesaw. If the children are separated by a distance of 3 m, at
what distance from the pivot point is the small child sitting in
order to maintain the balance?

8. (a) Calculate the magnitude and direction of the force on
each foot of the horse in Figure 9.32 (two are on the ground),
assuming the center of mass of the horse is midway between
the feet. The total mass of the horse and rider is 500kg. (b)
What is the minimum coefficient of friction between the
hooves and ground? Note that the force exerted by the wall is
horizontal.

9. A person carries a plank of wood 2 m long with one hand
pushing down on it at one end with a force F1 and the other

hand holding it up at 50 cm from the end of the plank with
force F2 . If the plank has a mass of 20 kg and its center of

gravity is at the middle of the plank, what are the magnitudes
of the forces F1 and F2 ?

10. A 17.0-m-high and 11.0-m-long wall under construction
and its bracing are shown in Figure 9.33. The wall is in stable
equilibrium without the bracing but can pivot at its base.
Calculate the force exerted by each of the 10 braces if a
strong wind exerts a horizontal force of 650 N on each square
meter of the wall. Assume that the net force from the wind
acts at a height halfway up the wall and that all braces exert
equal forces parallel to their lengths. Neglect the thickness of
the wall.

Figure 9.33

11. (a) What force must be exerted by the wind to support a
2.50-kg chicken in the position shown in Figure 9.34? (b)
What is the ratio of this force to the chicken's weight? (c)
Does this support the contention that the chicken has a
relatively stable construction?

Figure 9.34

12. Suppose the weight of the drawbridge in Figure 9.35 is
supported entirely by its hinges and the opposite shore, so
that its cables are slack. (a) What fraction of the weight is
supported by the opposite shore if the point of support is
directly beneath the cable attachments? (b) What is the
direction and magnitude of the force the hinges exert on the
bridge under these circumstances? The mass of the bridge is
2500 kg.
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Figure 9.35 A small drawbridge, showing the forces on the hinges ( F ),

its weight ( w ), and the tension in its wires ( T ).

13. Suppose a 900-kg car is on the bridge in Figure 9.35 with
its center of mass halfway between the hinges and the cable
attachments. (The bridge is supported by the cables and
hinges only.) (a) Find the force in the cables. (b) Find the
direction and magnitude of the force exerted by the hinges on
the bridge.

14. A sandwich board advertising sign is constructed as
shown in Figure 9.36. The sign's mass is 8.00 kg. (a)
Calculate the tension in the chain assuming no friction
between the legs and the sidewalk. (b) What force is exerted
by each side on the hinge?

Figure 9.36 A sandwich board advertising sign demonstrates tension.

15. (a) What minimum coefficient of friction is needed
between the legs and the ground to keep the sign in Figure
9.36 in the position shown if the chain breaks? (b) What force
is exerted by each side on the hinge?

16. A gymnast is attempting to perform splits. From the
information given in Figure 9.37, calculate the magnitude and
direction of the force exerted on each foot by the floor.

Figure 9.37 A gymnast performs full split. The center of gravity and the
various distances from it are shown.

9.4 Applications of Statics, Including Problem-
Solving Strategies
17. To get up on the roof, a person (mass 70.0 kg) places a
6.00-m aluminum ladder (mass 10.0 kg) against the house on
a concrete pad with the base of the ladder 2.00 m from the
house. The ladder rests against a plastic rain gutter, which we
can assume to be frictionless. The center of mass of the
ladder is 2 m from the bottom. The person is standing 3 m
from the bottom. What are the magnitudes of the forces on
the ladder at the top and bottom?

18. In Figure 9.22, the cg of the pole held by the pole vaulter
is 2.00 m from the left hand, and the hands are 0.700 m
apart. Calculate the force exerted by (a) his right hand and (b)
his left hand. (c) If each hand supports half the weight of the
pole in Figure 9.20, show that the second condition for
equilibrium (net = 0) is satisfied for a pivot other than the

one located at the center of gravity of the pole. Explicitly show
how you follow the steps in the Problem-Solving Strategy for
static equilibrium described above.

9.5 Simple Machines
19. What is the mechanical advantage of a nail puller—similar
to the one shown in Figure 9.24 —where you exert a force
45 cm from the pivot and the nail is 1.8 cm on the other
side? What minimum force must you exert to apply a force of
1250 N to the nail?

20. Suppose you needed to raise a 250-kg mower a distance
of 6.0 cm above the ground to change a tire. If you had a
2.0-m long lever, where would you place the fulcrum if your
force was limited to 300 N?

21. a) What is the mechanical advantage of a wheelbarrow,
such as the one in Figure 9.25, if the center of gravity of the
wheelbarrow and its load has a perpendicular lever arm of
5.50 cm, while the hands have a perpendicular lever arm of
1.02 m? (b) What upward force should you exert to support
the wheelbarrow and its load if their combined mass is 55.0
kg? (c) What force does the wheel exert on the ground?

22. A typical car has an axle with 1.10 cm radius driving a

tire with a radius of 27.5 cm . What is its mechanical
advantage assuming the very simplified model in Figure
9.26(b)?

23. What force does the nail puller in Exercise 9.19 exert on
the supporting surface? The nail puller has a mass of 2.10 kg.
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24. If you used an ideal pulley of the type shown in Figure
9.27(a) to support a car engine of mass 115 kg , (a) What

would be the tension in the rope? (b) What force must the
ceiling supply, assuming you pull straight down on the rope?
Neglect the pulley system's mass.

25. Repeat Exercise 9.24 for the pulley shown in Figure
9.27(c), assuming you pull straight up on the rope. The pulley
system's mass is 7.00 kg .

9.6 Forces and Torques in Muscles and Joints
26. Verify that the force in the elbow joint in Example 9.4 is
407 N, as stated in the text.

27. Two muscles in the back of the leg pull on the Achilles
tendon as shown in Figure 9.38. What total force do they
exert?

Figure 9.38 The Achilles tendon of the posterior leg serves to attach
plantaris, gastrocnemius, and soleus muscles to calcaneus bone.

28. The upper leg muscle (quadriceps) exerts a force of 1250
N, which is carried by a tendon over the kneecap (the patella)
at the angles shown in Figure 9.39. Find the direction and
magnitude of the force exerted by the kneecap on the upper
leg bone (the femur).

Figure 9.39 The knee joint works like a hinge to bend and straighten the
lower leg. It permits a person to sit, stand, and pivot.

29. A device for exercising the upper leg muscle is shown in
Figure 9.40, together with a schematic representation of an

equivalent lever system. Calculate the force exerted by the
upper leg muscle to lift the mass at a constant speed.
Explicitly show how you follow the steps in the Problem-
Solving Strategy for static equilibrium in Applications of
Statistics, Including Problem-Solving Strategies.

Figure 9.40 A mass is connected by pulleys and wires to the ankle in
this exercise device.

30. A person working at a drafting board may hold her head
as shown in Figure 9.41, requiring muscle action to support
the head. The three major acting forces are shown. Calculate
the direction and magnitude of the force supplied by the
upper vertebrae FV to hold the head stationary, assuming

that this force acts along a line through the center of mass as
do the weight and muscle force.

Figure 9.41

31. We analyzed the biceps muscle example with the angle
between forearm and upper arm set at 90º . Using the same
numbers as in Example 9.4, find the force exerted by the
biceps muscle when the angle is 120º and the forearm is in
a downward position.

32. Even when the head is held erect, as in Figure 9.42, its
center of mass is not directly over the principal point of
support (the atlanto-occipital joint). The muscles at the back
of the neck should therefore exert a force to keep the head
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erect. That is why your head falls forward when you fall
asleep in the class. (a) Calculate the force exerted by these
muscles using the information in the figure. (b) What is the
force exerted by the pivot on the head?

Figure 9.42 The center of mass of the head lies in front of its major point
of support, requiring muscle action to hold the head erect. A simplified
lever system is shown.

33. A 75-kg man stands on his toes by exerting an upward
force through the Achilles tendon, as in Figure 9.43. (a) What
is the force in the Achilles tendon if he stands on one foot? (b)
Calculate the force at the pivot of the simplified lever system
shown—that force is representative of forces in the ankle
joint.

Figure 9.43 The muscles in the back of the leg pull the Achilles tendon
when one stands on one's toes. A simplified lever system is shown.

34. A father lifts his child as shown in Figure 9.44. What force
should the upper leg muscle exert to lift the child at a constant
speed?

Figure 9.44 A child being lifted by a father's lower leg.

35. Unlike most of the other muscles in our bodies, the
masseter muscle in the jaw, as illustrated in Figure 9.45, is
attached relatively far from the joint, enabling large forces to
be exerted by the back teeth. (a) Using the information in the
figure, calculate the force exerted by the lower teeth on the
bullet. (b) Calculate the force on the joint.

Figure 9.45 A person clenching a bullet between his teeth.

36. Integrated Concepts

Suppose we replace the 4.0-kg book in Exercise 9.31 of the
biceps muscle with an elastic exercise rope that obeys
Hooke's Law. Assume its force constant = 600 N/m . (a)
How much is the rope stretched (past equilibrium) to provide
the same force B as in this example? Assume the rope is

held in the hand at the same location as the book. (b) What
force is on the biceps muscle if the exercise rope is pulled
straight up so that the forearm makes an angle of 25º with
the horizontal? Assume the biceps muscle is still
perpendicular to the forearm.

37. (a) What force should the woman in Figure 9.46 exert on
the floor with each hand to do a push-up? Assume that she
moves up at a constant speed. (b) The triceps muscle at the
back of her upper arm has an effective lever arm of 1.75 cm,
and she exerts force on the floor at a horizontal distance of
20.0 cm from the elbow joint. Calculate the magnitude of the
force in each triceps muscle, and compare it to her weight. (c)

386 Chapter 9 | Statics and Torque

This content is available for free at http://cnx.org/content/col11844/1.13



How much work does she do if her center of mass rises 0.240
m? (d) What is her useful power output if she does 25
pushups in one minute?

Figure 9.46 A woman doing pushups.

38. You have just planted a sturdy 2-m-tall palm tree in your
front lawn for your mother's birthday. Your brother kicks a 500
g ball, which hits the top of the tree at a speed of 5 m/s and
stays in contact with it for 10 ms. The ball falls to the ground
near the base of the tree and the recoil of the tree is minimal.
(a) What is the force on the tree? (b) The length of the sturdy
section of the root is only 20 cm. Furthermore, the soil around
the roots is loose and we can assume that an effective force
is applied at the tip of the 20 cm length. What is the effective
force exerted by the end of the tip of the root to keep the tree
from toppling? Assume the tree will be uprooted rather than
bend. (c) What could you have done to ensure that the tree
does not uproot easily?

39. Unreasonable Results

Suppose two children are using a uniform seesaw that is 3.00
m long and has its center of mass over the pivot. The first
child has a mass of 30.0 kg and sits 1.40 m from the pivot. (a)
Calculate where the second 18.0 kg child must sit to balance
the seesaw. (b) What is unreasonable about the result? (c)
Which premise is unreasonable, or which premises are
inconsistent?

40. Construct Your Own Problem

Consider a method for measuring the mass of a person's arm
in anatomical studies. The subject lies on her back, extends
her relaxed arm to the side and two scales are placed below
the arm. One is placed under the elbow and the other under
the back of her hand. Construct a problem in which you
calculate the mass of the arm and find its center of mass
based on the scale readings and the distances of the scales
from the shoulder joint. You must include a free body diagram
of the arm to direct the analysis. Consider changing the
position of the scale under the hand to provide more
information, if needed. You may wish to consult references to
obtain reasonable mass values.

Test Prep for AP® Courses

9.2 The Second Condition for Equilibrium
1. Which of the following is not an example of an object
undergoing a torque?

a. A car is rounding a bend at a constant speed.
b. A merry-go-round increases from rest to a constant

rotational speed.
c. A pendulum swings back and forth.
d. A bowling ball rolls down a bowling alley.

2. Five forces of equal magnitude, labeled A–E, are applied to
the object shown below. If the object is anchored at point P,
which force will provide the greatest torque?

Figure 9.47 Five forces acting on an object.
a. Force A
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b. Force B
c. Force C
d. Force D
e. Force E

9.3 Stability
3. Using the concept of torque, explain why a traffic cone
placed on its base is in stable equilibrium, while a traffic cone
placed on its tip is in unstable equilibrium.

9.4 Applications of Statics, Including Problem-
Solving Strategies
4. A child sits on the end of a playground see-saw. Which of
the following values is the most appropriate estimate of the
torque created by the child?

a. 6 N•m
b. 60 N•m
c. 600 N•m
d. 6000 N•m

5. A group of students is stacking a set of identical books,
each one overhanging the one below it by 1 inch. They would
like to estimate how many books they could place on top of
each other before the stack tipped. What information below
would they need to know to make this calculation?

Figure 9.48 3 overlapping stacked books.
I. The mass of each book
II. The width of each book
III. The depth of each book
a. I only
b. I and II only
c. I and III only
d. II only
e. I, II, and III

6. A 10 N board of uniform density is 5 meters long. It is
supported on the left by a string bearing a 3 N upward force.
In order to prevent the string from breaking, a person must
place an upward force of 7 N at a position along the bottom
surface of the board. At what distance from its left edge would
they need to place this force in order for the board to be in
static equilibrium?

a. 3
7

m

b. 5
2

m

c. 25
7

m

d. 30
7

m

e. 5 m

7. A bridge is supported by two piers located 20 meters apart.
Both the left and right piers provide an upward force on the
bridge, labeled FL and FR respectively.

a. If a 1000 kg car comes to rest at a point 5 meters from
the left pier, how much force will the bridge provide to
the left and right piers?

b. How will FL and FR change as the car drives to the right
side of the bridge?

8. An object of unknown mass is provided to a student.
Without using a scale, design an experimental procedure
detailing how the magnitude of this mass could be
experimentally found. Your explanation must include the
concept of torque and all steps should be provided in an
orderly sequence. You may include a labeled diagram of your
setup to help in your description. Include enough detail so
that another student could carry out your procedure.

9.5 Simple Machines
9. As a young student, you likely learned that simple
machines are capable of increasing the ability to lift and move
objects. Now, as an educated AP Physics student, you are
aware that this capability is governed by the relationship
between force and torque.

In the space below, explain why torque is integral to the
increase in force created by a simple machine. You may use
an example or diagram to assist in your explanation. Be sure
to cite the mechanical advantage in your explanation as well.

10. Figure 9.24(a) shows a wheelbarrow being lifted by an
applied force Fi. If the wheelbarrow is filled with twenty bricks
massing 3 kg each, estimate the value of the applied force Fi.
Provide an explanation behind the total weight w and any
reasoning toward your final answer. Additionally, provide a
range of values over which you feel the force could exist.

9.6 Forces and Torques in Muscles and Joints
11. When you use your hand to raise a 20 lb dumbbell in a
curling motion, the force on your bicep muscle is not equal to
20 lb.

a. Compare the size of the force placed on your bicep
muscle to the force of the 20 lb dumbbell lifted by your
hand. Using the concept of torque, which force is
greater and explain why the two forces are not identical.

b. Does the force placed on your bicep muscle change as
you curl the weight closer toward your body? (In other
words, is the force on your muscle different when your
forearm is 90° to your upper arm than when it is 45° to
your upper arm?) Explain your answer using torque.
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10 ROTATIONAL MOTION AND ANGULAR
MOMENTUM

Figure 10.1 The mention of a tornado conjures up images of raw destructive power. Tornadoes blow houses away as if they were made of paper and
have been known to pierce tree trunks with pieces of straw. They descend from clouds in funnel-like shapes that spin violently, particularly at the
bottom where they are most narrow, producing winds as high as 500 km/h. (credit: Daphne Zaras, U.S. National Oceanic and Atmospheric
Administration)

Chapter Outline
10.1. Angular Acceleration

10.2. Kinematics of Rotational Motion

10.3. Dynamics of Rotational Motion: Rotational Inertia

10.4. Rotational Kinetic Energy: Work and Energy Revisited

10.5. Angular Momentum and Its Conservation

10.6. Collisions of Extended Bodies in Two Dimensions

10.7. Gyroscopic Effects: Vector Aspects of Angular Momentum

Connection for AP® Courses
Why do tornados spin? And why do tornados spin so rapidly? The answer is that the air masses that produce tornados are
themselves rotating, and when the radii of the air masses decrease, their rate of rotation increases. An ice skater increases her
spin in an exactly analogous manner, as seen in Figure 10.2. The skater starts her rotation with outstretched limbs and
increases her rate of spin by pulling them in toward her body. The same physics describes the exhilarating spin of a skater and
the wrenching force of a tornado. We will find that this is another example of the importance of conservation laws and their role in
determining how changes happen in a system, supporting Big Idea 5. The idea that a change of a conserved quantity is always
equal to the transfer of that quantity between interacting systems (Enduring Understanding 5.A) is presented for both energy and
angular momentum (Enduring Understanding 5.E). The conservation of angular momentum in relation to the external net
torque (Essential Knowledge 5.E.1) parallels that of linear momentum conservation in relation to the external net force. The
concept of rotational inertia is introduced, a concept that takes into account not only the mass of an object or a system, but also
the distribution of mass within the object or system. Therefore, changes in the rotational inertia of a system could lead to
changes in the motion (Essential Knowledge 5.E.2) of the system. We shall see that all important aspects of rotational motion
either have already been defined for linear motion or have exact analogues in linear motion.

Clearly, therefore, force, energy, and power are associated with rotational motion. This supports Big Idea 3, that interactions are
described by forces. The ability of forces to cause torques (Enduring Understanding 3.F) is extended to the interactions between
objects that result in nonzero net torque. This nonzero net torque in turn causes changes in the rotational motion of an object
(Essential Knowledge 3.F.2) and results in changes of the angular momentum of an object (Essential Knowledge 3.F.3).
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Similarly, Big Idea 4, that interactions between systems cause changes in those systems, is supported by the empirical
observation that when torques are exerted on rigid bodies these torques cause changes in the angular momentum of the system
(Enduring Understanding 4.D).

Again, there is a clear analogy between linear and rotational motion in this interaction. Both the angular kinematics variables
(angular displacement, angular velocity, and angular acceleration) and the dynamics variables (torque and angular momentum)
are vectors with direction depending on whether the rotation is clockwise or counterclockwise with respect to an axis of rotation
(Essential Knowledge 4.D.1). The angular momentum of the system can change due to interactions (Essential Knowledge
4.D.2). This change is defined as the product of the average torque and the time interval during which torque is exerted
(Essential Knowledge 4.D.3), analogous to the impulse-momentum theorem for linear motion.

The concepts in this chapter support:

Big Idea 3. The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.F. A force exerted on an object can cause a torque on that object.

Extended Knowledge 3.F.2. The presence of a net torque along any axis will cause a rigid system to change its rotational motion
or an object to change its rotational motion about that axis.

Extended Knowledge 3.F.3. A torque exerted on an object can change the angular momentum of an object.

Big Idea 4. Interactions between systems can result in changes in those systems.

Enduring Understanding 4.D. A net torque exerted on a system by other objects or systems will change the angular momentum
of the system.

Extended Knowledge 4.D.1. Torque, angular velocity, angular acceleration, and angular momentum are vectors and can be
characterized as positive or negative depending upon whether they give rise to or correspond to counterclockwise or clockwise
rotation with respect to an axis.

Extended Knowledge 4.D.2. The angular momentum of a system may change due to interactions with other objects or systems.

Extended Knowledge 4.D.3. The change in angular momentum is given by the product of the average torque and the time
interval during which the torque is exerted.

Big Idea 5. Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.A. Certain quantities are conserved, in the sense that the changes of those quantities in a given
system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.

Extended Knowledge 5.A.2. For all systems under all circumstances, energy, charge, linear momentum, and angular momentum
are conserved.

Enduring Understanding 5.E. The angular momentum of a system is conserved.

Extended Knowledge 5.E.1. If the net external torque exerted on the system is zero, the angular momentum of the system does
not change.

Extended Knowledge 5.E.2. The angular momentum of a system is determined by the locations and velocities of the objects that
make up the system. The rotational inertia of an object or system depends upon the distribution of mass within the object or
system. Changes in the radius of a system or in the distribution of mass within the system result in changes in the system's
rotational inertia, and hence in its angular velocity and linear speed for a given angular momentum. Examples should include
elliptical orbits in an Earth-satellite system. Mathematical expressions for the moments of inertia will be provided where needed.
Students will not be expected to know the parallel axis theorem.

Figure 10.2 This figure skater increases her rate of spin by pulling her arms and her extended leg closer to her axis of rotation. (credit: Luu, Wikimedia
Commons)
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10.1 Angular Acceleration

Learning Objectives
By the end of this section, you will be able to:

• Describe uniform circular motion.
• Explain nonuniform circular motion.
• Calculate angular acceleration of an object.
• Observe the link between linear and angular acceleration.

Uniform Circular Motion and Gravitation discussed only uniform circular motion, which is motion in a circle at constant speed
and, hence, constant angular velocity. Recall that angular velocity was defined as the time rate of change of angle :

(10.1)
= Δ

Δ
,

where is the angle of rotation as seen in Figure 10.3. The relationship between angular velocity and linear velocity was
also defined in Rotation Angle and Angular Velocity as

(10.2)=

or

(10.3)= ,

where is the radius of curvature, also seen in Figure 10.3. According to the sign convention, the counter clockwise direction is
considered as positive direction and clockwise direction as negative

Figure 10.3 This figure shows uniform circular motion and some of its defined quantities.

Angular velocity is not constant when a skater pulls in her arms, when a child starts up a merry-go-round from rest, or when a
computer's hard disk slows to a halt when switched off. In all these cases, there is an angular acceleration, in which
changes. The faster the change occurs, the greater the angular acceleration. Angular acceleration is defined as the rate of
change of angular velocity. In equation form, angular acceleration is expressed as follows:

(10.4)
= Δ

Δ
,

where Δ is the change in angular velocity and Δ is the change in time. The units of angular acceleration are (rad/s)/s ,

or rad/s2 . If increases, then is positive. If decreases, then is negative.

Example 10.1 Calculating the Angular Acceleration and Deceleration of a Bike Wheel

Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of

250 rpm in 5.00 s. (a) Calculate the angular acceleration in rad/s2 . (b) If she now slams on the brakes, causing an angular

acceleration of – 87.3 rad/s2 , how long does it take the wheel to stop?

Strategy for (a)

The angular acceleration can be found directly from its definition in = Δ
Δ

because the final angular velocity and time

are given. We see that Δ is 250 rpm and Δ is 5.00 s.

Solution for (a)

Entering known information into the definition of angular acceleration, we get
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(10.5)
= Δ

Δ

=
250 rpm

5.00 s
.

Because Δ is in revolutions per minute (rpm) and we want the standard units of rad/s2 for angular acceleration, we

need to convert Δ from rpm to rad/s:

(10.6)
Δ = 250 rev

min
⋅ 2π rad

rev ⋅ 1 min
60 sec

= 26.2rad
s .

Entering this quantity into the expression for , we get

(10.7)
= Δ

Δ

= 26.2 rad/s
5.00 s

= 5.24 rad/s2.

Strategy for (b)

In this part, we know the angular acceleration and the initial angular velocity. We can find the stoppage time by using the
definition of angular acceleration and solving for Δ , yielding

(10.8)
Δ = Δ .

Solution for (b)

Here the angular velocity decreases from 26.2 rad/s (250 rpm) to zero, so that Δ is – 26.2 rad/s , and is given to

be – 87.3 rad/s2 . Thus,

(10.9)
Δ = – 26.2 rad/s

– 87.3 rad/s2

= 0.300 s.

Discussion

Note that the angular acceleration as the girl spins the wheel is small and positive; it takes 5 s to produce an appreciable
angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes
to zero. In both cases, the relationships are analogous to what happens with linear motion. For example, there is a large
deceleration when you crash into a brick wall—the velocity change is large in a short time interval.

If the bicycle in the preceding example had been on its wheels instead of upside-down, it would first have accelerated along the
ground and then come to a stop. This connection between circular motion and linear motion needs to be explored. For example,
it would be useful to know how linear and angular acceleration are related. In circular motion, linear acceleration is tangent to the
circle at the point of interest, as seen in Figure 10.4. Thus, linear acceleration is called tangential acceleration t .

Figure 10.4 In circular motion, linear acceleration , occurs as the magnitude of the velocity changes: is tangent to the motion. In the context of
circular motion, linear acceleration is also called tangential acceleration t .
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Linear or tangential acceleration refers to changes in the magnitude of velocity but not its direction. We know from Uniform
Circular Motion and Gravitation that in circular motion centripetal acceleration, c , refers to changes in the direction of the

velocity but not its magnitude. An object undergoing circular motion experiences centripetal acceleration, as seen in Figure 10.5.
Thus, t and c are perpendicular and independent of one another. Tangential acceleration t is directly related to the

angular acceleration and is linked to an increase or decrease in the velocity, but not its direction.

Figure 10.5 Centripetal acceleration c occurs as the direction of velocity changes; it is perpendicular to the circular motion. Centripetal and

tangential acceleration are thus perpendicular to each other.

Now we can find the exact relationship between linear acceleration t and angular acceleration . Because linear acceleration

is proportional to a change in the magnitude of the velocity, it is defined (as it was in One-Dimensional Kinematics) to be

(10.10)
t = Δ

Δ
.

For circular motion, note that = , so that

(10.11)
t =

Δ( )
Δ

.

The radius is constant for circular motion, and so Δ( ) = (Δ ) . Thus,

(10.12)
t = Δ

Δ
.

By definition, = Δ
Δ

. Thus,

(10.13)t = ,

or

(10.14)
= t.

These equations mean that linear acceleration and angular acceleration are directly proportional. The greater the angular
acceleration is, the larger the linear (tangential) acceleration is, and vice versa. For example, the greater the angular acceleration
of a car's drive wheels, the greater the acceleration of the car. The radius also matters. For example, the smaller a wheel, the
smaller its linear acceleration for a given angular acceleration .

Example 10.2 Calculating the Angular Acceleration of a Motorcycle Wheel

A powerful motorcycle can accelerate from 0 to 30.0 m/s (about 108 km/h) in 4.20 s. What is the angular acceleration of its
0.320-m-radius wheels? (See Figure 10.6.)
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Figure 10.6 The linear acceleration of a motorcycle is accompanied by an angular acceleration of its wheels.

Strategy

We are given information about the linear velocities of the motorcycle. Thus, we can find its linear acceleration t . Then,

the expression = t can be used to find the angular acceleration.

Solution

The linear acceleration is

(10.15)
t = Δ

Δ

= 30.0 m/s
4.20 s

= 7.14 m/s2.

We also know the radius of the wheels. Entering the values for t and into = t , we get

(10.16)
= t

= 7.14 m/s2

0.320 m

= 22.3 rad/s2.

Discussion

Units of radians are dimensionless and appear in any relationship between angular and linear quantities.

So far, we have defined three rotational quantities— , , and . These quantities are analogous to the translational quantities

, , and . Table 10.1 displays rotational quantities, the analogous translational quantities, and the relationships between

them.

Table 10.1 Rotational and Translational Quantities

Rotational Translational Relationship

=

=

=

Making Connections: Take-Home Experiment

Sit down with your feet on the ground on a chair that rotates. Lift one of your legs such that it is unbent (straightened out).
Using the other leg, begin to rotate yourself by pushing on the ground. Stop using your leg to push the ground but allow the
chair to rotate. From the origin where you began, sketch the angle, angular velocity, and angular acceleration of your leg as
a function of time in the form of three separate graphs. Estimate the magnitudes of these quantities.

Check Your Understanding

Angular acceleration is a vector, having both magnitude and direction. How do we denote its magnitude and direction?
Illustrate with an example.
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Solution

The magnitude of angular acceleration is and its most common units are rad/s2 . The direction of angular acceleration
along a fixed axis is denoted by a + or a – sign, just as the direction of linear acceleration in one dimension is denoted by a +
or a – sign. For example, consider a gymnast doing a forward flip. Her angular momentum would be parallel to the mat and
to her left. The magnitude of her angular acceleration would be proportional to her angular velocity (spin rate) and her
moment of inertia about her spin axis.

PhET Explorations: Ladybug Revolution

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant
angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and
acceleration using vectors or graphs.

Figure 10.7 Ladybug Revolution (http://cnx.org/content/m55183/1.2/rotation_en.jar)

10.2 Kinematics of Rotational Motion

Learning Objectives
By the end of this section, you will be able to:

• Observe the kinematics of rotational motion.
• Derive rotational kinematic equations.
• Evaluate problem solving strategies for rotational kinematics.

Just by using our intuition, we can begin to see how rotational quantities like , , and are related to one another. For
example, if a motorcycle wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly and rotates
through many revolutions. In more technical terms, if the wheel's angular acceleration is large for a long period of time ,

then the final angular velocity and angle of rotation are large. The wheel's rotational motion is exactly analogous to the fact
that the motorcycle's large translational acceleration produces a large final velocity, and the distance traveled will also be large.

Kinematics is the description of motion. The kinematics of rotational motion describes the relationships among rotation angle,
angular velocity, angular acceleration, and time. Let us start by finding an equation relating , , and . To determine this
equation, we recall a familiar kinematic equation for translational, or straight-line, motion:

(10.17)= 0 +      (constant )

Note that in rotational motion = t , and we shall use the symbol for tangential or linear acceleration from now on. As in

linear kinematics, we assume is constant, which means that angular acceleration is also a constant, because = .
Now, let us substitute = and = into the linear equation above:

(10.18)= 0 + .

The radius cancels in the equation, yielding

(10.19)= 0 +      (constant )

where 0 is the initial angular velocity. This last equation is a kinematic relationship among , , and —that is, it describes

their relationship without reference to forces or masses that may affect rotation. It is also precisely analogous in form to its
translational counterpart.

Making Connections

Kinematics for rotational motion is completely analogous to translational kinematics, first presented in One-Dimensional
Kinematics. Kinematics is concerned with the description of motion without regard to force or mass. We will find that
translational kinematic quantities, such as displacement, velocity, and acceleration have direct analogs in rotational motion.

Starting with the four kinematic equations we developed in One-Dimensional Kinematics, we can derive the following four
rotational kinematic equations (presented together with their translational counterparts):
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Table 10.2 Rotational Kinematic Equations

Rotational Translational

=
¯ = -

= 0 + = 0 + (constant , )

= 0 + 1
2

2 = 0 + 1
2

2 (constant , )

2 = 0
2 + 2 2 = 0

2 + 2 (constant , )

In these equations, the subscript 0 denotes initial values ( 0 , 0 , and 0 are initial values), and the average angular velocity
- and average velocity - are defined as follows:

(10.20)¯ = 0 +

2
 and ¯ = 0 +

2
.

The equations given above in Table 10.2 can be used to solve any rotational or translational kinematics problem in which and
are constant.

Problem-Solving Strategy for Rotational Kinematics
1. Examine the situation to determine that rotational kinematics (rotational motion) is involved. Rotation must be involved,

but without the need to consider forces or masses that affect the motion.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.

3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in
terms of a translational analog because by now you are familiar with such motion.

5. Substitute the known values along with their units into the appropriate equation, and obtain numerical solutions

complete with units. Be sure to use units of radians for angles.

6. Check your answer to see if it is reasonable: Does your answer make sense?

Example 10.3 Calculating the Acceleration of a Fishing Reel

A deep-sea fisherman hooks a big fish that swims away from the boat pulling the fishing line from his fishing reel. The whole
system is initially at rest and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of rotation. The reel is

given an angular acceleration of 110 rad/s2 for 2.00 s as seen in Figure 10.8.

(a) What is the final angular velocity of the reel?

(b) At what speed is fishing line leaving the reel after 2.00 s elapses?

(c) How many revolutions does the reel make?

(d) How many meters of fishing line come off the reel in this time?

Strategy

In each part of this example, the strategy is the same as it was for solving problems in linear kinematics. In particular, known
values are identified and a relationship is then sought that can be used to solve for the unknown.

Solution for (a)

Here and are given and needs to be determined. The most straightforward equation to use is = 0 +

because the unknown is already on one side and all other terms are known. That equation states that

(10.21)= 0 + .

We are also given that 0 = 0 (it starts from rest), so that

(10.22)= 0 + 110 rad/s2 (2.00s) = 220 rad/s.

Solution for (b)

Now that is known, the speed can most easily be found using the relationship

(10.23)= ,
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where the radius of the reel is given to be 4.50 cm; thus,

(10.24)= (0.0450 m)(220 rad/s) = 9.90 m/s.

Note again that radians must always be used in any calculation relating linear and angular quantities. Also, because radians
are dimensionless, we have m×rad = m .

Solution for (c)

Here, we are asked to find the number of revolutions. Because 1 rev = 2π rad , we can find the number of revolutions by

finding in radians. We are given and , and we know 0 is zero, so that can be obtained using

= 0 + 1
2

2 .

(10.25)
= 0 + 1

2
2

= 0 + (0.500) 110 rad/s2 (2.00 s)2 = 220 rad.

Converting radians to revolutions gives

(10.26)
= (220 rad) 1 rev

2π rad
= 35.0 rev.

Solution for (d)

The number of meters of fishing line is , which can be obtained through its relationship with :

(10.27)= = (0.0450 m)(220 rad) = 9.90 m.

Discussion

This example illustrates that relationships among rotational quantities are highly analogous to those among linear quantities.
We also see in this example how linear and rotational quantities are connected. The answers to the questions are realistic.
After unwinding for two seconds, the reel is found to spin at 220 rad/s, which is 2100 rpm. (No wonder reels sometimes
make high-pitched sounds.) The amount of fishing line played out is 9.90 m, about right for when the big fish bites.

Figure 10.8 Fishing line coming off a rotating reel moves linearly. Example 10.3 and Example 10.4 consider relationships between rotational and
linear quantities associated with a fishing reel.

Example 10.4 Calculating the Duration When the Fishing Reel Slows Down and Stops

Now let us consider what happens if the fisherman applies a brake to the spinning reel, achieving an angular acceleration of

– 300 rad/s2 . How long does it take the reel to come to a stop?

Strategy

We are asked to find the time for the reel to come to a stop. The initial and final conditions are different from those in the

previous problem, which involved the same fishing reel. Now we see that the initial angular velocity is 0 = 220 rad/s and

the final angular velocity is zero. The angular acceleration is given to be = −300 rad/s2 . Examining the available
equations, we see all quantities but t are known in = 0 + , making it easiest to use this equation.

Solution

The equation states
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(10.28)= 0 + .

We solve the equation algebraically for t, and then substitute the known values as usual, yielding

(10.29)
=

− 0 = 0 − 220 rad/s

−300 rad/s2
= 0.733 s.

Discussion

Note that care must be taken with the signs that indicate the directions of various quantities. Also, note that the time to stop
the reel is fairly small because the acceleration is rather large. Fishing lines sometimes snap because of the accelerations
involved, and fishermen often let the fish swim for a while before applying brakes on the reel. A tired fish will be slower,
requiring a smaller acceleration.

Example 10.5 Calculating the Slow Acceleration of Trains and Their Wheels

Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its 0.350-m-radius wheels

an angular acceleration of 0.250 rad/s2 . After the wheels have made 200 revolutions (assume no slippage): (a) How far
has the train moved down the track? (b) What are the final angular velocity of the wheels and the linear velocity of the train?

Strategy

In part (a), we are asked to find , and in (b) we are asked to find and . We are given the number of revolutions ,
the radius of the wheels , and the angular acceleration .

Solution for (a)

The distance is very easily found from the relationship between distance and rotation angle:

(10.30)= .

Solving this equation for yields

(10.31)=

Before using this equation, we must convert the number of revolutions into radians, because we are dealing with a
relationship between linear and rotational quantities:

(10.32)
= (200 rev)2π rad

1 rev
= 1257 rad.

Now we can substitute the known values into = to find the distance the train moved down the track:

(10.33)= = (0.350 m)(1257 rad) = 440 m.

Solution for (b)

We cannot use any equation that incorporates to find , because the equation would have at least two unknown values.

The equation 2 = 0
2 + 2 will work, because we know the values for all variables except :

(10.34)2 = 0
2 + 2

Taking the square root of this equation and entering the known values gives

(10.35)
= 0 + 2(0.250 rad/s2)(1257 rad)

1 / 2

= 25.1 rad/s.

We can find the linear velocity of the train, , through its relationship to :

(10.36)= = (0.350 m)(25.1 rad/s) = 8.77 m/s.

Discussion

The distance traveled is fairly large and the final velocity is fairly slow (just under 32 km/h).

There is translational motion even for something spinning in place, as the following example illustrates. Figure 10.9 shows a fly
on the edge of a rotating microwave oven plate. The example below calculates the total distance it travels.
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Figure 10.9 The image shows a microwave plate. The fly makes revolutions while the food is heated (along with the fly).

Example 10.6 Calculating the Distance Traveled by a Fly on the Edge of a Microwave Oven
Plate

A person decides to use a microwave oven to reheat some lunch. In the process, a fly accidentally flies into the microwave
and lands on the outer edge of the rotating plate and remains there. If the plate has a radius of 0.15 m and rotates at 6.0
rpm, calculate the total distance traveled by the fly during a 2.0-min cooking period. (Ignore the start-up and slow-down
times.)

Strategy

First, find the total number of revolutions , and then the linear distance traveled. = ¯ can be used to find

because - is given to be 6.0 rpm.

Solution

Entering known values into = ¯ gives

(10.37)= - = 6.0 rpm (2.0 min) = 12 rev.

As always, it is necessary to convert revolutions to radians before calculating a linear quantity like from an angular

quantity like :

(10.38)
= (12 rev) 2 rad

1 rev
= 75.4 rad.

Now, using the relationship between and , we can determine the distance traveled:

(10.39)= = (0.15 m)(75.4 rad) = 11 m.

Discussion

Quite a trip (if it survives)! Note that this distance is the total distance traveled by the fly. Displacement is actually zero for
complete revolutions because they bring the fly back to its original position. The distinction between total distance traveled
and displacement was first noted in One-Dimensional Kinematics.

Check Your Understanding

Rotational kinematics has many useful relationships, often expressed in equation form. Are these relationships laws of
physics or are they simply descriptive? (Hint: the same question applies to linear kinematics.)

Solution
Rotational kinematics (just like linear kinematics) is descriptive and does not represent laws of nature. With kinematics, we
can describe many things to great precision but kinematics does not consider causes. For example, a large angular
acceleration describes a very rapid change in angular velocity without any consideration of its cause.
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10.3 Dynamics of Rotational Motion: Rotational Inertia

Learning Objectives
By the end of this section, you will be able to:

• Understand the relationship between force, mass, and acceleration.
• Study the turning effect of force.
• Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular

acceleration.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.D.1.1 The student is able to describe a representation and use it to analyze a situation in which several forces
exerted on a rotating system of rigidly connected objects change the angular velocity and angular momentum of the
system. (S.P. 1.2, 1.4)

• 4.D.1.2 The student is able to plan data collection strategies designed to establish that torque, angular velocity, angular
acceleration, and angular momentum can be predicted accurately when the variables are treated as being clockwise or
counterclockwise with respect to a well-defined axis of rotation, and refine the research question based on the
examination of data. (S.P. 3.2, 4.1, 5.1, 5.3)

• 5.E.2.1 The student is able to describe or calculate the angular momentum and rotational inertia of a system in terms of
the locations and velocities of objects that make up the system. Students are expected to do qualitative reasoning with
compound objects. Students are expected to do calculations with a fixed set of extended objects and point masses.
(S.P. 2.2)

If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular velocity as
seen in Figure 10.10. In fact, your intuition is reliable in predicting many of the factors that are involved. For example, we know
that a door opens slowly if we push too close to its hinges. Furthermore, we know that the more massive the door, the more
slowly it opens. The first example implies that the farther the force is applied from the pivot, the greater the angular acceleration;
another implication is that angular acceleration is inversely proportional to mass. These relationships should seem very similar to
the familiar relationships among force, mass, and acceleration embodied in Newton's second law of motion. There are, in fact,
precise rotational analogs to both force and mass.

Figure 10.10 Force is required to spin the bike wheel. The greater the force, the greater the angular acceleration produced. The more massive the
wheel, the smaller the angular acceleration. If you push on a spoke closer to the axle, the angular acceleration will be smaller.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if we exert a
force on a point mass that is at a distance from a pivot point, as shown in Figure 10.11. Because the force is

perpendicular to , an acceleration = is obtained in the direction of . We can rearrange this equation such that

= and then look for ways to relate this expression to expressions for rotational quantities. We note that = , and we

substitute this expression into = , yielding

(10.40)= .

Recall that torque is the turning effectiveness of a force. In this case, because F is perpendicular to , torque is simply

= . So, if we multiply both sides of the equation above by , we get torque on the left-hand side. That is,

(10.41)= 2

or

(10.42)= 2α.
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This last equation is the rotational analog of Newton's second law ( = ), where torque is analogous to force, angular

acceleration is analogous to translational acceleration, and 2 is analogous to mass (or inertia). The quantity 2 is called
the rotational inertia or moment of inertia of a point mass a distance from the center of rotation.

Figure 10.11 An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies centripetal force. A force
is applied to the object perpendicular to the radius , causing it to accelerate about the pivot point. The force is kept perpendicular to .

Making Connections: Rotational Motion Dynamics

Dynamics for rotational motion is completely analogous to linear or translational dynamics. Dynamics is concerned with
force and mass and their effects on motion. For rotational motion, we will find direct analogs to force and mass that behave
just as we would expect from our earlier experiences.

Rotational Inertia and Moment of Inertia
Before we can consider the rotation of anything other than a point mass like the one in Figure 10.11, we must extend the idea of
rotational inertia to all types of objects. To expand our concept of rotational inertia, we define the moment of inertia of an

object to be the sum of 2 for all the point masses of which it is composed. That is, = ∑ 2 . Here is analogous to

in translational motion. Because of the distance , the moment of inertia for any object depends on the chosen axis. Actually,

calculating is beyond the scope of this text except for one simple case—that of a hoop, which has all its mass at the same

distance from its axis. A hoop's moment of inertia around its axis is therefore 2 , where is its total mass and its

radius. (We use and for an entire object to distinguish them from and for point masses.) In all other cases, we must

consult Figure 10.12 (note that the table is piece of artwork that has shapes as well as formulae) for formulas for that have

been derived from integration over the continuous body. Note that has units of mass multiplied by distance squared ( kg ⋅ m2

), as we might expect from its definition.

The general relationship among torque, moment of inertia, and angular acceleration is

(10.43)net τ =

or

(10.44)= net τ,

where net is the total torque from all forces relative to a chosen axis. For simplicity, we will only consider torques exerted by
forces in the plane of the rotation. Such torques are either positive or negative and add like ordinary numbers. The relationship in

= , = net τ is the rotational analog to Newton's second law and is very generally applicable. This equation is actually

valid for any torque, applied to any object, relative to any axis.

As we might expect, the larger the torque is, the larger the angular acceleration is. For example, the harder a child pushes on a
merry-go-round, the faster it accelerates. Furthermore, the more massive a merry-go-round, the slower it accelerates for the
same torque. The basic relationship between moment of inertia and angular acceleration is that the larger the moment of inertia,
the smaller is the angular acceleration. But there is an additional twist. The moment of inertia depends not only on the mass of
an object, but also on its distribution of mass relative to the axis around which it rotates. For example, it will be much easier to
accelerate a merry-go-round full of children if they stand close to its axis than if they all stand at the outer edge. The mass is the
same in both cases; but the moment of inertia is much larger when the children are at the edge.

Take-Home Experiment

Cut out a circle that has about a 10 cm radius from stiff cardboard. Near the edge of the circle, write numbers 1 to 12 like
hours on a clock face. Position the circle so that it can rotate freely about a horizontal axis through its center, like a wheel.
(You could loosely nail the circle to a wall.) Hold the circle stationary and with the number 12 positioned at the top, attach a
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lump of blue putty (sticky material used for fixing posters to walls) at the number 3. How large does the lump need to be to
just rotate the circle? Describe how you can change the moment of inertia of the circle. How does this change affect the
amount of blue putty needed at the number 3 to just rotate the circle? Change the circle's moment of inertia and then try
rotating the circle by using different amounts of blue putty. Repeat this process several times.

In what direction did the circle rotate when you added putty at the number 3 (clockwise or counterclockwise)? In which of
these directions was the resulting angular velocity? Was the angular velocity constant? What can we say about the direction
(clockwise or counterclockwise) of the angular acceleration? How could you change the placement of the putty to create
angular velocity in the opposite direction?

Problem-Solving Strategy for Rotational Dynamics
1. Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch of the

situation.

2. Determine the system of interest.

3. Draw a free body diagram. That is, draw and label all external forces acting on the system of interest.

4. Apply , the rotational equivalent of Newton's second law, to solve the problem. Care must be

taken to use the correct moment of inertia and to consider the torque about the point of rotation.

5. As always, check the solution to see if it is reasonable.

Making Connections

In statics, the net torque is zero, and there is no angular acceleration. In rotational motion, net torque is the cause of angular
acceleration, exactly as in Newton's second law of motion for rotation.
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Figure 10.12 Some rotational inertias.

Example 10.7 Calculating the Effect of Mass Distribution on a Merry-Go-Round

Consider the father pushing a playground merry-go-round in Figure 10.13. He exerts a force of 250 N at the edge of the
50.0-kg merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced (a) when no one is on the
merry-go-round and (b) when an 18.0-kg child sits 1.25 m away from the center. Consider the merry-go-round itself to be a
uniform disk with negligible retarding friction.

Figure 10.13 A father pushes a playground merry-go-round at its edge and perpendicular to its radius to achieve maximum torque.

Strategy

Angular acceleration is given directly by the expression = net τ :
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(10.45)= .

To solve for , we must first calculate the torque (which is the same in both cases) and moment of inertia (which is
greater in the second case). To find the torque, we note that the applied force is perpendicular to the radius and friction is
negligible, so that

(10.46)τ = sin θ = (1.50 m)(250 N) = 375 N ⋅ m.

Solution for (a)

The moment of inertia of a solid disk about this axis is given in Figure 10.12 to be

(10.47)1
2

2,

where = 50.0 kg and = 1.50 m , so that

(10.48)= (0.500)(50.0 kg)(1.50 m)2 = 56.25 kg ⋅ m2.

Now, after we substitute the known values, we find the angular acceleration to be

(10.49)
= = 375 N ⋅ m

56.25 kg ⋅ m2
= 6.67rad

s2
.

Solution for (b)

We expect the angular acceleration for the system to be less in this part, because the moment of inertia is greater when the
child is on the merry-go-round. To find the total moment of inertia , we first find the child's moment of inertia c by

considering the child to be equivalent to a point mass at a distance of 1.25 m from the axis. Then,

(10.50)
c = 2 = (18.0 kg)(1.25 m)2 = 28.13 kg ⋅ m2.

The total moment of inertia is the sum of moments of inertia of the merry-go-round and the child (about the same axis). To
justify this sum to yourself, examine the definition of :

(10.51)= 28.13 kg ⋅ m2 + 56.25 kg ⋅ m2 = 84.38 kg ⋅ m2.

Substituting known values into the equation for gives

(10.52)
= τ = 375 N ⋅ m

84.38 kg ⋅ m2
= 4.44rad

s2
.

Discussion

The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as
expected. The angular accelerations found are quite large, partly due to the fact that friction was considered to be negligible.
If, for example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-go-round an angular velocity of
13.3 rad/s when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per second, these angular
velocities are 2.12 rev/s and 1.41 rev/s, respectively. The father would end up running at about 50 km/h in the first case.
Summer Olympics, here he comes! Confirmation of these numbers is left as an exercise for the reader.

Making Connections: Multiple Forces on One System

A large potter's wheel has a diameter of 60.0 cm and a mass of 8.0 kg. It is powered by a 20.0 N motor acting on the outer
edge. There is also a brake capable of exerting a 15.0 N force at a radius of 12.0 cm from the axis of rotation, on the
underside.

What is the angular acceleration when the motor is in use?

The torque is found by   =    sin    =  (0.300 m)(20.0 N)  =  6.00 N·m .

The moment of inertia is calculated as   =  1
2
  2   =  1

2
8.0 kg (0.300 m)2   =  0.36 kg ⋅ m2 .

Thus, the angular acceleration would be   =     =   6.00 N ⋅ m

0.36 kg ⋅ m2
  =  17 rad/s2 .

Note that the friction is always acting in a direction opposite to the rotation that is currently happening in this system. If the
potter makes a mistake and has both the brake and motor on simultaneously, the friction force of the brake will exert a
torque opposite that of the motor.
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The torque from the brake is   =    sin    =  (0.120 m)(15.0 N)  =  1.80 N⋅m .

Thus, the net torque is 6.00  N⋅m − 1.80 Ν⋅m = 4.20 Ν⋅m .

And the angular acceleration is   =     =   4.20 N ⋅ m

0.36 kg ⋅ m2
  =  12 rad/s2 .

Check Your Understanding

Torque is the analog of force and moment of inertia is the analog of mass. Force and mass are physical quantities that
depend on only one factor. For example, mass is related solely to the numbers of atoms of various types in an object. Are
torque and moment of inertia similarly simple?

Solution
No. Torque depends on three factors: force magnitude, force direction, and point of application. Moment of inertia depends
on both mass and its distribution relative to the axis of rotation. So, while the analogies are precise, these rotational
quantities depend on more factors.

10.4 Rotational Kinetic Energy: Work and Energy Revisited

Learning Objectives
By the end of this section, you will be able to:

• Derive the equation for rotational work.
• Calculate rotational kinetic energy.
• Demonstrate the law of conservation of energy.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.F.2.1 The student is able to make predictions about the change in the angular velocity about an axis for an object
when forces exerted on the object cause a torque about that axis. (S.P. 6.4)

• 3.F.2.2 The student is able to plan data collection and analysis strategies designed to test the relationship between a
torque exerted on an object and the change in angular velocity of that object about an axis. (S.P. 4.1, 4.2, 5.1)

In this module, we will learn about work and energy associated with rotational motion. Figure 10.14 shows a worker using an
electric grindstone propelled by a motor. Sparks are flying, and noise and vibration are created as layers of steel are pared from
the pole. The stone continues to turn even after the motor is turned off, but it is eventually brought to a stop by friction. Clearly,
the motor had to work to get the stone spinning. This work went into heat, light, sound, vibration, and considerable rotational
kinetic energy.

Figure 10.14 The motor works in spinning the grindstone, giving it rotational kinetic energy. That energy is then converted to heat, light, sound, and
vibration. (credit: U.S. Navy photo by Mass Communication Specialist Seaman Zachary David Bell)

Work must be done to rotate objects such as grindstones or merry-go-rounds. Work was defined in Uniform Circular Motion
and Gravitation for translational motion, and we can build on that knowledge when considering work done in rotational motion.
The simplest rotational situation is one in which the net force is exerted perpendicular to the radius of a disk (as shown in Figure
10.15) and remains perpendicular as the disk starts to rotate. The force is parallel to the displacement, and so the net work done
is the product of the force times the arc length traveled:

(10.53)net = (net )Δ .

To get torque and other rotational quantities into the equation, we multiply and divide the right-hand side of the equation by ,
and gather terms:
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(10.54)
net = ( net )Δ .

We recognize that net = net τ and Δ / = , so that

(10.55)net = (net τ) .

This equation is the expression for rotational work. It is very similar to the familiar definition of translational work as force
multiplied by distance. Here, torque is analogous to force, and angle is analogous to distance. The equation net = (net τ)

is valid in general, even though it was derived for a special case.

To get an expression for rotational kinetic energy, we must again perform some algebraic manipulations. The first step is to note
that net τ = , so that

(10.56)net = .

Figure 10.15 The net force on this disk is kept perpendicular to its radius as the force causes the disk to rotate. The net work done is thus
(net )Δ . The net work goes into rotational kinetic energy.

Making Connections

qWork and energy in rotational motion are completely analogous to work and energy in translational motion, first presented
in Uniform Circular Motion and Gravitation.

Now, we solve one of the rotational kinematics equations for . We start with the equation

(10.57)2 = 0
2 + 2 .

Next, we solve for :

(10.58)
=

2 − 0
2

2
.

Substituting this into the equation for net and gathering terms yields

(10.59)
net = 1

2
2 − 1

2 0
2.

This equation is the work-energy theorem for rotational motion only. As you may recall, net work changes the kinetic energy of

a system. Through an analogy with translational motion, we define the term 1
2

2 to be rotational kinetic energy KErot for

an object with a moment of inertia and an angular velocity :

(10.60)
KErot = 1

2
2.

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with being analogous to
and to . Rotational kinetic energy has important effects. Flywheels, for example, can be used to store large amounts of
rotational kinetic energy in a vehicle, as seen in Figure 10.16.
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Figure 10.16 Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large flywheel. When the
bus goes down a hill, its transmission converts its gravitational potential energy into KErot . It can also convert translational kinetic energy, when the

bus stops, into KErot . The flywheel's energy can then be used to accelerate, to go up another hill, or to keep the bus from going against friction.

Example 10.8 Calculating the Work and Energy for Spinning a Grindstone

Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of a
revolution as shown in Figure 10.17. In this example, we verify that the work done by the torque she exerts equals the
change in rotational energy. (a) How much work is done if she exerts a force of 200 N through a rotation of 1.00 rad(57.3º)

? The force is kept perpendicular to the grindstone's 0.320-m radius at the point of application, and the effects of friction are
negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg? (c) What is the final rotational kinetic
energy? (It should equal the work.)

Strategy

To find the work, we can use the equation net = (net τ) . We have enough information to calculate the torque and are

given the rotation angle. In the second part, we can find the final angular velocity using one of the kinematic relationships. In

the last part, we can calculate the rotational kinetic energy from its expression in KErot = 1
2

2 .

Solution for (a)

The net work is expressed in the equation

(10.61)net = (net τ) ,

where net is the applied force multiplied by the radius ( ) because there is no retarding friction, and the force is

perpendicular to . The angle is given. Substituting the given values in the equation above yields

(10.62)net = = (0.320 m)(200 N)(1.00 rad)

= 64.0 N ⋅ m.

Noting that 1 N · m = 1 J ,

(10.63)net = 64.0 J.

Figure 10.17 A large grindstone is given a spin by a person grasping its outer edge.

Solution for (b)

To find from the given information requires more than one step. We start with the kinematic relationship in the equation

(10.64)2 = 0
2 + 2 .
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Note that 0 = 0 because we start from rest. Taking the square root of the resulting equation gives

(10.65)= (2 )1 / 2.

Now we need to find . One possibility is

(10.66)= net τ,

where the torque is

(10.67)net τ = = (0.320 m)(200 N) = 64.0 N ⋅ m.

The formula for the moment of inertia for a disk is found in Figure 10.12:

(10.68)
= 1

2
2 = 0.5 85.0 kg (0.320 m)2 = 4.352 kg ⋅ m2.

Substituting the values of torque and moment of inertia into the expression for , we obtain

(10.69)
= 64.0 N ⋅ m

4.352 kg ⋅ m2
= 14.7rad

s2
.

Now, substitute this value and the given value for into the above expression for :

(10.70)
= (2 )1 / 2 = 2 14.7rad

s2
(1.00 rad)

1 / 2

= 5.42rad
s .

Solution for (c)

The final rotational kinetic energy is

(10.71)
KErot = 1

2
2.

Both and were found above. Thus,

(10.72)KErot = (0.5) 4.352 kg ⋅ m2 (5.42 rad/s)2 = 64.0 J.

Discussion

The final rotational kinetic energy equals the work done by the torque, which confirms that the work done went into rotational
kinetic energy. We could, in fact, have used an expression for energy instead of a kinematic relation to solve part (b). We will
do this in later examples.

Helicopter pilots are quite familiar with rotational kinetic energy. They know, for example, that a point of no return will be reached
if they allow their blades to slow below a critical angular velocity during flight. The blades lose lift, and it is impossible to
immediately get the blades spinning fast enough to regain it. Rotational kinetic energy must be supplied to the blades to get them
to rotate faster, and enough energy cannot be supplied in time to avoid a crash. Because of weight limitations, helicopter engines
are too small to supply both the energy needed for lift and to replenish the rotational kinetic energy of the blades once they have
slowed down. The rotational kinetic energy is put into them before takeoff and must not be allowed to drop below this crucial
level. One possible way to avoid a crash is to use the gravitational potential energy of the helicopter to replenish the rotational
kinetic energy of the blades by losing altitude and aligning the blades so that the helicopter is spun up in the descent. Of course,
if the helicopter's altitude is too low, then there is insufficient time for the blade to regain lift before reaching the ground.

Take-Home Experiment

Rotational motion can be observed in wrenches, clocks, wheels or spools on axels, and seesaws. Choose an object or
system that exhibits rotational motion and plan an experiment to test how torque affects angular velocity. How will you create
and measure different amounts of torque? How will you measure angular velocity? Remember that

net    =   ,     ∝   2,  and    =   .

Problem-Solving Strategy for Rotational Energy
1. Determine that energy or work is involved in the rotation.

2. Determine the system of interest. A sketch usually helps.

3. Analyze the situation to determine the types of work and energy involved.
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4. For closed systems, mechanical energy is conserved. That is, KEi + PEi = KEf + PEf. Note that KEi and KEf

may each include translational and rotational contributions.

5. For open systems, mechanical energy may not be conserved, and other forms of energy (referred to previously as
), such as heat transfer, may enter or leave the system. Determine what they are, and calculate them as

necessary.

6. Eliminate terms wherever possible to simplify the algebra.

7. Check the answer to see if it is reasonable.

Example 10.9 Calculating Helicopter Energies

A typical small rescue helicopter, similar to the one in Figure 10.18, has four blades, each is 4.00 m long and has a mass of
50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The
helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at
300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the
rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be
used to lift it?

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to
the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

The rotational kinetic energy is

(10.73)
KErot = 1

2
2.

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find KErot .

The angular velocity is

(10.74)
= 300 rev

1.00 min
⋅ 2π rad

1 rev
⋅ 1.00 min

60.0 s
= 31.4rad

s .

The moment of inertia of one blade will be that of a thin rod rotated about its end, found in Figure 10.12. The total is four
times this moment of inertia, because there are four blades. Thus,

(10.75)
= 4

2

3
= 4×

50.0 kg (4.00 m)2

3
= 1067 kg ⋅ m2.

Entering and into the expression for rotational kinetic energy gives

(10.76)KErot = 0.5(1067 kg ⋅ m2)(31.4 rad/s)2

= 5.26×105 J

Solution for (b)

Translational kinetic energy was defined in Uniform Circular Motion and Gravitation. Entering the given values of mass
and velocity, we obtain

(10.77)
KEtrans = 1

2
2 = (0.5) 1000 kg (20.0 m/s)2 = 2.00×105 J.

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

(10.78)2.00×105 J

5.26×105 J
= 0.380.

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we
equate those two energies:

(10.79)KErot = PEgrav

or

(10.80)1
2

2 = .
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We now solve for and substitute known values into the resulting equation

(10.81)

=

1
2

2

= 5.26×105 J

1000 kg 9.80 m/s2
= 53.7 m.

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of
the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the
helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational
kinetic energy in the blades.

Figure 10.18 The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the
blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant
rotational energy into the blades. The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives
have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Making Connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of KE . Uniform
Circular Motion and Gravitation has a detailed treatment of conservation of energy.

How Thick Is the Soup? Or Why Don't All Objects Roll Downhill at the Same Rate?
One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast, the soup is too
thin. Why should cans of identical size and mass roll down an incline at different rates? And why should the thickest soup roll the
slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest. Each can
starting from rest means each starts with the same gravitational potential energy PEgrav , which is converted entirely to KE ,

provided each rolls without slipping. KE , however, can take the form of KEtrans or KErot , and total KE is the sum of the

two. If a can rolls down a ramp, it puts part of its energy into rotation, leaving less for translation. Thus, the can goes slower than
it would if it slid down. Furthermore, the thin soup does not rotate, whereas the thick soup does, because it sticks to the can. The
thick soup thus puts more of the can's original gravitational potential energy into rotation than the thin soup, and the can rolls
more slowly, as seen in Figure 10.19.
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Figure 10.19 Three cans of soup with identical masses race down an incline. The first can has a low friction coating and does not roll but just slides
down the incline. It wins because it converts its entire PE into translational KE. The second and third cans both roll down the incline without slipping.
The second can contains thin soup and comes in second because part of its initial PE goes into rotating the can (but not the thin soup). The third can
contains thick soup. It comes in third because the soup rotates along with the can, taking even more of the initial PE for rotational KE, leaving less for
translational KE.

Assuming no losses due to friction, there is only one force doing work—gravity. Therefore the total work done is the change in
kinetic energy. As the cans start moving, the potential energy is changing into kinetic energy. Conservation of energy gives

(10.82)PEi = KEf.

More specifically,

(10.83)PEgrav = KEtrans + KErot

or

(10.84)
= 1

2
2 + 1

2
2.

So, the initial is divided between translational kinetic energy and rotational kinetic energy; and the greater is, the less

energy goes into translation. If the can slides down without friction, then = 0 and all the energy goes into translation; thus,
the can goes faster.

Take-Home Experiment

Locate several cans each containing different types of food. First, predict which can will win the race down an inclined plane
and explain why. See if your prediction is correct. You could also do this experiment by collecting several empty cylindrical
containers of the same size and filling them with different materials such as wet or dry sand.

Example 10.10 Calculating the Speed of a Cylinder Rolling Down an Incline

Calculate the final speed of a solid cylinder that rolls down a 2.00-m-high incline. The cylinder starts from rest, has a mass of
0.750 kg, and has a radius of 4.00 cm.

Strategy

We can solve for the final velocity using conservation of energy, but we must first express rotational quantities in terms of
translational quantities to end up with as the only unknown.

Solution

Conservation of energy for this situation is written as described above:

(10.85)
= 1

2
2 + 1

2
2.

Before we can solve for , we must get an expression for from Figure 10.12. Because and are related (note here

that the cylinder is rolling without slipping), we must also substitute the relationship = / into the expression. These
substitutions yield

(10.86)
= 1

2
2 + 1

2
1
2

2
2

2
.

Interestingly, the cylinder's radius and mass cancel, yielding

(10.87)
= 1

2
2 + 1

4
2 = 3

4
2.

Solving algebraically, the equation for the final velocity gives
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(10.88)
=

4

3

1 / 2

.

Substituting known values into the resulting expression yields

(10.89)

=
4 9.80 m/s2 (2.00 m)

3

1 / 2

= 5.11 m/s.

Discussion

Because and cancel, the result = 4
3

1 / 2

is valid for any solid cylinder, implying that all solid cylinders will roll

down an incline at the same rate independent of their masses and sizes. (Rolling cylinders down inclines is what Galileo
actually did to show that objects fall at the same rate independent of mass.) Note that if the cylinder slid without friction down
the incline without rolling, then the entire gravitational potential energy would go into translational kinetic energy. Thus,
1
2

2 = and = (2 )1 / 2 , which is 22% greater than (4 / 3)1 / 2 . That is, the cylinder would go faster at the

bottom.

Check Your Understanding

Analogy of Rotational and Translational Kinetic Energy

Is rotational kinetic energy completely analogous to translational kinetic energy? What, if any, are their differences? Give an
example of each type of kinetic energy.

Solution
Yes, rotational and translational kinetic energy are exact analogs. They both are the energy of motion involved with the
coordinated (non-random) movement of mass relative to some reference frame. The only difference between rotational and
translational kinetic energy is that translational is straight line motion while rotational is not. An example of both kinetic and
translational kinetic energy is found in a bike tire while being ridden down a bike path. The rotational motion of the tire
means it has rotational kinetic energy while the movement of the bike along the path means the tire also has translational
kinetic energy. If you were to lift the front wheel of the bike and spin it while the bike is stationary, then the wheel would have
only rotational kinetic energy relative to the Earth.

PhET Explorations: My Solar System

Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial
positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.

Figure 10.20 My Solar System (http://cnx.org/content/m55188/1.4/my-solar-system_en.jar)

10.5 Angular Momentum and Its Conservation

Learning Objectives
By the end of this section, you will be able to:

• Understand the analogy between angular momentum and linear momentum.
• Observe the relationship between torque and angular momentum.
• Apply the law of conservation of angular momentum.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.D.2.1 The student is able to describe a model of a rotational system and use that model to analyze a situation in
which angular momentum changes due to interaction with other objects or systems. (S.P. 1.2, 1.4)

• 4.D.2.2 The student is able to plan a data collection and analysis strategy to determine the change in angular
momentum of a system and relate it to interactions with other objects and systems. (S.P. 2.2)
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• 4.D.3.1 The student is able to use appropriate mathematical routines to calculate values for initial or final angular
momentum, or change in angular momentum of a system, or average torque or time during which the torque is exerted
in analyzing a situation involving torque and angular momentum. (S.P. 2.2)

• 4.D.3.2 The student is able to plan a data collection strategy designed to test the relationship between the change in
angular momentum of a system and the product of the average torque applied to the system and the time interval
during which the torque is exerted. (S.P. 4.1, 4.2)

• 5.E.1.1 The student is able to make qualitative predictions about the angular momentum of a system for a situation in
which there is no net external torque. (S.P. 6.4, 7.2)

• 5.E.1.2 The student is able to make calculations of quantities related to the angular momentum of a system when the
net external torque on the system is zero. (S.P. 2.1, 2.2)

• 5.E.2.1 The student is able to describe or calculate the angular momentum and rotational inertia of a system in terms of
the locations and velocities of objects that make up the system. Students are expected to do qualitative reasoning with
compound objects. Students are expected to do calculations with a fixed set of extended objects and point masses.
(S.P. 2.2)

Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to spin faster
and faster simply by pulling her arms in? Why does she not have to exert a torque to spin faster? Questions like these have
answers based in angular momentum, the rotational analog to linear momentum.

By now the pattern is clear—every rotational phenomenon has a direct translational analog. It seems quite reasonable, then, to
define angular momentum as

(10.90)= .

This equation is an analog to the definition of linear momentum as = . Units for linear momentum are kg ⋅ m/s while

units for angular momentum are kg ⋅ m2/s . As we would expect, an object that has a large moment of inertia , such as Earth,

has a very large angular momentum. An object that has a large angular velocity , such as a centrifuge, also has a rather large
angular momentum.

Making Connections

Angular momentum is completely analogous to linear momentum, first presented in Uniform Circular Motion and
Gravitation. It has the same implications in terms of carrying rotation forward, and it is conserved when the net external
torque is zero. Angular momentum, like linear momentum, is also a property of the atoms and subatomic particles.

Example 10.11 Calculating Angular Momentum of the Earth

Strategy

No information is given in the statement of the problem; so we must look up pertinent data before we can calculate = .
First, according to Figure 10.12, the formula for the moment of inertia of a sphere is

(10.91)
= 2 2

5

so that

(10.92)
= = 2 2

5
.

Earth's mass is 5.979×1024 kg and its radius is 6.376×106 m . The Earth's angular velocity is, of course,

exactly one revolution per day, but we must covert to radians per second to do the calculation in SI units.

Solution

Substituting known information into the expression for and converting to radians per second gives

(10.93)
= 0.4 5.979×1024 kg 6.376×106 m

2
1 rev

d

= 9.72×1037 kg ⋅ m2 ⋅ rev/d.

Substituting 2π rad for 1 rev and 8.64×104 s for 1 day gives

(10.94)
= 9.72×1037 kg ⋅ m2 2π rad/rev

8.64×104 s/d
(1 rev/d)

= 7.07×1033 kg ⋅ m2/s.
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Discussion

This number is large, demonstrating that Earth, as expected, has a tremendous angular momentum. The answer is
approximate, because we have assumed a constant density for Earth in order to estimate its moment of inertia.

When you push a merry-go-round, spin a bike wheel, or open a door, you exert a torque. If the torque you exert is greater than
opposing torques, then the rotation accelerates, and angular momentum increases. The greater the net torque, the more rapid
the increase in . The relationship between torque and angular momentum is

(10.95)
net = Δ

Δ
.

This expression is exactly analogous to the relationship between force and linear momentum, = Δ / Δ . The equation

net = Δ
Δ

is very fundamental and broadly applicable. It is, in fact, the rotational form of Newton's second law.

Example 10.12 Calculating the Torque Putting Angular Momentum Into a Lazy Susan

Figure 10.21 shows a Lazy Susan food tray being rotated by a person in quest of sustenance. Suppose the person exerts a
2.50 N force perpendicular to the lazy Susan's 0.260-m radius for 0.150 s. (a) What is the final angular momentum of the
lazy Susan if it starts from rest, assuming friction is negligible? (b) What is the final angular velocity of the lazy Susan, given
that its mass is 4.00 kg and assuming its moment of inertia is that of a disk?

Figure 10.21 A partygoer exerts a torque on a lazy Susan to make it rotate. The equation net = Δ
Δ

gives the relationship between torque

and the angular momentum produced.

Strategy

We can find the angular momentum by solving net = Δ
Δ

for Δ , and using the given information to calculate the

torque. The final angular momentum equals the change in angular momentum, because the lazy Susan starts from rest.
That is, Δ = . To find the final velocity, we must calculate from the definition of in = .

Solution for (a)

Solving net = Δ
Δ

for Δ gives

(10.96)Δ = (net τ)Δt.

Because the force is perpendicular to , we see that net = , so that

(10.97)= rFΔ = (0.260 m)(2.50 N)(0.150 s)

= 9.75×10−2 kg ⋅ m2 / s.

Solution for (b)

The final angular velocity can be calculated from the definition of angular momentum,

(10.98)= .

Solving for and substituting the formula for the moment of inertia of a disk into the resulting equation gives

(10.99)= =
1
2

2
.

And substituting known values into the preceding equation yields
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(10.100)
=

9.75×10−2 kg ⋅ m2/s

(0.500) 4.00 kg (0.260 m)
= 0.721 rad/s.

Discussion

Note that the imparted angular momentum does not depend on any property of the object but only on torque and time. The
final angular velocity is equivalent to one revolution in 8.71 s (determination of the time period is left as an exercise for the
reader), which is about right for a lazy Susan.

Take-Home Experiment

Plan an experiment to analyze changes to a system's angular momentum. Choose a system capable of rotational motion
such as a lazy Susan or a merry-go-round. Predict how the angular momentum of this system will change when you add an
object to the lazy Susan or jump onto the merry-go-round. What variables can you control? What are you measuring? In
other words, what are your independent and dependent variables? Are there any independent variables that it would be
useful to keep constant (angular velocity, perhaps)? Collect data in order to calculate or estimate the angular momentum of
your system when in motion. What do you observe? Collect data in order to calculate the change in angular momentum as a
result of the interaction you performed.

Using your data, how does the angular momentum vary with the size and location of an object added to the rotating system?

Example 10.13 Calculating the Torque in a Kick

The person whose leg is shown in Figure 10.22 kicks his leg by exerting a 2000-N force with his upper leg muscle. The

effective perpendicular lever arm is 2.20 cm. Given the moment of inertia of the lower leg is 1.25 kg ⋅ m2 , (a) find the

angular acceleration of the leg. (b) Neglecting the gravitational force, what is the rotational kinetic energy of the leg after it
has rotated through 57.3º (1.00 rad)?

Figure 10.22 The muscle in the upper leg gives the lower leg an angular acceleration and imparts rotational kinetic energy to it by exerting a
torque about the knee. F is a vector that is perpendicular to . This example examines the situation.

Strategy

The angular acceleration can be found using the rotational analog to Newton's second law, or = net / . The moment of

inertia is given and the torque can be found easily from the given force and perpendicular lever arm. Once the angular
acceleration is known, the final angular velocity and rotational kinetic energy can be calculated.

Solution to (a)

From the rotational analog to Newton's second law, the angular acceleration is

(10.101)= net .

Because the force and the perpendicular lever arm are given and the leg is vertical so that its weight does not create a
torque, the net torque is thus

(10.102)net = ⊥

= (0.0220 m)(2000 N)

= 44.0 N ⋅ m.

Substituting this value for the torque and the given value for the moment of inertia into the expression for gives

Chapter 10 | Rotational Motion and Angular Momentum 415



(10.103)
= 44.0 N ⋅ m

1.25 kg ⋅ m2
= 35.2 rad/s2.

Solution to (b)

The final angular velocity can be calculated from the kinematic expression

(10.104)2 = 0
2 + 2

or

(10.105)2 = 2

because the initial angular velocity is zero. The kinetic energy of rotation is

(10.106)
KErot = 1

2
2

so it is most convenient to use the value of 2 just found and the given value for the moment of inertia. The kinetic energy
is then

(10.107)KErot = 0.5 1.25 kg ⋅ m2 70.4 rad2 / s2

= 44.0 J
.

Discussion

These values are reasonable for a person kicking his leg starting from the position shown. The weight of the leg can be
neglected in part (a) because it exerts no torque when the center of gravity of the lower leg is directly beneath the pivot in
the knee. In part (b), the force exerted by the upper leg is so large that its torque is much greater than that created by the
weight of the lower leg as it rotates. The rotational kinetic energy given to the lower leg is enough that it could give a ball a
significant velocity by transferring some of this energy in a kick.

Making Connections: Conservation Laws

Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of
underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear
momentum is conserved when the net external force is zero.

Conservation of Angular Momentum

We can now understand why Earth keeps on spinning. As we saw in the previous example, Δ = (net )Δ . This equation

means that, to change angular momentum, a torque must act over some period of time. Because Earth has a large angular
momentum, a large torque acting over a long time is needed to change its rate of spin. So what external torques are there? Tidal
friction exerts torque that is slowing Earth's rotation, but tens of millions of years must pass before the change is very significant.
Recent research indicates the length of the day was 18 h some 900 million years ago. Only the tides exert significant retarding
torques on Earth, and so it will continue to spin, although ever more slowly, for many billions of years.

What we have here is, in fact, another conservation law. If the net torque is zero, then angular momentum is constant or

conserved. We can see this rigorously by considering net = Δ
Δ

for the situation in which the net torque is zero. In that case,

(10.108)net = 0

implying that

(10.109)Δ
Δ

= 0.

If the change in angular momentum Δ is zero, then the angular momentum is constant; thus,

(10.110)= constant (net = 0)

or

(10.111)= ′(net = 0).

These expressions are the law of conservation of angular momentum. Conservation laws are as scarce as they are
important.

An example of conservation of angular momentum is seen in Figure 10.23, in which an ice skater is executing a spin. The net
torque on her is very close to zero, because there is relatively little friction between her skates and the ice and because the
friction is exerted very close to the pivot point. (Both and are small, and so is negligibly small.) Consequently, she can
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spin for quite some time. She can do something else, too. She can increase her rate of spin by pulling her arms and legs in. Why
does pulling her arms and legs in increase her rate of spin? The answer is that her angular momentum is constant, so that

(10.112)= ′.

Expressing this equation in terms of the moment of inertia,

(10.113)= ′ ′,

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because ′

is smaller, the angular velocity ′ must increase to keep the angular momentum constant. The change can be dramatic, as the
following example shows.

Figure 10.23 (a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved because the net torque
on her is negligibly small. In the next image, her rate of spin increases greatly when she pulls in her arms, decreasing her moment of inertia. The work
she does to pull in her arms results in an increase in rotational kinetic energy.

Example 10.14 Calculating the Angular Momentum of a Spinning Skater

Suppose an ice skater, such as the one in Figure 10.23, is spinning at 0.800 rev/ s with her arms extended. She has a

moment of inertia of 2.34 kg ⋅ m2 with her arms extended and of 0.363 kg ⋅ m2 with her arms close to her body. (These

moments of inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in
revolutions per second after she pulls in her arms? (b) What is her rotational kinetic energy before and after she does this?

Strategy

In the first part of the problem, we are looking for the skater's angular velocity ′ after she has pulled in her arms. To find
this quantity, we use the conservation of angular momentum and note that the moments of inertia and initial angular velocity
are given. To find the initial and final kinetic energies, we use the definition of rotational kinetic energy given by

(10.114)
KErot = 1

2
2.

Solution for (a)

Because torque is negligible (as discussed above), the conservation of angular momentum given in = ′ ′ is
applicable. Thus,

(10.115)= ′

or

(10.116)= ′ ′

Solving for ′ and substituting known values into the resulting equation gives

(10.117)
′ =

′
=

2.34 kg ⋅ m2

0.363 kg ⋅ m2
(0.800 rev/s)

= 5.16 rev/s.

Solution for (b)

Rotational kinetic energy is given by

(10.118)
KErot = 1

2
2.

The initial value is found by substituting known values into the equation and converting the angular velocity to rad/s:
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(10.119)KErot = (0.5) 2.34 kg ⋅ m2 (0.800 rev/s)(2π rad/rev) 2

= 29.6 J.

The final rotational kinetic energy is

(10.120)
KErot ′ = 1

2
′ ′2.

Substituting known values into this equation gives

(10.121)
rot′ = (0.5) 0.363 kg ⋅ m2 (5.16 rev/s)(2π rad/rev) 2

= 191 J.

Discussion

In both parts, there is an impressive increase. First, the final angular velocity is large, although most world-class skaters can
achieve spin rates about this great. Second, the final kinetic energy is much greater than the initial kinetic energy. The
increase in rotational kinetic energy comes from work done by the skater in pulling in her arms. This work is internal work
that depletes some of the skater's food energy.

There are several other examples of objects that increase their rate of spin because something reduced their moment of inertia.
Tornadoes are one example. Storm systems that create tornadoes are slowly rotating. When the radius of rotation narrows, even
in a local region, angular velocity increases, sometimes to the furious level of a tornado. Earth is another example. Our planet
was born from a huge cloud of gas and dust, the rotation of which came from turbulence in an even larger cloud. Gravitational
forces caused the cloud to contract, and the rotation rate increased as a result. (See Figure 10.24.)

Figure 10.24 The Solar System coalesced from a cloud of gas and dust that was originally rotating. The orbital motions and spins of the planets are in
the same direction as the original spin and conserve the angular momentum of the parent cloud.

In case of human motion, one would not expect angular momentum to be conserved when a body interacts with the environment
as its foot pushes off the ground. Astronauts floating in space aboard the International Space Station have no angular
momentum relative to the inside of the ship if they are motionless. Their bodies will continue to have this zero value no matter
how they twist about as long as they do not give themselves a push off the side of the vessel.

Check Your Undestanding

Is angular momentum completely analogous to linear momentum? What, if any, are their differences?

Solution
Yes, angular and linear momentums are completely analogous. While they are exact analogs they have different units and
are not directly inter-convertible like forms of energy are.

10.6 Collisions of Extended Bodies in Two Dimensions

Learning Objectives
By the end of this section, you will be able to:
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angular acceleration:

angular momentum:

change in angular velocity:

kinematics of rotational motion:

law of conservation of angular momentum:

moment of inertia:

right-hand rule:

rotational inertia:

rotational kinetic energy:

tangential acceleration:

torque:

work-energy theorem:

Figure 10.31 As seen in figure (a), the forces on a spinning gyroscope are its weight and the supporting force from the stand. These forces create a
horizontal torque on the gyroscope, which create a change in angular momentum ΔL that is also horizontal. In figure (b), ΔL and L add to
produce a new angular momentum with the same magnitude, but different direction, so that the gyroscope precesses in the direction shown instead of
falling over.

Check Your Understanding

Rotational kinetic energy is associated with angular momentum? Does that mean that rotational kinetic energy is a vector?

Solution
No, energy is always a scalar whether motion is involved or not. No form of energy has a direction in space and you can see
that rotational kinetic energy does not depend on the direction of motion just as linear kinetic energy is independent of the
direction of motion.

Glossary
the rate of change of angular velocity with time

the product of moment of inertia and angular velocity

the difference between final and initial values of angular velocity

describes the relationships among rotation angle, angular velocity, angular acceleration,
and time

angular momentum is conserved, i.e., the initial angular momentum is equal to
the final angular momentum when no external torque is applied to the system

mass times the square of perpendicular distance from the rotation axis; for a point mass, it is = 2

and, because any object can be built up from a collection of point masses, this relationship is the basis for all other
moments of inertia

direction of angular velocity ω and angular momentum L in which the thumb of your right hand points when
you curl your fingers in the direction of the disk's rotation

resistance to change of rotation. The more rotational inertia an object has, the harder it is to rotate

the kinetic energy due to the rotation of an object. This is part of its total kinetic energy

the acceleration in a direction tangent to the circle at the point of interest in circular motion

the turning effectiveness of a force

if one or more external forces act upon a rigid object, causing its kinetic energy to change from KE1

to KE2 , then the work done by the net force is equal to the change in kinetic energy
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Section Summary

10.1 Angular Acceleration
• Uniform circular motion is the motion with a constant angular velocity = Δ

Δ
.

• In non-uniform circular motion, the velocity changes with time and the rate of change of angular velocity (i.e. angular

acceleration) is = Δ
Δ

.

• Linear or tangential acceleration refers to changes in the magnitude of velocity but not its direction, given as t = Δ
Δ

.

• For circular motion, note that = , so that

t =
Δ( )

Δ
.

• The radius r is constant for circular motion, and so Δ( ) = Δ . Thus,

t = Δ
Δ

.

• By definition, Δ / Δ = . Thus,

t =

or

= t.

10.2 Kinematics of Rotational Motion
• Kinematics is the description of motion.
• The kinematics of rotational motion describes the relationships among rotation angle, angular velocity, angular acceleration,

and time.
• Starting with the four kinematic equations we developed in the One-Dimensional Kinematics, we can derive the four

rotational kinematic equations (presented together with their translational counterparts) seen in Table 10.2.
• In these equations, the subscript 0 denotes initial values ( 0 and 0 are initial values), and the average angular velocity

- and average velocity - are defined as follows:

¯ = 0 +

2
 and ¯ = 0 +

2
.

10.3 Dynamics of Rotational Motion: Rotational Inertia
• The farther the force is applied from the pivot, the greater is the angular acceleration; angular acceleration is inversely

proportional to mass.
• If we exert a force on a point mass that is at a distance from a pivot point and because the force is perpendicular

to , an acceleration is obtained in the direction of . We can rearrange this equation such that

,

and then look for ways to relate this expression to expressions for rotational quantities. We note that , and we

substitute this expression into , yielding

• Torque is the turning effectiveness of a force. In this case, because is perpendicular to , torque is simply = . If
we multiply both sides of the equation above by , we get torque on the left-hand side. That is,

= 2

or

= 2 .

• The moment of inertia of an object is the sum of 2 for all the point masses of which it is composed. That is,

= ∑ 2.

• The general relationship among torque, moment of inertia, and angular acceleration is
=

or

= net τ ⋅

426 Chapter 10 | Rotational Motion and Angular Momentum

This content is available for free at http://cnx.org/content/col11844/1.13



10.4 Rotational Kinetic Energy: Work and Energy Revisited
• The rotational kinetic energy KErot for an object with a moment of inertia and an angular velocity is given by

KErot = 1
2

2.

• Helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before
takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and
put significant rotational energy into the blades.

• Work and energy in rotational motion are completely analogous to work and energy in translational motion.
• The equation for the work-energy theorem for rotational motion is,

net = 1
2

2 − 1
2 0

2.

10.5 Angular Momentum and Its Conservation
• Every rotational phenomenon has a direct translational analog , likewise angular momentum can be defined as

= .

• This equation is an analog to the definition of linear momentum as = . The relationship between torque and angular

momentum is net = Δ
Δ

.

• Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of
underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear
momentum is conserved when the net external force is zero.

10.6 Collisions of Extended Bodies in Two Dimensions
• Angular momentum is analogous to linear momentum and is given by = .

• Angular momentum is changed by torque, following the relationship net = Δ
Δ

.

• Angular momentum is conserved if the net torque is zero = constant (net = 0) or = ′ (net = 0) . This

equation is known as the law of conservation of angular momentum, which may be conserved in collisions.

10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
• Torque is perpendicular to the plane formed by and F and is the direction your right thumb would point if you curled the

fingers of your right hand in the direction of F . The direction of the torque is thus the same as that of the angular
momentum it produces.

• The gyroscope precesses around a vertical axis, since the torque is always horizontal and perpendicular to L . If the

gyroscope is not spinning, it acquires angular momentum in the direction of the torque ( L = ΔL ), and it rotates about a
horizontal axis, falling over just as we would expect.

• Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and points at Polaris, the North Star.

Conceptual Questions

10.1 Angular Acceleration
1. Analogies exist between rotational and translational physical quantities. Identify the rotational term analogous to each of the
following: acceleration, force, mass, work, translational kinetic energy, linear momentum, impulse.

2. Explain why centripetal acceleration changes the direction of velocity in circular motion but not its magnitude.

3. In circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction. Explain your
answer.

4. Suppose a piece of food is on the edge of a rotating microwave oven plate. Does it experience nonzero tangential
acceleration, centripetal acceleration, or both when: (a) The plate starts to spin? (b) The plate rotates at constant angular
velocity? (c) The plate slows to a halt?

10.3 Dynamics of Rotational Motion: Rotational Inertia

5. The moment of inertia of a long rod spun around an axis through one end perpendicular to its length is 2 /3 . Why is this

moment of inertia greater than it would be if you spun a point mass at the location of the center of mass of the rod (at / 2

)? (That would be 2 /4 .)
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6. Why is the moment of inertia of a hoop that has a mass and a radius greater than the moment of inertia of a disk that

has the same mass and radius? Why is the moment of inertia of a spherical shell that has a mass and a radius greater
than that of a solid sphere that has the same mass and radius?

7. Give an example in which a small force exerts a large torque. Give another example in which a large force exerts a small
torque.

8. While reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel rims.
Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the bicycle's
frame?

Figure 10.32 The image shows a side view of a racing bicycle. Can you see evidence in the design of the wheels on this racing bicycle that their
moment of inertia has been purposely reduced? (credit: Jesús Rodriguez)

9. A ball slides up a frictionless ramp. It is then rolled without slipping and with the same initial velocity up another frictionless
ramp (with the same slope angle). In which case does it reach a greater height, and why?

10.4 Rotational Kinetic Energy: Work and Energy Revisited
10. Describe the energy transformations involved when a yo-yo is thrown downward and then climbs back up its string to be
caught in the user's hand.

11. What energy transformations are involved when a dragster engine is revved, its clutch let out rapidly, its tires spun, and it
starts to accelerate forward? Describe the source and transformation of energy at each step.

12. The Earth has more rotational kinetic energy now than did the cloud of gas and dust from which it formed. Where did this
energy come from?

Figure 10.33 An immense cloud of rotating gas and dust contracted under the influence of gravity to form the Earth and in the process rotational kinetic
energy increased. (credit: NASA)

10.5 Angular Momentum and Its Conservation
13. When you start the engine of your car with the transmission in neutral, you notice that the car rocks in the opposite sense of
the engine's rotation. Explain in terms of conservation of angular momentum. Is the angular momentum of the car conserved for
long (for more than a few seconds)?

14. Suppose a child walks from the outer edge of a rotating merry-go round to the inside. Does the angular velocity of the merry-
go-round increase, decrease, or remain the same? Explain your answer.
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Figure 10.34 A child may jump off a merry-go-round in a variety of directions.

15. Suppose a child gets off a rotating merry-go-round. Does the angular velocity of the merry-go-round increase, decrease, or
remain the same if: (a) He jumps off radially? (b) He jumps backward to land motionless? (c) He jumps straight up and hangs
onto an overhead tree branch? (d) He jumps off forward, tangential to the edge? Explain your answers. (Refer to Figure 10.34).

16. Helicopters have a small propeller on their tail to keep them from rotating in the opposite direction of their main lifting blades.
Explain in terms of Newton's third law why the helicopter body rotates in the opposite direction to the blades.

17. Whenever a helicopter has two sets of lifting blades, they rotate in opposite directions (and there will be no tail propeller).
Explain why it is best to have the blades rotate in opposite directions.

18. Describe how work is done by a skater pulling in her arms during a spin. In particular, identify the force she exerts on each
arm to pull it in and the distance each moves, noting that a component of the force is in the direction moved. Why is angular
momentum not increased by this action?

19. When there is a global heating trend on Earth, the atmosphere expands and the length of the day increases very slightly.
Explain why the length of a day increases.

20. Nearly all conventional piston engines have flywheels on them to smooth out engine vibrations caused by the thrust of
individual piston firings. Why does the flywheel have this effect?

21. Jet turbines spin rapidly. They are designed to fly apart if something makes them seize suddenly, rather than transfer angular
momentum to the plane's wing, possibly tearing it off. Explain how flying apart conserves angular momentum without transferring
it to the wing.

22. An astronaut tightens a bolt on a satellite in orbit. He rotates in a direction opposite to that of the bolt, and the satellite rotates
in the same direction as the bolt. Explain why. If a handhold is available on the satellite, can this counter-rotation be prevented?
Explain your answer.

23. Competitive divers pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they fully
extend their limbs to enter straight down. Explain the effect of both actions on their angular velocities. Also explain the effect on
their angular momenta.

Figure 10.35 The diver spins rapidly when curled up and slows when she extends her limbs before entering the water.

24. Draw a free body diagram to show how a diver gains angular momentum when leaving the diving board.

25. In terms of angular momentum, what is the advantage of giving a football or a rifle bullet a spin when throwing or releasing
it?
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Figure 10.36 The image shows a view down the barrel of a cannon, emphasizing its rifling. Rifling in the barrel of a canon causes the projectile to spin
just as is the case for rifles (hence the name for the grooves in the barrel). (credit: Elsie esq., Flickr)

10.6 Collisions of Extended Bodies in Two Dimensions
26. Describe two different collisions—one in which angular momentum is conserved, and the other in which it is not. Which
condition determines whether or not angular momentum is conserved in a collision?

27. Suppose an ice hockey puck strikes a hockey stick that lies flat on the ice and is free to move in any direction. Which
quantities are likely to be conserved: angular momentum, linear momentum, or kinetic energy (assuming the puck and stick are
very resilient)?

28. While driving his motorcycle at highway speed, a physics student notices that pulling back lightly on the right handlebar tips
the cycle to the left and produces a left turn. Explain why this happens.

10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
29. While driving his motorcycle at highway speed, a physics student notices that pulling back lightly on the right handlebar tips
the cycle to the left and produces a left turn. Explain why this happens.

30. Gyroscopes used in guidance systems to indicate directions in space must have an angular momentum that does not change
in direction. Yet they are often subjected to large forces and accelerations. How can the direction of their angular momentum be
constant when they are accelerated?
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Problems & Exercises

10.1 Angular Acceleration
1. At its peak, a tornado is 60.0 m in diameter and carries 500
km/h winds. What is its angular velocity in revolutions per
second?

2. Integrated Concepts

An ultracentrifuge accelerates from rest to 100,000 rpm in

2.00 min. (a) What is its angular acceleration in rad/s2 ? (b)
What is the tangential acceleration of a point 9.50 cm from
the axis of rotation? (c) What is the radial acceleration in

m/s2 and multiples of of this point at full rpm?

3. Integrated Concepts

You have a grindstone (a disk) that is 90.0 kg, has a 0.340-m
radius, and is turning at 90.0 rpm, and you press a steel axe
against it with a radial force of 20.0 N. (a) Assuming the
kinetic coefficient of friction between steel and stone is 0.20,
calculate the angular acceleration of the grindstone. (b) How
many turns will the stone make before coming to rest?

4. Unreasonable Results

You are told that a basketball player spins the ball with an

angular acceleration of 100 rad/s2 . (a) What is the ball's
final angular velocity if the ball starts from rest and the
acceleration lasts 2.00 s? (b) What is unreasonable about the
result? (c) Which premises are unreasonable or inconsistent?

10.2 Kinematics of Rotational Motion
5. With the aid of a string, a gyroscope is accelerated from
rest to 32 rad/s in 0.40 s.

(a) What is its angular acceleration in rad/s2?

(b) How many revolutions does it go through in the process?

6. Suppose a piece of dust finds itself on a CD. If the spin rate
of the CD is 500 rpm, and the piece of dust is 4.3 cm from the
center, what is the total distance traveled by the dust in 3
minutes? (Ignore accelerations due to getting the CD
rotating.)

7. A gyroscope slows from an initial rate of 32.0 rad/s at a

rate of 0.700 rad/s2 .

(a) How long does it take to come to rest?

(b) How many revolutions does it make before stopping?

8. During a very quick stop, a car decelerates at 7.00 m/s2 .

(a) What is the angular acceleration of its 0.280-m-radius
tires, assuming they do not slip on the pavement?

(b) How many revolutions do the tires make before coming to
rest, given their initial angular velocity is 95.0 rad/s ?

(c) How long does the car take to stop completely?

(d) What distance does the car travel in this time?

(e) What was the car's initial velocity?

(f) Do the values obtained seem reasonable, considering that
this stop happens very quickly?

Figure 10.37 Yo-yos are amusing toys that display significant physics
and are engineered to enhance performance based on physical laws.
(credit: Beyond Neon, Flickr)

9. Everyday application: Suppose a yo-yo has a center shaft
that has a 0.250 cm radius and that its string is being pulled.

(a) If the string is stationary and the yo-yo accelerates away

from it at a rate of 1.50 m/s2 , what is the angular
acceleration of the yo-yo?

(b) What is the angular velocity after 0.750 s if it starts from
rest?

(c) The outside radius of the yo-yo is 3.50 cm. What is the
tangential acceleration of a point on its edge?

10.3 Dynamics of Rotational Motion: Rotational
Inertia
10. This problem considers additional aspects of example
Calculating the Effect of Mass Distribution on a Merry-
Go-Round. (a) How long does it take the father to give the
merry-go-round an angular velocity of 1.50 rad/s? (b) How
many revolutions must he go through to generate this
velocity? (c) If he exerts a slowing force of 300 N at a radius
of 1.35 m, how long would it take him to stop them?

11. Calculate the moment of inertia of a skater given the
following information. (a) The 60.0-kg skater is approximated
as a cylinder that has a 0.110-m radius. (b) The skater with
arms extended is approximately a cylinder that is 52.5 kg, has
a 0.110-m radius, and has two 0.900-m-long arms which are
3.75 kg each and extend straight out from the cylinder like
rods rotated about their ends.

12. The triceps muscle in the back of the upper arm extends
the forearm. This muscle in a professional boxer exerts a

force of 2.00×103 N with an effective perpendicular lever
arm of 3.00 cm, producing an angular acceleration of the

forearm of 120 rad/s2 . What is the moment of inertia of the
boxer's forearm?

13. A soccer player extends her lower leg in a kicking motion
by exerting a force with the muscle above the knee in the
front of her leg. She produces an angular acceleration of

30.00 rad/s2 and her lower leg has a moment of inertia of

0.750 kg ⋅ m2 . What is the force exerted by the muscle if

its effective perpendicular lever arm is 1.90 cm?

14. Suppose you exert a force of 180 N tangential to a
0.280-m-radius 75.0-kg grindstone (a solid disk).

(a)What torque is exerted? (b) What is the angular
acceleration assuming negligible opposing friction? (c) What
is the angular acceleration if there is an opposing frictional
force of 20.0 N exerted 1.50 cm from the axis?
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15. Consider the 12.0 kg motorcycle wheel shown in Figure
10.38. Assume it to be approximately an annular ring with an
inner radius of 0.280 m and an outer radius of 0.330 m. The
motorcycle is on its center stand, so that the wheel can spin
freely. (a) If the drive chain exerts a force of 2200 N at a
radius of 5.00 cm, what is the angular acceleration of the
wheel? (b) What is the tangential acceleration of a point on
the outer edge of the tire? (c) How long, starting from rest,
does it take to reach an angular velocity of 80.0 rad/s?

Figure 10.38 A motorcycle wheel has a moment of inertia approximately
that of an annular ring.

16. Zorch, an archenemy of Superman, decides to slow
Earth's rotation to once per 28.0 h by exerting an opposing
force at and parallel to the equator. Superman is not
immediately concerned, because he knows Zorch can only

exert a force of 4.00×107 N (a little greater than a Saturn
V rocket's thrust). How long must Zorch push with this force to
accomplish his goal? (This period gives Superman time to
devote to other villains.) Explicitly show how you follow the
steps found in Problem-Solving Strategy for Rotational
Dynamics.

17. An automobile engine can produce 200 N · m of torque.
Calculate the angular acceleration produced if 95.0% of this
torque is applied to the drive shaft, axle, and rear wheels of a
car, given the following information. The car is suspended so
that the wheels can turn freely. Each wheel acts like a 15.0 kg
disk that has a 0.180 m radius. The walls of each tire act like
a 2.00-kg annular ring that has inside radius of 0.180 m and
outside radius of 0.320 m. The tread of each tire acts like a
10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a
rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts
like a rod that has a 3.20-cm radius.

18. Starting with the formula for the moment of inertia of a rod
rotated around an axis through one end perpendicular to its

length =  2 / 3 , prove that the moment of inertia of a

rod rotated about an axis through its center perpendicular to

its length is =  2 / 12 . You will find the graphics in
Figure 10.12 useful in visualizing these rotations.

19. Unreasonable Results

A gymnast doing a forward flip lands on the mat and exerts a
500-N · m torque to slow and then reverse her angular
velocity. Her initial angular velocity is 10.0 rad/s, and her

moment of inertia is 0.050 kg ⋅ m2 . (a) What time is

required for her to exactly reverse her spin? (b) What is

unreasonable about the result? (c) Which premises are
unreasonable or inconsistent?

20. Unreasonable Results

An advertisement claims that an 800-kg car is aided by its
20.0-kg flywheel, which can accelerate the car from rest to a
speed of 30.0 m/s. The flywheel is a disk with a 0.150-m
radius. (a) Calculate the angular velocity the flywheel must
have if 95.0% of its rotational energy is used to get the car up
to speed. (b) What is unreasonable about the result? (c)
Which premise is unreasonable or which premises are
inconsistent?

10.4 Rotational Kinetic Energy: Work and
Energy Revisited
21. This problem considers energy and work aspects of
Example 10.7—use data from that example as needed. (a)
Calculate the rotational kinetic energy in the merry-go-round
plus child when they have an angular velocity of 20.0 rpm. (b)
Using energy considerations, find the number of revolutions
the father will have to push to achieve this angular velocity
starting from rest. (c) Again, using energy considerations,
calculate the force the father must exert to stop the merry-go-
round in two revolutions

22. What is the final velocity of a hoop that rolls without
slipping down a 5.00-m-high hill, starting from rest?

23. (a) Calculate the rotational kinetic energy of Earth on its
axis. (b) What is the rotational kinetic energy of Earth in its
orbit around the Sun?

24. Calculate the rotational kinetic energy in the motorcycle
wheel (Figure 10.38) if its angular velocity is 120 rad/s.
Assume M = 12.0 kg, R1 = 0.280 m, and R2 = 0.330 m.

25. A baseball pitcher throws the ball in a motion where there
is rotation of the forearm about the elbow joint as well as
other movements. If the linear velocity of the ball relative to
the elbow joint is 20.0 m/s at a distance of 0.480 m from the
joint and the moment of inertia of the forearm is

0.500 kg ⋅ m2 , what is the rotational kinetic energy of the

forearm?

26. While punting a football, a kicker rotates his leg about the

hip joint. The moment of inertia of the leg is 3.75 kg ⋅ m2

and its rotational kinetic energy is 175 J. (a) What is the
angular velocity of the leg? (b) What is the velocity of tip of
the punter's shoe if it is 1.05 m from the hip joint? (c) Explain
how the football can be given a velocity greater than the tip of
the shoe (necessary for a decent kick distance).

27. A bus contains a 1500 kg flywheel (a disk that has a
0.600 m radius) and has a total mass of 10,000 kg. (a)
Calculate the angular velocity the flywheel must have to
contain enough energy to take the bus from rest to a speed of
20.0 m/s, assuming 90.0% of the rotational kinetic energy can
be transformed into translational energy. (b) How high a hill
can the bus climb with this stored energy and still have a
speed of 3.00 m/s at the top of the hill? Explicitly show how
you follow the steps in the Problem-Solving Strategy for
Rotational Energy.

28. A ball with an initial velocity of 8.00 m/s rolls up a hill
without slipping. Treating the ball as a spherical shell,
calculate the vertical height it reaches. (b) Repeat the
calculation for the same ball if it slides up the hill without
rolling.
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29. While exercising in a fitness center, a man lies face down
on a bench and lifts a weight with one lower leg by contacting
the muscles in the back of the upper leg. (a) Find the angular
acceleration produced given the mass lifted is 10.0 kg at a
distance of 28.0 cm from the knee joint, the moment of inertia

of the lower leg is 0.900 kg ⋅ m2 , the muscle force is 1500

N, and its effective perpendicular lever arm is 3.00 cm. (b)
How much work is done if the leg rotates through an angle of
20.0º with a constant force exerted by the muscle?

30. To develop muscle tone, a woman lifts a 2.00-kg weight
held in her hand. She uses her biceps muscle to flex the
lower arm through an angle of 60.0º . (a) What is the angular
acceleration if the weight is 24.0 cm from the elbow joint, her

forearm has a moment of inertia of 0.250 kg ⋅ m2 , and the

net force she exerts is 750 N at an effective perpendicular
lever arm of 2.00 cm? (b) How much work does she do?

31. Consider two cylinders that start down identical inclines
from rest except that one is frictionless. Thus one cylinder
rolls without slipping, while the other slides frictionlessly
without rolling. They both travel a short distance at the bottom
and then start up another incline. (a) Show that they both
reach the same height on the other incline, and that this
height is equal to their original height. (b) Find the ratio of the
time the rolling cylinder takes to reach the height on the
second incline to the time the sliding cylinder takes to reach
the height on the second incline. (c) Explain why the time for
the rolling motion is greater than that for the sliding motion.

32. What is the moment of inertia of an object that rolls
without slipping down a 2.00-m-high incline starting from rest,
and has a final velocity of 6.00 m/s? Express the moment of

inertia as a multiple of 2 , where is the mass of the

object and is its radius.

33. Suppose a 200-kg motorcycle has two wheels like, the
one described in Example 10.15 and is heading toward a hill
at a speed of 30.0 m/s. (a) How high can it coast up the hill, if
you neglect friction? (b) How much energy is lost to friction if
the motorcycle only gains an altitude of 35.0 m before coming
to rest?

34. In softball, the pitcher throws with the arm fully extended
(straight at the elbow). In a fast pitch the ball leaves the hand
with a speed of 139 km/h. (a) Find the rotational kinetic
energy of the pitcher's arm given its moment of inertia is

0.720 kg ⋅ m2 and the ball leaves the hand at a distance of

0.600 m from the pivot at the shoulder. (b) What force did the
muscles exert to cause the arm to rotate if their effective
perpendicular lever arm is 4.00 cm and the ball is 0.156 kg?

35. Construct Your Own Problem

Consider the work done by a spinning skater pulling her arms
in to increase her rate of spin. Construct a problem in which
you calculate the work done with a “force multiplied by
distance” calculation and compare it to the skater's increase
in kinetic energy.

10.5 Angular Momentum and Its Conservation
36. (a) Calculate the angular momentum of the Earth in its
orbit around the Sun.

(b) Compare this angular momentum with the angular
momentum of Earth on its axis.

37. (a) What is the angular momentum of the Moon in its orbit
around Earth?

(b) How does this angular momentum compare with the
angular momentum of the Moon on its axis? Remember that
the Moon keeps one side toward Earth at all times.

(c) Discuss whether the values found in parts (a) and (b)
seem consistent with the fact that tidal effects with Earth have
caused the Moon to rotate with one side always facing Earth.

38. Suppose you start an antique car by exerting a force of
300 N on its crank for 0.250 s. What angular momentum is
given to the engine if the handle of the crank is 0.300 m from
the pivot and the force is exerted to create maximum torque
the entire time?

39. A playground merry-go-round has a mass of 120 kg and a
radius of 1.80 m and it is rotating with an angular velocity of
0.500 rev/s. What is its angular velocity after a 22.0-kg child
gets onto it by grabbing its outer edge? The child is initially at
rest.

40. Three children are riding on the edge of a merry-go-round
that is 100 kg, has a 1.60-m radius, and is spinning at 20.0
rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If
the child who has a mass of 28.0 kg moves to the center of
the merry-go-round, what is the new angular velocity in rpm?

41. (a) Calculate the angular momentum of an ice skater
spinning at 6.00 rev/s given his moment of inertia is

0.400 kg ⋅ m2 . (b) He reduces his rate of spin (his angular

velocity) by extending his arms and increasing his moment of
inertia. Find the value of his moment of inertia if his angular
velocity decreases to 1.25 rev/s. (c) Suppose instead he
keeps his arms in and allows friction of the ice to slow him to
3.00 rev/s. What average torque was exerted if this takes
15.0 s?

42. Consider the Earth-Moon system. Construct a problem in
which you calculate the total angular momentum of the
system including the spins of the Earth and the Moon on their
axes and the orbital angular momentum of the Earth-Moon
system in its nearly monthly rotation. Calculate what happens
to the Moon's orbital radius if the Earth's rotation decreases
due to tidal drag. Among the things to be considered are the
amount by which the Earth's rotation slows and the fact that
the Moon will continue to have one side always facing the
Earth.

10.6 Collisions of Extended Bodies in Two
Dimensions
43. Repeat Example 10.15 in which the disk strikes and
adheres to the stick 0.100 m from the nail.

44. Repeat Example 10.15 in which the disk originally spins
clockwise at 1000 rpm and has a radius of 1.50 cm.

45. Twin skaters approach one another as shown in Figure
10.39 and lock hands. (a) Calculate their final angular
velocity, given each had an initial speed of 2.50 m/s relative to
the ice. Each has a mass of 70.0 kg, and each has a center of
mass located 0.800 m from their locked hands. You may
approximate their moments of inertia to be that of point
masses at this radius. (b) Compare the initial kinetic energy
and final kinetic energy.
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Figure 10.39 Twin skaters approach each other with identical speeds.
Then, the skaters lock hands and spin.

46. Suppose a 0.250-kg ball is thrown at 15.0 m/s to a
motionless person standing on ice who catches it with an
outstretched arm as shown in Figure 10.40.

(a) Calculate the final linear velocity of the person, given his
mass is 70.0 kg.

(b) What is his angular velocity if each arm is 5.00 kg? You
may treat the ball as a point mass and treat the person's arms
as uniform rods (each has a length of 0.900 m) and the rest of
his body as a uniform cylinder of radius 0.180 m. Neglect the
effect of the ball on his center of mass so that his center of
mass remains in his geometrical center.

(c) Compare the initial and final total kinetic energies.

Figure 10.40 The figure shows the overhead view of a person standing
motionless on ice about to catch a ball. Both arms are outstretched.
After catching the ball, the skater recoils and rotates.

47. Repeat Example 10.15 in which the stick is free to have
translational motion as well as rotational motion.

10.7 Gyroscopic Effects: Vector Aspects of
Angular Momentum
48. Integrated Concepts

The axis of Earth makes a 23.5° angle with a direction
perpendicular to the plane of Earth's orbit. As shown in
Figure 10.41, this axis precesses, making one complete
rotation in 25,780 y.

(a) Calculate the change in angular momentum in half this
time.

(b) What is the average torque producing this change in
angular momentum?

(c) If this torque were created by a single force (it is not)
acting at the most effective point on the equator, what would
its magnitude be?

Figure 10.41 The Earth's axis slowly precesses, always making an
angle of 23.5° with the direction perpendicular to the plane of Earth's
orbit. The change in angular momentum for the two shown positions is

quite large, although the magnitude L is unchanged.

Test Prep for AP® Courses
10.3 Dynamics of Rotational Motion: Rotational
Inertia
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1. A piece of wood can be carved by spinning it on a
motorized lathe and holding a sharp chisel to the edge of the
wood as it spins. How does the angular velocity of a piece of
wood with a radius of 0.2 m spinning on a lathe change when
a chisel is held to the wood's edge with a force of 50 N?

a. It increases by 0.1 N•m multiplied by the moment of
inertia of the wood.

b. It decreases by 0.1 N•m divided by the moment of
inertia of the wood-and-lathe system.

c. It decreases by 0.1 N•m multiplied by the moment of
inertia of the wood.

d. It decreases by 0.1 m/s2.

2. A Ferris wheel is loaded with people in the chairs at the
following positions: 4 o'clock, 1 o'clock, 9 o'clock, and 6
o'clock. As the wheel begins to turn, what forces are acting on
the system? How will each force affect the angular velocity
and angular momentum?

3. A lever is placed on a fulcrum. A rock is placed on the left
end of the lever and a downward (clockwise) force is applied
to the right end of the lever. What measurements would be
most effective to help you determine the angular momentum
of the system? (Assume the lever itself has negligible mass.)

a. the angular velocity and mass of the rock
b. the angular velocity and mass of the rock, and the

radius of the lever
c. the velocity of the force, the radius of the lever, and the

mass of the rock
d. the mass of the rock, the length of the lever on both

sides of the fulcrum, and the force applied on the right
side of the lever

4. You can use the following setup to determine angular
acceleration and angular momentum: A lever is placed on a
fulcrum. A rock is placed on the left end of the lever and a
known downward (clockwise) force is applied to the right end
of the lever. What calculations would you perform? How
would you account for gravity in your calculations?

5. Consider two sizes of disk, both of mass M. One size of
disk has radius R; the other has radius 2R. System A consists
of two of the larger disks rigidly connected to each other with
a common axis of rotation. System B consists of one of the
larger disks and a number of the smaller disks rigidly
connected with a common axis of rotation. If the moment of
inertia for system A equals the moment of inertia for system
B, how many of the smaller disks are in system B?

a. 1
b. 2
c. 3
d. 4

6. How do you arrange these objects so that the resulting
system has the maximum possible moment of inertia? What
is that moment of inertia?

10.4 Rotational Kinetic Energy: Work and
Energy Revisited
7. Gear A, which turns clockwise, meshes with gear B, which
turns counterclockwise. When more force is applied through
gear A, torque is created. How does the angular velocity of
gear B change as a result?

a. It increases in magnitude.
b. It decreases in magnitude.
c. It changes direction.
d. It stays the same.

8. Which will cause a greater increase in the angular velocity
of a disk: doubling the torque applied or halving the radius at
which the torque is applied? Explain.

9. Which measure would not be useful to help you determine
the change in angular velocity when the torque on a fishing
reel is increased?

a. the radius of the reel
b. the amount of line that unspools
c. the angular momentum of the fishing line
d. the time it takes the line to unspool

10. What data could you collect to study the change in
angular velocity when two people push a merry-go-round
instead of one, providing twice as much torque? How would
you use the data you collect?

10.5 Angular Momentum and Its Conservation
11. Which rotational system would be best to use as a model
to measure how angular momentum changes when forces on
the system are changed?

a. a fishing reel
b. a planet and its moon
c. a figure skater spinning
d. a person's lower leg

12. You are collecting data to study changes in the angular
momentum of a bicycle wheel when a force is applied to it.
Which of the following measurements would be least helpful
to you?

a. the time for which the force is applied
b. the radius at which the force is applied
c. the angular velocity of the wheel when the force is

applied
d. the direction of the force

13. Which torque applied to a disk with radius 7.0 cm for 3.5 s
will produce an angular momentum of 25 N•m•s?

a. 7.1 N•m
b. 357.1 N•m
c. 3.6 N•m
d. 612.5 N•m

14. Which of the following would be the best way to produce
measurable amounts of torque on a system to test the
relationship between the angular momentum of the system,
the average torque applied to the system, and the time for
which the torque is applied?

a. having different numbers of people push on a merry-go-
round

b. placing known masses on one end of a seesaw
c. touching the outer edge of a bicycle wheel to a treadmill

that is moving at different speeds
d. hanging known masses from a string that is wound

around a spool suspended horizontally on an axle

15.
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Figure 10.42 A curved arrow lies at the side of a gray disk. There is a
point at the center of the disk, and around the point there is a dashed
circle. There is a point labeled “Child” on the dashed circle. Below the
disc is a label saying “Top View”. The diagram above shows a top
view of a child of mass M on a circular platform of mass 2M

that is rotating counterclockwise. Assume the platform rotates
without friction. Which of the following describes an action by
the child that will increase the angular speed of the platform-
child system and why?

a. The child moves toward the center of the platform,
increasing the total angular momentum of the system.

b. The child moves toward the center of the platform,
decreasing the rotational inertia of the system.

c. The child moves away from the center of the platform,
increasing the total angular momentum of the system.

d. The child moves away from the center of the platform,
decreasing the rotational inertia of the system.

16.

Figure 10.43 A point labeled “Moon” lies on a dashed ellipse. Two other
points, labeled “A” and “B”, lie at opposite ends of the ellipse. A point
labeled “Planet” lies inside the ellipse. A moon is in an elliptical
orbit about a planet as shown above. At point A the moon has
speed uA and is at distance RA from the planet. At point B

the moon has speed uB. Has the moon's angular momentum
changed? Explain your answer.

17. A hamster sits 0.10 m from the center of a lazy Susan of
negligible mass. The wheel has an angular velocity of 1.0 rev/
s. How will the angular velocity of the lazy Susan change if
the hamster walks to 0.30 m from the center of rotation?
Assume zero friction and no external torque.

a. It will speed up to 2.0 rev/s.
b. It will speed up to 9.0 rev/s.
c. It will slow to 0.01 rev/s.
d. It will slow to 0.02 rev/s.

18. Earth has a mass of 6.0 × 1024 kg, a radius of 6.4 × 106

m, and an angular velocity of 1.2 × 10–5 rev/s. How would the
planet's angular velocity change if a layer of Earth with mass
1.0 × 1023 kg broke off of the Earth, decreasing Earth's radius
by 0.2 × 106 m? Assume no friction.

19. Consider system A, consisting of two disks of radius R,
with both rotating clockwise. Now consider system B,
consisting of one disk of radius R rotating counterclockwise
and another disk of radius 2R rotating clockwise. All of the
disks have the same mass, and all have the same magnitude
of angular velocity.

Which system has the greatest angular momentum?

a. A
b. B
c. They're equal.
d. Not enough information

20. Assume that a baseball bat being swung at 3π rad/s by a
batting machine is equivalent to a 1.1 m thin rod with a mass
of 1.0 kg. How fast would a 0.15 kg baseball that squarely hits
the very tip of the bat have to be going for the net angular
momentum of the bat-ball system to be zero?

10.6 Collisions of Extended Bodies in Two
Dimensions
21. A box with a mass of 2.0 kg rests on one end of a
seesaw. The seesaw is 6.0 m long, and we can assume it has
negligible mass. Approximately what angular momentum will
the box have if someone with a mass of 65 kg sits on the
other end of the seesaw quickly, with a velocity of 1.2 m/s?

a. 702 kg•m2/s
b. 39 kg•m2/s
c. 18 kg•m2/s
d. 1.2 kg•m2/s

22. A spinner in a board game can be thought of as a thin rod
that spins about an axis at its center. The spinner in a certain
game is 12 cm long and has a mass of 10 g. How will its
angular velocity change when it is flicked at one end with a
force equivalent to 15 g travelling at 5.0 m/s if all the energy
of the collision is transferred to the spinner? (You can use the
table in Figure 10.12 to estimate the rotational inertia of the
spinner.)

23. A cyclist pedals to exert a torque on the rear wheel of the
bicycle. When the cyclist changes to a higher gear, the torque
increases. Which of the following would be the most effective
strategy to help you determine the change in angular
momentum of the bicycle wheel?

a. multiplying the ratio between the two torques by the
mass of the bicycle and rider

b. adding the two torques together, and multiplying by the
time for which both torques are applied

c. multiplying the difference in the two torques by the time
for which the new torque is applied

d. multiplying both torques by the mass of the bicycle and
rider

24. An electric screwdriver has two speeds, each of which
exerts a different torque on a screw. Describe what
calculations you could use to help you compare the angular
momentum of a screw at each speed. What measurements
would you need to make in order to calculate this?

25. Why is it important to consider the shape of an object
when determining the object's angular momentum?

a. The shape determines the location of the center of
mass. The location of the center of mass in turn
determines the angular velocity of the object.

b. The shape helps you determine the location of the
object's outer edge, where rotational velocity will be
greatest.

c. The shape helps you determine the location of the
center of rotation.

d. The shape determines the location of the center of
mass. The location of the center of mass contributes to
the object's rotational inertia, which contributes to its
angular momentum.

26. How could you collect and analyze data to test the
difference between the torques provided by two speeds on a
tabletop fan?

27. Describe a rotational system you could use to
demonstrate the effect on the system's angular momentum of
applying different amounts of external torque.
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28. How could you use simple equipment such as balls and
string to study the changes in angular momentum of a system
when it interacts with another system?

10.7 Gyroscopic Effects: Vector Aspects of
Angular Momentum
29. A globe (model of the Earth) is a hollow sphere with a
radius of 16 cm. By wrapping a cord around the equator of a
globe and pulling on it, a person exerts a torque on the globe
of 120 N • m for 1.2 s. What angular momentum does the
globe have after 1.2 s?

30. How could you use a fishing reel to test the relationship
between the torque applied to a system, the time for which
the torque was applied, and the resulting angular momentum
of the system? How would you measure angular
momentum?
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16 OSCILLATORY MOTION AND WAVES

Figure 16.1 There are at least four types of waves in this picture—only the water waves are evident. There are also sound waves, light waves, and
waves on the guitar strings. (credit: John Norton)

Chapter Outline
16.1. Hooke’s Law: Stress and Strain Revisited

16.2. Period and Frequency in Oscillations

16.3. Simple Harmonic Motion: A Special Periodic Motion

16.4. The Simple Pendulum

16.5. Energy and the Simple Harmonic Oscillator

16.6. Uniform Circular Motion and Simple Harmonic Motion

16.7. Damped Harmonic Motion

16.8. Forced Oscillations and Resonance

16.9. Waves

16.10. Superposition and Interference

16.11. Energy in Waves: Intensity

Connection for AP® Courses
In this chapter, students are introduced to oscillation, the regular variation in the position of a system about a central point
accompanied by transfer of energy and momentum, and to waves. A child’s swing, a pendulum, a spring, and a vibrating string
are all examples of oscillations. This chapter will address simple harmonic motion and periods of vibration, aspects of oscillation
that produce waves, a common phenomenon in everyday life. Waves carry energy from one place to another.” This chapter will
show how harmonic oscillations produce waves that transport energy across space and through time. The information and
examples presented support Big Ideas 1, 2, and 3 of the AP® Physics Curriculum Framework.

The chapter opens by discussing the forces that govern oscillations and waves. It goes on to discuss important concepts such as
simple harmonic motion, uniform harmonic motion, and damped harmonic motion. You will also learn about energy in simple
harmonic motion and how it changes from kinetic to potential, and how the total sum, which would be the mechanical energy of
the oscillator, remains constant or conserved at all times. The chapter also discusses characteristics of waves, such as their
frequency, period of oscillation, and the forms in which they can exist, i.e., transverse or longitudinal. The chapter ends by
discussing what happens when two or more waves overlap and how the amplitude of the resultant wave changes, leading to the
phenomena of superposition and interference.
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The concepts in this chapter support:

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.B Classically, the acceleration of an object interacting with other objects can be predicted by using

→   =  ∑
→

.

Essential Knowledge 3.B.3 Restoring forces can result in oscillatory motion. When a linear restoring force is exerted on an object
displaced from an equilibrium position, the object will undergo a special type of motion called simple harmonic motion. Examples
should include gravitational force exerted by the Earth on a simple pendulum and a mass-spring oscillator.

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.C Interactions with other objects or systems can change the total energy of a system.

Essential Knowledge 4.C.1 The energy of a system includes its kinetic energy, potential energy, and microscopic internal energy.
Examples should include gravitational potential energy, elastic potential energy, and kinetic energy.

Essential Knowledge 4.C.2 Mechanical energy (the sum of kinetic and potential energy) is transferred into or out of a system
when an external force is exerted on a system such that a component of the force is parallel to its displacement. The process
through which the energy is transferred is called work.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.B The energy of a system is conserved.

Essential Knowledge 5.B.2 A system with internal structure can have internal energy, and changes in a system’s internal
structure can result in changes in internal energy. [Physics 1: includes mass-spring oscillators and simple pendulums. Physics 2:
includes charged object in electric fields and examining changes in internal energy with changes in configuration.]

Big Idea 6 Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and
serve as a mathematical model for the description of other phenomena.

Enduring Understanding 6.A A wave is a traveling disturbance that transfers energy and momentum.

Essential Knowledge 6.A.1 Waves can propagate via different oscillation modes such as transverse and longitudinal.

Essential Knowledge 6.A.2 For propagation, mechanical waves require a medium, while electromagnetic waves do not require a
physical medium. Examples should include light traveling through a vacuum and sound not traveling through a vacuum.

Essential Knowledge 6.A.3 The amplitude is the maximum displacement of a wave from its equilibrium value.

Essential Knowledge 6.A.4 Classically, the energy carried by a wave depends on and increases with amplitude. Examples should
include sound waves.

Enduring Understanding 6.B A periodic wave is one that repeats as a function of both time and position and can be described by
its amplitude, frequency, wavelength, speed, and energy.

Essential Knowledge 6.B.1 The period is the repeat time of the wave. The frequency is the number of repetitions over a period of
time.

Essential Knowledge 6.B.2 The wavelength is the repeat distance of the wave.

Essential Knowledge 6.B.3 A simple wave can be described by an equation involving one sine or cosine function involving the
wavelength, amplitude, and frequency of the wave.

Essential Knowledge 6.B.4 The wavelength is the ratio of speed over frequency.

Enduring Understanding 6.C Only waves exhibit interference and diffraction.

Essential Knowledge 6.C.1 When two waves cross, they travel through each other; they do not bounce off each other. Where the
waves overlap, the resulting displacement can be determined by adding the displacements of the two waves. This is called
superposition.

Enduring Understanding 6.D Interference and superposition lead to standing waves and beats.

Essential Knowledge 6.D.1 Two or more wave pulses can interact in such a way as to produce amplitude variations in the
resultant wave. When two pulses cross, they travel through each other; they do not bounce off each other. Where the pulses
overlap, the resulting displacement can be determined by adding the displacements of the two pulses. This is called
superposition.

Essential Knowledge 6.D.2 Two or more traveling waves can interact in such a way as to produce amplitude variations in the
resultant wave.

Essential Knowledge 6.D.3 Standing waves are the result of the addition of incident and reflected waves that are confined to a
region and have nodes and antinodes. Examples should include waves on a fixed length of string, and sound waves in both
closed and open tubes.

Essential Knowledge 6.D.4 The possible wavelengths of a standing wave are determined by the size of the region to which it is
confined.

Essential Knowledge 6.D.5 Beats arise from the addition of waves of slightly different frequency.
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16.1 Hooke’s Law: Stress and Strain Revisited

Learning Objectives
By the end of this section, you will be able to:

• Explain Newton’s third law of motion with respect to stress and deformation.
• Describe the restoring force and displacement.
• Use Hooke’s law of deformation, and calculate stored energy in a spring.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.B.3.3 The student can analyze data to identify qualitative or quantitative relationships between given values and
variables (i.e., force, displacement, acceleration, velocity, period of motion, frequency, spring constant, string length,
mass) associated with objects in oscillatory motion to use that data to determine the value of an unknown. (S.P. 2.2,
5.1)

• 3.B.3.4 The student is able to construct a qualitative and/or a quantitative explanation of oscillatory behavior given
evidence of a restoring force. (S.P. 2.2, 6.2)

Figure 16.2 When displaced from its vertical equilibrium position, this plastic ruler oscillates back and forth because of the restoring force opposing
displacement. When the ruler is on the left, there is a force to the right, and vice versa.

Newton’s first law implies that an object oscillating back and forth is experiencing forces. Without force, the object would move in
a straight line at a constant speed rather than oscillate. Consider, for example, plucking a plastic ruler to the left as shown in
Figure 16.2. The deformation of the ruler creates a force in the opposite direction, known as a restoring force. Once released,
the restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero.
However, by the time the ruler gets there, it gains momentum and continues to move to the right, producing the opposite
deformation. It is then forced to the left, back through equilibrium, and the process is repeated until dissipative forces dampen the
motion. These forces remove mechanical energy from the system, gradually reducing the motion until the ruler comes to rest.

The simplest oscillations occur when the restoring force is directly proportional to displacement. When stress and strain were
covered in Newton’s Third Law of Motion, the name was given to this relationship between force and displacement was
Hooke’s law:

(16.1)= −

Here, is the restoring force, is the displacement from equilibrium or deformation, and is a constant related to the
difficulty in deforming the system. The minus sign indicates the restoring force is in the direction opposite to the displacement.

Figure 16.3 (a) The plastic ruler has been released, and the restoring force is returning the ruler to its equilibrium position. (b) The net force is zero at
the equilibrium position, but the ruler has momentum and continues to move to the right. (c) The restoring force is in the opposite direction. It stops the
ruler and moves it back toward equilibrium again. (d) Now the ruler has momentum to the left. (e) In the absence of damping (caused by frictional
forces), the ruler reaches its original position. From there, the motion will repeat itself.
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The force constant is related to the rigidity (or stiffness) of a system—the larger the force constant, the greater the restoring

force, and the stiffer the system. The units of are newtons per meter (N/m). For example, is directly related to Young’s
modulus when we stretch a string. Figure 16.4 shows a graph of the absolute value of the restoring force versus the
displacement for a system that can be described by Hooke’s law—a simple spring in this case. The slope of the graph equals the
force constant in newtons per meter. A common physics laboratory exercise is to measure restoring forces created by springs,
determine if they follow Hooke’s law, and calculate their force constants if they do.

Figure 16.4 (a) A graph of absolute value of the restoring force versus displacement is displayed. The fact that the graph is a straight line means that
the system obeys Hooke’s law. The slope of the graph is the force constant . (b) The data in the graph were generated by measuring the
displacement of a spring from equilibrium while supporting various weights. The restoring force equals the weight supported, if the mass is stationary.

Example 16.1 How Stiff Are Car Springs?

Figure 16.5 The mass of a car increases due to the introduction of a passenger. This affects the displacement of the car on its suspension
system. (credit: exfordy on Flickr)
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What is the force constant for the suspension system of a car that settles 1.20 cm when an 80.0-kg person gets in?

Strategy

Consider the car to be in its equilibrium position = 0 before the person gets in. The car then settles down 1.20 cm, which

means it is displaced to a position = −1.20×10−2 m . At that point, the springs supply a restoring force equal to the

person’s weight = = 80.0 kg 9.80 m/s2 = 784 N . We take this force to be in Hooke’s law. Knowing and

, we can then solve the force constant .

Solution

1. Solve Hooke’s law, = − , for :

(16.2)= − .

Substitute known values and solve :

(16.3)
= − 784 N

−1.20×10−2 m

= 6.53×104 N/m.

Discussion

Note that and have opposite signs because they are in opposite directions—the restoring force is up, and the
displacement is down. Also, note that the car would oscillate up and down when the person got in if it were not for damping
(due to frictional forces) provided by shock absorbers. Bouncing cars are a sure sign of bad shock absorbers.

Energy in Hooke’s Law of Deformation
In order to produce a deformation, work must be done. That is, a force must be exerted through a distance, whether you pluck a
guitar string or compress a car spring. If the only result is deformation, and no work goes into thermal, sound, or kinetic energy,
then all the work is initially stored in the deformed object as some form of potential energy. The potential energy stored in a

spring is PEel = 1
2

2 . Here, we generalize the idea to elastic potential energy for a deformation of any system that can be

described by Hooke’s law. Hence,

(16.4)
PEel = 1

2
2,

where PEel is the elastic potential energy stored in any deformed system that obeys Hooke’s law and has a displacement

from equilibrium and a force constant .

It is possible to find the work done in deforming a system in order to find the energy stored. This work is performed by an applied
force app . The applied force is exactly opposite to the restoring force (action-reaction), and so app = . Figure 16.6 shows

a graph of the applied force versus deformation for a system that can be described by Hooke’s law. Work done on the system

is force multiplied by distance, which equals the area under the curve or (1 / 2) 2 (Method A in the figure). Another way to

determine the work is to note that the force increases linearly from 0 to , so that the average force is (1 / 2) , the distance

moved is , and thus = app = [(1 / 2) ]( ) = (1 / 2) 2 (Method B in the figure).
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Figure 16.6 A graph of applied force versus distance for the deformation of a system that can be described by Hooke’s law is displayed. The work

done on the system equals the area under the graph or the area of the triangle, which is half its base multiplied by its height, or = (1 / 2) 2 .

Example 16.2 Calculating Stored Energy: A Tranquilizer Gun Spring

We can use a toy gun’s spring mechanism to ask and answer two simple questions: (a) How much energy is stored in the
spring of a tranquilizer gun that has a force constant of 50.0 N/m and is compressed 0.150 m? (b) If you neglect friction and
the mass of the spring, at what speed will a 2.00-g projectile be ejected from the gun?

Figure 16.7 (a) In this image of the gun, the spring is uncompressed before being cocked. (b) The spring has been compressed a distance ,

and the projectile is in place. (c) When released, the spring converts elastic potential energy PEel into kinetic energy.

Strategy for a

(a): The energy stored in the spring can be found directly from elastic potential energy equation, because and are
given.

Solution for a

Entering the given values for and yields

(16.5)
PEel = 1

2
2 = 1

2
(50.0 N/m)(0.150 m)2 = 0.563 N ⋅ m

= 0.563 J

Strategy for b

Because there is no friction, the potential energy is converted entirely into kinetic energy. The expression for kinetic energy
can be solved for the projectile’s speed.

Solution for b
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1. Identify known quantities:

(16.6)KEf = PEel or 1 / 2 2 = (1 / 2) 2 = PEel = 0.563 J

2. Solve for :

(16.7)
=

2PEel
1 / 2

=
2(0.563 J)
0.002 kg

1 / 2

= 23.7 J/kg 1 / 2

3. Convert units: 23.7 m / s

Discussion

(a) and (b): This projectile speed is impressive for a tranquilizer gun (more than 80 km/h). The numbers in this problem
seem reasonable. The force needed to compress the spring is small enough for an adult to manage, and the energy
imparted to the dart is small enough to limit the damage it might do. Yet, the speed of the dart is great enough for it to travel
an acceptable distance.

Check your Understanding

Envision holding the end of a ruler with one hand and deforming it with the other. When you let go, you can see the
oscillations of the ruler. In what way could you modify this simple experiment to increase the rigidity of the system?

Solution

You could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.

Check your Understanding

If you apply a deforming force on an object and let it come to equilibrium, what happened to the work you did on the system?

Solution

It was stored in the object as potential energy.

16.2 Period and Frequency in Oscillations

Learning Objectives
By the end of this section, you will be able to:

• Relate recurring mechanical vibrations to the frequency and period of harmonic motion, such as the motion of a guitar
string.

• Compute the frequency and period of an oscillation.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.B.3.3 The student can analyze data to identify qualitative or quantitative relationships between given values and
variables (i.e., force, displacement, acceleration, velocity, period of motion, frequency, spring constant, string length,
mass) associated with objects in oscillatory motion to use that data to determine the value of an unknown. (S.P. 2.2,
5.1)

Figure 16.8 The strings on this guitar vibrate at regular time intervals. (credit: JAR)
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When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each successive vibration of the
string takes the same time as the previous one. We define periodic motion to be a motion that repeats itself at regular time
intervals, such as exhibited by the guitar string or by an object on a spring moving up and down. The time to complete one
oscillation remains constant and is called the period . Its units are usually seconds, but may be any convenient unit of time.
The word period refers to the time for some event whether repetitive or not; but we shall be primarily interested in periodic
motion, which is by definition repetitive. A concept closely related to period is the frequency of an event. For example, if you get a
paycheck twice a month, the frequency of payment is two per month and the period between checks is half a month. Frequency

is defined to be the number of events per unit time. For periodic motion, frequency is the number of oscillations per unit time.

The relationship between frequency and period is

(16.8)
= 1 .

The SI unit for frequency is the cycle per second, which is defined to be a hertz (Hz):

(16.9)
1 Hz = 1

cycle
sec or 1 Hz = 1

s

A cycle is one complete oscillation. Note that a vibration can be a single or multiple event, whereas oscillations are usually
repetitive for a significant number of cycles.

Example 16.3 Determine the Frequency of Two Oscillations: Medical Ultrasound and the Period
of Middle C

We can use the formulas presented in this module to determine both the frequency based on known oscillations and the
oscillation based on a known frequency. Let’s try one example of each. (a) A medical imaging device produces ultrasound by
oscillating with a period of 0.400 µs. What is the frequency of this oscillation? (b) The frequency of middle C on a typical
musical instrument is 264 Hz. What is the time for one complete oscillation?

Strategy

Both questions (a) and (b) can be answered using the relationship between period and frequency. In question (a), the period
is given and we are asked to find frequency . In question (b), the frequency is given and we are asked to find the

period .

Solution a

1. Substitute 0.400 μs for in = 1 :

(16.10)
= 1 = 1

0.400×10−6 s
.

Solve to find

(16.11)= 2.50×106 Hz.

Discussion a

The frequency of sound found in (a) is much higher than the highest frequency that humans can hear and, therefore, is
called ultrasound. Appropriate oscillations at this frequency generate ultrasound used for noninvasive medical diagnoses,
such as observations of a fetus in the womb.

Solution b

1. Identify the known values:
The time for one complete oscillation is the period :

(16.12)
= 1 .

2. Solve for :

(16.13)
= 1.

3. Substitute the given value for the frequency into the resulting expression:

(16.14)
= 1 = 1

264 Hz
= 1

264 cycles/s
= 3.79×10−3 s = 3.79 ms.

Discussion

The period found in (b) is the time per cycle, but this value is often quoted as simply the time in convenient units (ms or
milliseconds in this case).
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Check your Understanding

Identify an event in your life (such as receiving a paycheck) that occurs regularly. Identify both the period and frequency of
this event.

Solution
I visit my parents for dinner every other Sunday. The frequency of my visits is 26 per calendar year. The period is two weeks.

16.3 Simple Harmonic Motion: A Special Periodic Motion

Learning Objectives
By the end of this section, you will be able to:

• Describe a simple harmonic oscillator.
• Relate physical characteristics of a vibrating system to aspects of simple harmonic motion and any resulting waves.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.B.3.1 The student is able to predict which properties determine the motion of a simple harmonic oscillator and what
the dependence of the motion is on those properties. (S.P. 6.4, 7.2)

• 3.B.3.4 The student is able to construct a qualitative and/or a quantitative explanation of oscillatory behavior given
evidence of a restoring force. (S.P. 2.2, 6.2)

• 6.A.3.1 The student is able to use graphical representation of a periodic mechanical wave to determine the amplitude of
the wave. (S.P. 1.4)

• 6.B.1.1 The student is able to use a graphical representation of a periodic mechanical wave (position versus time) to
determine the period and frequency of the wave and describe how a change in the frequency would modify features of
the representation. (S.P. 1.4, 2.2)

The oscillations of a system in which the net force can be described by Hooke’s law are of special importance, because they are
very common. They are also the simplest oscillatory systems. Simple Harmonic Motion (SHM) is the name given to oscillatory
motion for a system where the net force can be described by Hooke’s law, and such a system is called a simple harmonic
oscillator. If the net force can be described by Hooke’s law and there is no damping (by friction or other non-conservative
forces), then a simple harmonic oscillator will oscillate with equal displacement on either side of the equilibrium position, as
shown for an object on a spring in Figure 16.9. The maximum displacement from equilibrium is called the amplitude . The
units for amplitude and displacement are the same, but depend on the type of oscillation. For the object on the spring, the units
of amplitude and displacement are meters; whereas for sound oscillations, they have units of pressure (and other types of
oscillations have yet other units). Because amplitude is the maximum displacement, it is related to the energy in the oscillation.

Take-Home Experiment: SHM and the Marble

Find a bowl or basin that is shaped like a hemisphere on the inside. Place a marble inside the bowl and tilt the bowl
periodically so the marble rolls from the bottom of the bowl to equally high points on the sides of the bowl. Get a feel for the
force required to maintain this periodic motion. What is the restoring force and what role does the force you apply play in the
simple harmonic motion (SHM) of the marble?
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Figure 16.9 An object attached to a spring sliding on a frictionless surface is an uncomplicated simple harmonic oscillator. When displaced from
equilibrium, the object performs simple harmonic motion that has an amplitude and a period . The object’s maximum speed occurs as it passes

through equilibrium. The stiffer the spring is, the smaller the period . The greater the mass of the object is, the greater the period .

What is so significant about simple harmonic motion? One special thing is that the period and frequency of a simple

harmonic oscillator are independent of amplitude. The string of a guitar, for example, will oscillate with the same frequency
whether plucked gently or hard. Because the period is constant, a simple harmonic oscillator can be used as a clock.

Two important factors do affect the period of a simple harmonic oscillator. The period is related to how stiff the system is. A very
stiff object has a large force constant , which causes the system to have a smaller period. For example, you can adjust a diving
board’s stiffness—the stiffer it is, the faster it vibrates, and the shorter its period. Period also depends on the mass of the
oscillating system. The more massive the system is, the longer the period. For example, a heavy person on a diving board
bounces up and down more slowly than a light one.

In fact, the mass and the force constant are the only factors that affect the period and frequency of simple harmonic
motion.

Period of Simple Harmonic Oscillator

The period of a simple harmonic oscillator is given by

(16.15)= 2π

and, because = 1 / , the frequency of a simple harmonic oscillator is

(16.16)
= 1

2π
.

Note that neither nor has any dependence on amplitude.

Example 16.4 Mechanical Waves

What do sound waves, water waves, and seismic waves have in common? They are all governed by Newton’s laws and
they can exist only when traveling in a medium, such as air, water, or rocks. Waves that require a medium to travel are
collectively known as “mechanical waves.”

682 Chapter 16 | Oscillatory Motion and Waves

This content is available for free at http://cnx.org/content/col11844/1.13



Take-Home Experiment: Mass and Ruler Oscillations

Find two identical wooden or plastic rulers. Tape one end of each ruler firmly to the edge of a table so that the length of each
ruler that protrudes from the table is the same. On the free end of one ruler tape a heavy object such as a few large coins.
Pluck the ends of the rulers at the same time and observe which one undergoes more cycles in a time period, and measure
the period of oscillation of each of the rulers.

Example 16.5 Calculate the Frequency and Period of Oscillations: Bad Shock Absorbers in a
Car

If the shock absorbers in a car go bad, then the car will oscillate at the least provocation, such as when going over bumps in
the road and after stopping (See Figure 16.10). Calculate the frequency and period of these oscillations for such a car if the

car’s mass (including its load) is 900 kg and the force constant ( ) of the suspension system is 6.53×104 N/m .

Strategy

The frequency of the car’s oscillations will be that of a simple harmonic oscillator as given in the equation = 1
2π

. The

mass and the force constant are both given.

Solution

1. Enter the known values of k and m:

(16.17)
= 1

2π
= 1

2π
6.53×104 N/m

900 kg
.

2. Calculate the frequency:

(16.18)1
2π

72.6 / s–2 = 1.3656 / s–1 ≈ 1.36 / s–1 = 1.36 Hz.

3. You could use = 2π to calculate the period, but it is simpler to use the relationship = 1 / and substitute

the value just found for :

(16.19)
= 1 = 1

1.356 Hz
= 0.738 s.

Discussion

The values of and both seem about right for a bouncing car. You can observe these oscillations if you push down hard

on the end of a car and let go.

The Link between Simple Harmonic Motion and Waves
If a time-exposure photograph of the bouncing car were taken as it drove by, the headlight would make a wavelike streak, as
shown in Figure 16.10. Similarly, Figure 16.11 shows an object bouncing on a spring as it leaves a wavelike "trace of its position
on a moving strip of paper. Both waves are sine functions. All simple harmonic motion is intimately related to sine and cosine
waves.

Figure 16.10 The bouncing car makes a wavelike motion. If the restoring force in the suspension system can be described only by Hooke’s law, then
the wave is a sine function. (The wave is the trace produced by the headlight as the car moves to the right.)
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Figure 16.11 The vertical position of an object bouncing on a spring is recorded on a strip of moving paper, leaving a sine wave.

The displacement as a function of time t in any simple harmonic motion—that is, one in which the net restoring force can be
described by Hooke’s law, is given by

(16.20)
( ) = cos2 ,

where is amplitude. At = 0 , the initial position is 0 = , and the displacement oscillates back and forth with a period .

(When = , we get = again because cos 2π = 1 .). Furthermore, from this expression for , the velocity as a
function of time is given by:

(16.21)
( ) = − max sin 2π ,

where max = 2π / = / . The object has zero velocity at maximum displacement—for example, = 0 when = 0 ,

and at that time = . The minus sign in the first equation for ( ) gives the correct direction for the velocity. Just after the

start of the motion, for instance, the velocity is negative because the system is moving back toward the equilibrium point. Finally,
we can get an expression for acceleration using Newton’s second law. [Then we have ( ) ( ) , and ( ) , the quantities

needed for kinematics and a description of simple harmonic motion.] According to Newton’s second law, the acceleration is
= / = / . So, ( ) is also a cosine function:

(16.22)
( ) = − cos2π .

Hence, ( ) is directly proportional to and in the opposite direction to ( ) .

Figure 16.12 shows the simple harmonic motion of an object on a spring and presents graphs of ( ) ( ), and ( ) versus

time.
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Figure 16.12 Graphs of ( ) ( ) and ( ) versus for the motion of an object on a spring. The net force on the object can be described by

Hooke’s law, and so the object undergoes simple harmonic motion. Note that the initial position has the vertical displacement at its maximum value ;
is initially zero and then negative as the object moves down; and the initial acceleration is negative, back toward the equilibrium position and

becomes zero at that point.

The most important point here is that these equations are mathematically straightforward and are valid for all simple harmonic
motion. They are very useful in visualizing waves associated with simple harmonic motion, including visualizing how waves add
with one another.

Check Your Understanding

Suppose you pluck a banjo string. You hear a single note that starts out loud and slowly quiets over time. Describe what
happens to the sound waves in terms of period, frequency and amplitude as the sound decreases in volume.

Solution
Frequency and period remain essentially unchanged. Only amplitude decreases as volume decreases.

Check Your Understanding

A babysitter is pushing a child on a swing. At the point where the swing reaches , where would the corresponding point on
a wave of this motion be located?

Solution
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is the maximum deformation, which corresponds to the amplitude of the wave. The point on the wave would either be at
the very top or the very bottom of the curve.

PhET Explorations: Masses and Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can
even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each
spring.

Figure 16.13 Masses and Springs (http://cnx.org/content/m55273/1.2/mass-spring-lab_en.jar)

16.4 The Simple Pendulum

Learning Objectives
By the end of this section, you will be able to:

• Determine the period of oscillation of a hanging pendulum.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.B.3.1 The student is able to predict which properties determine the motion of a simple harmonic oscillator and what
the dependence of the motion is on those properties. (S.P. 6.4, 7.2)

• 3.B.3.2 The student is able to design a plan and collect data in order to ascertain the characteristics of the motion of a
system undergoing oscillatory motion caused by a restoring force. (S.P. 4.2)

• 3.B.3.3 The student can analyze data to identify qualitative or quantitative relationships between given values and
variables (i.e., force, displacement, acceleration, velocity, period of motion, frequency, spring constant, string length,
mass) associated with objects in oscillatory motion to use that data to determine the value of an unknown. (S.P. 2.2,
5.1)

• 3.B.3.4 The student is able to construct a qualitative and/or a quantitative explanation of oscillatory behavior given
evidence of a restoring force. (S.P. 2.2, 6.2)

Figure 16.14 A simple pendulum has a small-diameter bob and a string that has a very small mass but is strong enough not to stretch appreciably. The
linear displacement from equilibrium is , the length of the arc. Also shown are the forces on the bob, which result in a net force of − sin

toward the equilibrium position—that is, a restoring force.

Pendulums are in common usage. Some have crucial uses, such as in clocks; some are for fun, such as a child’s swing; and
some are just there, such as the sinker on a fishing line. For small displacements, a pendulum is a simple harmonic oscillator. A
simple pendulum is defined to have an object that has a small mass, also known as the pendulum bob, which is suspended
from a light wire or string, such as shown in Figure 16.14. Exploring the simple pendulum a bit further, we can discover the
conditions under which it performs simple harmonic motion, and we can derive an interesting expression for its period.

We begin by defining the displacement to be the arc length . We see from Figure 16.14 that the net force on the bob is tangent

to the arc and equals − sin . (The weight has components cos along the string and sin tangent to the

arc.) Tension in the string exactly cancels the component cos parallel to the string. This leaves a net restoring force back

toward the equilibrium position at = 0 .
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Now, if we can show that the restoring force is directly proportional to the displacement, then we have a simple harmonic
oscillator. In trying to determine if we have a simple harmonic oscillator, we should note that for small angles (less than about
15º ), sin ≈ ( sin and differ by about 1% or less at smaller angles). Thus, for angles less than about 15º , the

restoring force is

(16.23)≈ − θ.

The displacement is directly proportional to . When is expressed in radians, the arc length in a circle is related to its

radius ( in this instance) by:

(16.24)= ,

so that

(16.25)= .

For small angles, then, the expression for the restoring force is:

(16.26)≈ −

This expression is of the form:

(16.27)= − ,

where the force constant is given by = / and the displacement is given by = . For angles less than about 15º , the

restoring force is directly proportional to the displacement, and the simple pendulum is a simple harmonic oscillator.

Using this equation, we can find the period of a pendulum for amplitudes less than about 15º . For the simple pendulum:

(16.28)= 2π = 2π
/

Thus,

(16.29)
= 2π

for the period of a simple pendulum. This result is interesting because of its simplicity. The only things that affect the period of a
simple pendulum are its length and the acceleration due to gravity. The period is completely independent of other factors, such
as mass. As with simple harmonic oscillators, the period for a pendulum is nearly independent of amplitude, especially if is

less than about 15º . Even simple pendulum clocks can be finely adjusted and accurate.

Note the dependence of on . If the length of a pendulum is precisely known, it can actually be used to measure the

acceleration due to gravity. Consider the following example.

Example 16.6 Measuring Acceleration due to Gravity: The Period of a Pendulum

What is the acceleration due to gravity in a region where a simple pendulum having a length 75.000 cm has a period of
1.7357 s?

Strategy

We are asked to find given the period and the length of a pendulum. We can solve = 2π for , assuming

only that the angle of deflection is less than 15º .

Solution

1. Square = 2π and solve for :

(16.30)= 4π2
2
.

2. Substitute known values into the new equation:

(16.31)
= 4π2 0.75000 m

(1.7357 s)2
.

3. Calculate to find :

(16.32)= 9.8281 m / s2.
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Discussion

This method for determining can be very accurate. This is why length and period are given to five digits in this example.

For the precision of the approximation sin θ ≈ to be better than the precision of the pendulum length and period, the

maximum displacement angle should be kept below about 0.5º .

Making Career Connections

Knowing can be important in geological exploration; for example, a map of over large geographical regions aids the

study of plate tectonics and helps in the search for oil fields and large mineral deposits.

Take Home Experiment: Determining

Use a simple pendulum to determine the acceleration due to gravity in your own locale. Cut a piece of a string or dental

floss so that it is about 1 m long. Attach a small object of high density to the end of the string (for example, a metal nut or a
car key). Starting at an angle of less than 10º , allow the pendulum to swing and measure the pendulum’s period for 10
oscillations using a stopwatch. Calculate . How accurate is this measurement? How might it be improved?

Check Your Understanding

An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each
pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10 kg . Pendulum 2 has a bob with a mass of

100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .

Solution
The movement of the pendula will not differ at all because the mass of the bob has no effect on the motion of a simple
pendulum. The pendula are only affected by the period (which is related to the pendulum’s length) and by the acceleration
due to gravity.

PhET Explorations: Pendulum Lab

Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the
mass of the pendulum bob, and the amplitude of the swing. It’s easy to measure the period using the photogate timer. You
can vary friction and the strength of gravity. Use the pendulum to find the value of on planet X. Notice the anharmonic

behavior at large amplitude.

Figure 16.15 Pendulum Lab (http://cnx.org/content/m55274/1.2/pendulum-lab_en.jar)

16.5 Energy and the Simple Harmonic Oscillator

Learning Objectives
By the end of this section, you will be able to:

• Describe the changes in energy that occur while a system undergoes simple harmonic motion.

To study the energy of a simple harmonic oscillator, we first consider all the forms of energy it can have We know from Hooke’s
Law: Stress and Strain Revisited that the energy stored in the deformation of a simple harmonic oscillator is a form of potential
energy given by:

(16.33)
PEel = 1

2
2.

Because a simple harmonic oscillator has no dissipative forces, the other important form of energy is kinetic energy KE .
Conservation of energy for these two forms is:
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(16.34)KE + PEel = constant

or

(16.35)1
2

2 + 1
2

2 = constant.

This statement of conservation of energy is valid for all simple harmonic oscillators, including ones where the gravitational force
plays a role

Namely, for a simple pendulum we replace the velocity with = , the spring constant with = / , and the

displacement term with = . Thus

(16.36)1
2

2 2 + 1
2

2 = constant.

In the case of undamped simple harmonic motion, the energy oscillates back and forth between kinetic and potential, going
completely from one to the other as the system oscillates. So for the simple example of an object on a frictionless surface
attached to a spring, as shown again in Figure 16.16, the motion starts with all of the energy stored in the spring. As the object
starts to move, the elastic potential energy is converted to kinetic energy, becoming entirely kinetic energy at the equilibrium
position. It is then converted back into elastic potential energy by the spring, the velocity becomes zero when the kinetic energy
is completely converted, and so on. This concept provides extra insight here and in later applications of simple harmonic motion,
such as alternating current circuits.

Figure 16.16 The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a frictionless surface.

The conservation of energy principle can be used to derive an expression for velocity . If we start our simple harmonic motion

with zero velocity and maximum displacement ( = ), then the total energy is

(16.37)1
2

2.

This total energy is constant and is shifted back and forth between kinetic energy and potential energy, at most times being
shared by each. The conservation of energy for this system in equation form is thus:

(16.38)1
2

2 + 1
2

2 = 1
2

2.

Solving this equation for yields:

(16.39)
= ± 2 − 2 .

Manipulating this expression algebraically gives:
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(16.40)
= ± 1 −

2

2

and so

(16.41)
= ± max 1 −

2

2
,

where

(16.42)
max = .

From this expression, we see that the velocity is a maximum ( max ) at = 0 , as stated earlier in ( ) = − max sin 2π .

Notice that the maximum velocity depends on three factors. Maximum velocity is directly proportional to amplitude. As you might
guess, the greater the maximum displacement the greater the maximum velocity. Maximum velocity is also greater for stiffer
systems, because they exert greater force for the same displacement. This observation is seen in the expression for max; it is

proportional to the square root of the force constant . Finally, the maximum velocity is smaller for objects that have larger
masses, because the maximum velocity is inversely proportional to the square root of . For a given force, objects that have
large masses accelerate more slowly.

A similar calculation for the simple pendulum produces a similar result, namely:

(16.43)
max = max.

Making Connections: Mass Attached to a Spring

Consider a mass m attached to a spring, with spring constant k, fixed to a wall. When the mass is displaced from its
equilibrium position and released, the mass undergoes simple harmonic motion. The spring exerts a force   =  − on
the mass. The potential energy of the system is stored in the spring. It will be zero when the spring is in the equilibrium

position. All the internal energy exists in the form of kinetic energy, given by   =  1
2

2 . As the system oscillates, which

means that the spring compresses and expands, there is a change in the structure of the system and a corresponding
change in its internal energy. Its kinetic energy is converted to potential energy and vice versa. This occurs at an equal rate,
which means that a loss of kinetic energy yields a gain in potential energy, thus preserving the work-energy theorem and the
law of conservation of energy.

Example 16.7 Determine the Maximum Speed of an Oscillating System: A Bumpy Road

Suppose that a car is 900 kg and has a suspension system that has a force constant = 6.53×104 N/m . The car hits a
bump and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if you assume no damping occurs?

Strategy

We can use the expression for max given in max = to determine the maximum vertical velocity. The variables

and are given in the problem statement, and the maximum displacement is 0.100 m.

Solution

1. Identify known.

2. Substitute known values into max = :

(16.44)
max = 6.53×104 N/m

900 kg
(0.100 m).

3. Calculate to find max= 0.852 m/s.

Discussion

This answer seems reasonable for a bouncing car. There are other ways to use conservation of energy to find max . We

could use it directly, as was done in the example featured in Hooke’s Law: Stress and Strain Revisited.

The small vertical displacement of an oscillating simple pendulum, starting from its equilibrium position, is given as
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(16.45)( ) = sin ,

where is the amplitude, is the angular velocity and is the time taken. Substituting = 2π , we have

(16.46)
= sin 2π .

Thus, the displacement of pendulum is a function of time as shown above.

Also the velocity of the pendulum is given by

(16.47)
( ) = 2 cos 2π ,

so the motion of the pendulum is a function of time.

Check Your Understanding

Why does it hurt more if your hand is snapped with a ruler than with a loose spring, even if the displacement of each system
is equal?

Solution
The ruler is a stiffer system, which carries greater force for the same amount of displacement. The ruler snaps your hand
with greater force, which hurts more.

Check Your Understanding

You are observing a simple harmonic oscillator. Identify one way you could decrease the maximum velocity of the system.

Solution
You could increase the mass of the object that is oscillating.

16.6 Uniform Circular Motion and Simple Harmonic Motion

Learning Objectives
By the end of this section, you will be able to:

• Compare simple harmonic motion with uniform circular motion.

Figure 16.17 The horses on this merry-go-round exhibit uniform circular motion. (credit: Wonderlane, Flickr)

There is an easy way to produce simple harmonic motion by using uniform circular motion. Figure 16.18 shows one way of using
this method. A ball is attached to a uniformly rotating vertical turntable, and its shadow is projected on the floor as shown. The
shadow undergoes simple harmonic motion. Hooke’s law usually describes uniform circular motions ( constant) rather than
systems that have large visible displacements. So observing the projection of uniform circular motion, as in Figure 16.18, is often
easier than observing a precise large-scale simple harmonic oscillator. If studied in sufficient depth, simple harmonic motion
produced in this manner can give considerable insight into many aspects of oscillations and waves and is very useful
mathematically. In our brief treatment, we shall indicate some of the major features of this relationship and how they might be
useful.
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Figure 16.18 The shadow of a ball rotating at constant angular velocity on a turntable goes back and forth in precise simple harmonic motion.

Figure 16.19 shows the basic relationship between uniform circular motion and simple harmonic motion. The point P travels
around the circle at constant angular velocity . The point P is analogous to an object on the merry-go-round. The projection of
the position of P onto a fixed axis undergoes simple harmonic motion and is analogous to the shadow of the object. At the time
shown in the figure, the projection has position and moves to the left with velocity . The velocity of the point P around the

circle equals ¯
max .The projection of ¯

max on the -axis is the velocity of the simple harmonic motion along the -axis.

Figure 16.19 A point P moving on a circular path with a constant angular velocity is undergoing uniform circular motion. Its projection on the x-axis

undergoes simple harmonic motion. Also shown is the velocity of this point around the circle,
¯

max , and its projection, which is . Note that these

velocities form a similar triangle to the displacement triangle.

To see that the projection undergoes simple harmonic motion, note that its position is given by

(16.48)= cos ,

where = , is the constant angular velocity, and is the radius of the circular path. Thus,

(16.49)= cos .

The angular velocity is in radians per unit time; in this case 2π radians is the time for one revolution . That is,

= 2π / . Substituting this expression for , we see that the position is given by:

(16.50)
( ) = cos 2π .

This expression is the same one we had for the position of a simple harmonic oscillator in Simple Harmonic Motion: A Special
Periodic Motion. If we make a graph of position versus time as in Figure 16.20, we see again the wavelike character (typical of
simple harmonic motion) of the projection of uniform circular motion onto the -axis.
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Figure 16.20 The position of the projection of uniform circular motion performs simple harmonic motion, as this wavelike graph of versus
indicates.

Now let us use Figure 16.19 to do some further analysis of uniform circular motion as it relates to simple harmonic motion. The

triangle formed by the velocities in the figure and the triangle formed by the displacements ( and 2 − 2 ) are similar

right triangles. Taking ratios of similar sides, we see that

(16.51)

max
=

2 − 2
= 1 −

2

2
.

We can solve this equation for the speed or

(16.52)
= max 1 −

2

2
.

This expression for the speed of a simple harmonic oscillator is exactly the same as the equation obtained from conservation of
energy considerations in Energy and the Simple Harmonic Oscillator. You can begin to see that it is possible to get all of the
characteristics of simple harmonic motion from an analysis of the projection of uniform circular motion.

Finally, let us consider the period of the motion of the projection. This period is the time it takes the point P to complete one

revolution. That time is the circumference of the circle 2π divided by the velocity around the circle, max . Thus, the period

is

(16.53)
= 2πX

max
.

We know from conservation of energy considerations that

(16.54)
max = .

Solving this equation for / max gives

(16.55)
max

= .

Substituting this expression into the equation for yields

(16.56)= 2π .

Thus, the period of the motion is the same as for a simple harmonic oscillator. We have determined the period for any simple
harmonic oscillator using the relationship between uniform circular motion and simple harmonic motion.

Some modules occasionally refer to the connection between uniform circular motion and simple harmonic motion. Moreover, if
you carry your study of physics and its applications to greater depths, you will find this relationship useful. It can, for example,
help to analyze how waves add when they are superimposed.
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Check Your Understanding

A famous magic trick involves a performer singing a note toward a crystal glass until the glass shatters. Explain why the trick
works in terms of resonance and natural frequency.

Solution
The performer must be singing a note that corresponds to the natural frequency of the glass. As the sound wave is directed
at the glass, the glass responds by resonating at the same frequency as the sound wave. With enough energy introduced
into the system, the glass begins to vibrate and eventually shatters.

16.9 Waves

Learning Objectives
By the end of this section, you will be able to:

• Describe various characteristics associated with a wave.
• Differentiate between transverse and longitudinal waves.

Figure 16.29 Waves in the ocean behave similarly to all other types of waves. (credit: Steve Jurveston, Flickr)

What do we mean when we say something is a wave? The most intuitive and easiest wave to imagine is the familiar water wave.
More precisely, a wave is a disturbance that propagates, or moves from the place it was created. For water waves, the
disturbance is in the surface of the water, perhaps created by a rock thrown into a pond or by a swimmer splashing the surface
repeatedly. For sound waves, the disturbance is a change in air pressure, perhaps created by the oscillating cone inside a
speaker. For earthquakes, there are several types of disturbances, including disturbance of Earth’s surface and pressure
disturbances under the surface. Even radio waves are most easily understood using an analogy with water waves. Visualizing
water waves is useful because there is more to it than just a mental image. Water waves exhibit characteristics common to all
waves, such as amplitude, period, frequency and energy. All wave characteristics can be described by a small set of underlying
principles.

A wave is a disturbance that propagates, or moves from the place it was created. The simplest waves repeat themselves for
several cycles and are associated with simple harmonic motion. Let us start by considering the simplified water wave in Figure
16.30. The wave is an up and down disturbance of the water surface. It causes a sea gull to move up and down in simple
harmonic motion as the wave crests and troughs (peaks and valleys) pass under the bird. The time for one complete up and
down motion is the wave’s period . The wave’s frequency is = 1 / , as usual. The wave itself moves to the right in the

figure. This movement of the wave is actually the disturbance moving to the right, not the water itself (or the bird would move to
the right). We define wave velocity w to be the speed at which the disturbance moves. Wave velocity is sometimes also called

the propagation velocity or propagation speed, because the disturbance propagates from one location to another.

Misconception Alert

Many people think that water waves push water from one direction to another. In fact, the particles of water tend to stay in
one location, save for moving up and down due to the energy in the wave. The energy moves forward through the water, but
the water stays in one place. If you feel yourself pushed in an ocean, what you feel is the energy of the wave, not a rush of
water.
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Figure 16.30 An idealized ocean wave passes under a sea gull that bobs up and down in simple harmonic motion. The wave has a wavelength ,
which is the distance between adjacent identical parts of the wave. The up and down disturbance of the surface propagates parallel to the surface at a
speed w .

The water wave in the figure also has a length associated with it, called its wavelength , the distance between adjacent

identical parts of a wave. ( is the distance parallel to the direction of propagation.) The speed of propagation w is the

distance the wave travels in a given time, which is one wavelength in the time of one period. In equation form, that is

(16.66)
w =

or

(16.67)w = .

This fundamental relationship holds for all types of waves. For water waves, w is the speed of a surface wave; for sound, w

is the speed of sound; and for visible light, w is the speed of light, for example.

Applying the Science Practices: Different Types of Waves

Consider a spring fixed to a wall with a mass connected to its end. This fixed point on the wall exerts a force on the complete
spring-and-mass system, and this implies that the momentum of the complete system is not conserved. Now, consider
energy. Since the system is fixed to a point on the wall, it does not do any work; hence, the total work done is conserved,
which means that the energy is conserved. Consequently, we have an oscillator in which energy is conserved but
momentum is not. Now, consider a system of two masses connected to each other by a spring. This type of system also
forms an oscillator. Since there is no fixed point, momentum is conserved as the forces acting on the two masses are equal
and opposite. Energy for such a system will be conserved, because there are no external forces acting on the spring-two-
masses system. It is clear from above that, for momentum to be conserved, momentum needs to be carried by waves. This
is a typical example of a mechanical oscillator producing mechanical waves that need a medium in which to propagate.
Sound waves are also examples of mechanical waves. There are some waves that can travel in the absence of a medium of
propagation. Such waves are called “electromagnetic waves.” Light waves are examples of electromagnetic waves.
Electromagnetic waves are created by the vibration of electric charge. This vibration creates a wave with both electric and
magnetic field components.

Take-Home Experiment: Waves in a Bowl

Fill a large bowl or basin with water and wait for the water to settle so there are no ripples. Gently drop a cork into the middle
of the bowl. Estimate the wavelength and period of oscillation of the water wave that propagates away from the cork.
Remove the cork from the bowl and wait for the water to settle again. Gently drop the cork at a height that is different from
the first drop. Does the wavelength depend upon how high above the water the cork is dropped?

Example 16.9 Calculate the Velocity of Wave Propagation: Gull in the Ocean

Calculate the wave velocity of the ocean wave in Figure 16.30 if the distance between wave crests is 10.0 m and the time
for a sea gull to bob up and down is 5.00 s.

Strategy
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We are asked to find w . The given information tells us that = 10.0 m and = 5.00 s . Therefore, we can use

w = to find the wave velocity.

Solution

1. Enter the known values into w = :

(16.68)
w = 10.0 m

5.00 s
.

2. Solve for w to find w = 2.00 m/s.

Discussion

This slow speed seems reasonable for an ocean wave. Note that the wave moves to the right in the figure at this speed, not
the varying speed at which the sea gull moves up and down.

Transverse and Longitudinal Waves
A simple wave consists of a periodic disturbance that propagates from one place to another. The wave in Figure 16.31
propagates in the horizontal direction while the surface is disturbed in the vertical direction. Such a wave is called a transverse
wave or shear wave; in such a wave, the disturbance is perpendicular to the direction of propagation. In contrast, in a
longitudinal wave or compressional wave, the disturbance is parallel to the direction of propagation. Figure 16.32 shows an
example of a longitudinal wave. The size of the disturbance is its amplitude X and is completely independent of the speed of
propagation w .

Figure 16.31 In this example of a transverse wave, the wave propagates horizontally, and the disturbance in the cord is in the vertical direction.

Figure 16.32 In this example of a longitudinal wave, the wave propagates horizontally, and the disturbance in the cord is also in the horizontal
direction.

Waves may be transverse, longitudinal, or a combination of the two. (Water waves are actually a combination of transverse and
longitudinal. The simplified water wave illustrated in Figure 16.30 shows no longitudinal motion of the bird.) The waves on the
strings of musical instruments are transverse—so are electromagnetic waves, such as visible light.

Sound waves in air and water are longitudinal. Their disturbances are periodic variations in pressure that are transmitted in
fluids. Fluids do not have appreciable shear strength, and thus the sound waves in them must be longitudinal or compressional.
Sound in solids can be both longitudinal and transverse.
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Figure 16.33 The wave on a guitar string is transverse. The sound wave rattles a sheet of paper in a direction that shows the sound wave is
longitudinal.

Earthquake waves under Earth’s surface also have both longitudinal and transverse components (called compressional or P-
waves and shear or S-waves, respectively). These components have important individual characteristics—they propagate at
different speeds, for example. Earthquakes also have surface waves that are similar to surface waves on water.

Applying the Science Practices: Electricity in Your Home

The source of electricity is of a sinusoidal nature. If we appropriately probe using an oscilloscope (an instrument used to
display and analyze electronic signals), we can precisely determine the frequency and wavelength of the waveform. Inquire
about the maximum voltage current that you get in your house and plot a sinusoidal waveform representing the frequency,
wavelength, and period for it.

Check Your Understanding

Why is it important to differentiate between longitudinal and transverse waves?

Solution
In the different types of waves, energy can propagate in a different direction relative to the motion of the wave. This is
important to understand how different types of waves affect the materials around them.

PhET Explorations: Wave on a String

Watch a string vibrate in slow motion. Wiggle the end of the string and make waves, or adjust the frequency and amplitude
of an oscillator. Adjust the damping and tension. The end can be fixed, loose, or open.

Figure 16.34 Wave on a String (http://cnx.org/content/m55281/1.2/wave-on-a-string_en.jar)

16.10 Superposition and Interference

Learning Objectives
By the end of this section, you will be able to:

• Determine the resultant waveform when two waves act in superposition relative to each other.
• Explain standing waves.
• Describe the mathematical representation of overtones and beat frequency.
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Figure 16.35 These waves result from the superposition of several waves from different sources, producing a complex pattern. (credit: waterborough,
Wikimedia Commons)

Most waves do not look very simple. They look more like the waves in Figure 16.35 than like the simple water wave considered
in Waves. (Simple waves may be created by a simple harmonic oscillation, and thus have a sinusoidal shape). Complex waves
are more interesting, even beautiful, but they look formidable. Most waves appear complex because they result from several
simple waves adding together. Luckily, the rules for adding waves are quite simple.

When two or more waves arrive at the same point, they superimpose themselves on one another. More specifically, the
disturbances of waves are superimposed when they come together—a phenomenon called superposition. Each disturbance
corresponds to a force, and forces add. If the disturbances are along the same line, then the resulting wave is a simple addition
of the disturbances of the individual waves—that is, their amplitudes add. Figure 16.36 and Figure 16.37 illustrate superposition
in two special cases, both of which produce simple results.

Figure 16.36 shows two identical waves that arrive at the same point exactly in phase. The crests of the two waves are precisely
aligned, as are the troughs. This superposition produces pure constructive interference. Because the disturbances add, pure
constructive interference produces a wave that has twice the amplitude of the individual waves, but has the same wavelength.

Figure 16.37 shows two identical waves that arrive exactly out of phase—that is, precisely aligned crest to trough—producing
pure destructive interference. Because the disturbances are in the opposite direction for this superposition, the resulting
amplitude is zero for pure destructive interference—the waves completely cancel.

Figure 16.36 Pure constructive interference of two identical waves produces one with twice the amplitude, but the same wavelength.

Figure 16.37 Pure destructive interference of two identical waves produces zero amplitude, or complete cancellation.
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While pure constructive and pure destructive interference do occur, they require precisely aligned identical waves. The
superposition of most waves produces a combination of constructive and destructive interference and can vary from place to
place and time to time. Sound from a stereo, for example, can be loud in one spot and quiet in another. Varying loudness means
the sound waves add partially constructively and partially destructively at different locations. A stereo has at least two speakers
creating sound waves, and waves can reflect from walls. All these waves superimpose. An example of sounds that vary over
time from constructive to destructive is found in the combined whine of airplane jets heard by a stationary passenger. The
combined sound can fluctuate up and down in volume as the sound from the two engines varies in time from constructive to
destructive. These examples are of waves that are similar.

An example of the superposition of two dissimilar waves is shown in Figure 16.38. Here again, the disturbances add and
subtract, producing a more complicated looking wave.

Figure 16.38 Superposition of non-identical waves exhibits both constructive and destructive interference.

Standing Waves
Sometimes waves do not seem to move; rather, they just vibrate in place. Unmoving waves can be seen on the surface of a
glass of milk in a refrigerator, for example. Vibrations from the refrigerator motor create waves on the milk that oscillate up and
down but do not seem to move across the surface. These waves are formed by the superposition of two or more moving waves,
such as illustrated in Figure 16.39 for two identical waves moving in opposite directions. The waves move through each other
with their disturbances adding as they go by. If the two waves have the same amplitude and wavelength, then they alternate
between constructive and destructive interference. The resultant looks like a wave standing in place and, thus, is called a
standing wave. Waves on the glass of milk are one example of standing waves. There are other standing waves, such as on
guitar strings and in organ pipes. With the glass of milk, the two waves that produce standing waves may come from reflections
from the side of the glass.

A closer look at earthquakes provides evidence for conditions appropriate for resonance, standing waves, and constructive and
destructive interference. A building may be vibrated for several seconds with a driving frequency matching that of the natural
frequency of vibration of the building—producing a resonance resulting in one building collapsing while neighboring buildings do
not. Often buildings of a certain height are devastated while other taller buildings remain intact. The building height matches the
condition for setting up a standing wave for that particular height. As the earthquake waves travel along the surface of Earth and
reflect off denser rocks, constructive interference occurs at certain points. Often areas closer to the epicenter are not damaged
while areas farther away are damaged.

Figure 16.39 Standing wave created by the superposition of two identical waves moving in opposite directions. The oscillations are at fixed locations in
space and result from alternately constructive and destructive interference.

Standing waves are also found on the strings of musical instruments and are due to reflections of waves from the ends of the
string. Figure 16.40 and Figure 16.41 show three standing waves that can be created on a string that is fixed at both ends.
Nodes are the points where the string does not move; more generally, nodes are where the wave disturbance is zero in a
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standing wave. The fixed ends of strings must be nodes, too, because the string cannot move there. The word antinode is used
to denote the location of maximum amplitude in standing waves. Standing waves on strings have a frequency that is related to
the propagation speed w of the disturbance on the string. The wavelength is determined by the distance between the points

where the string is fixed in place.

The lowest frequency, called the fundamental frequency, is thus for the longest wavelength, which is seen to be 1 = 2 .

Therefore, the fundamental frequency is 1 = w / 1 = w / 2 . In this case, the overtones or harmonics are multiples of the

fundamental frequency. As seen in Figure 16.41, the first harmonic can easily be calculated since 2 = . Thus,

2 = w / 2 = w / 2 = 2 1 . Similarly, 3 = 3 1 , and so on. All of these frequencies can be changed by adjusting the

tension in the string. The greater the tension, the greater w is and the higher the frequencies. This observation is familiar to

anyone who has ever observed a string instrument being tuned. We will see in later chapters that standing waves are crucial to
many resonance phenomena, such as in sounding boxes on string instruments.

Figure 16.40 The figure shows a string oscillating at its fundamental frequency.

Figure 16.41 First and second harmonic frequencies are shown.

Beats
Striking two adjacent keys on a piano produces a warbling combination usually considered to be unpleasant. The superposition
of two waves of similar but not identical frequencies is the culprit. Another example is often noticeable in jet aircraft, particularly
the two-engine variety, while taxiing. The combined sound of the engines goes up and down in loudness. This varying loudness
happens because the sound waves have similar but not identical frequencies. The discordant warbling of the piano and the
fluctuating loudness of the jet engine noise are both due to alternately constructive and destructive interference as the two waves
go in and out of phase. Figure 16.42 illustrates this graphically.
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Figure 16.42 Beats are produced by the superposition of two waves of slightly different frequencies but identical amplitudes. The waves alternate in
time between constructive interference and destructive interference, giving the resulting wave a time-varying amplitude.

The wave resulting from the superposition of two similar-frequency waves has a frequency that is the average of the two. This
wave fluctuates in amplitude, or beats, with a frequency called the beat frequency. We can determine the beat frequency by
adding two waves together mathematically. Note that a wave can be represented at one point in space as

(16.69)
= cos 2π = cos 2π ,

where = 1 / is the frequency of the wave. Adding two waves that have different frequencies but identical amplitudes

produces a resultant

(16.70)= 1 + 2.

More specifically,

(16.71)= cos 2π 1 + cos 2π 2 .

Using a trigonometric identity, it can be shown that

(16.72)= 2 cos B cos 2π ave ,

where

(16.73)
B = ∣ 1 − 2 ∣

is the beat frequency, and ave is the average of 1 and 2 . These results mean that the resultant wave has twice the

amplitude and the average frequency of the two superimposed waves, but it also fluctuates in overall amplitude at the beat
frequency B . The first cosine term in the expression effectively causes the amplitude to go up and down. The second cosine

term is the wave with frequency ave . This result is valid for all types of waves. However, if it is a sound wave, providing the two

frequencies are similar, then what we hear is an average frequency that gets louder and softer (or warbles) at the beat frequency.

Real World Connections: Tuning Forks

The MIT physics demo (http://openstaxcollege.org/l/31tuningforks/) entitled “Tuning Forks: Resonance and Beat
Frequency” provides a qualitative picture of how wave interference produces beats.

Description: Two identical forks and sounding boxes are placed next to each other. Striking one tuning fork will cause the
other to resonate at the same frequency. When a weight is attached to one tuning fork, they are no longer identical. Thus,
one will not cause the other to resonate. When two different forks are struck at the same time, the interference of their
pitches produces beats.

Real World Connections: Jump Rop

This is a fun activity with which to learn about interference and superposition. Take a jump rope and hold it at the two ends
with one of your friends. While each of you is holding the rope, snap your hands to produce a wave from each side. Record
your observations and see if they match with the following:

a. One wave starts from the right end and travels to the left end of the rope.

b. Another wave starts at the left end and travels to the right end of the rope.

c. The waves travel at the same speed.

d. The shape of the waves depends on the way the person snaps his or her hands.

e. There is a region of overlap.

f. The shapes of the waves are identical to their original shapes after they overlap.

Now, snap the rope up and down and ask your friend to snap his or her end of the rope sideways. The resultant that one
sees here is the vector sum of two individual displacements.
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This activity illustrates superposition and interference. When two or more waves interact with each other at a point, the
disturbance at that point is given by the sum of the disturbances each wave will produce in the absence of the other. This is
the principle of superposition. Interference is a result of superposition of two or more waves to form a resultant wave of
greater or lower amplitude.

While beats may sometimes be annoying in audible sounds, we will find that beats have many applications. Observing beats is a
very useful way to compare similar frequencies. There are applications of beats as apparently disparate as in ultrasonic imaging
and radar speed traps.

Check Your Understanding

Imagine you are holding one end of a jump rope, and your friend holds the other. If your friend holds her end still, you can
move your end up and down, creating a transverse wave. If your friend then begins to move her end up and down,
generating a wave in the opposite direction, what resultant wave forms would you expect to see in the jump rope?

Solution
The rope would alternate between having waves with amplitudes two times the original amplitude and reaching equilibrium
with no amplitude at all. The wavelengths will result in both constructive and destructive interference

Check Your Understanding

Define nodes and antinodes.

Solution
Nodes are areas of wave interference where there is no motion. Antinodes are areas of wave interference where the motion
is at its maximum point.

Check Your Understanding

You hook up a stereo system. When you test the system, you notice that in one corner of the room, the sounds seem dull. In
another area, the sounds seem excessively loud. Describe how the sound moving about the room could result in these
effects.

Solution
With multiple speakers putting out sounds into the room, and these sounds bouncing off walls, there is bound to be some
wave interference. In the dull areas, the interference is probably mostly destructive. In the louder areas, the interference is
probably mostly constructive.

PhET Explorations: Wave Interference

Make waves with a dripping faucet, audio speaker, or laser! Add a second source or a pair of slits to create an interference
pattern.

Figure 16.43 Wave Interference (http://cnx.org/content/m55282/1.2/wave-interference_en.jar)

16.11 Energy in Waves: Intensity

Learning Objectives
By the end of this section, you will be able to:

• Calculate the intensity and the power of rays and waves.
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frequency:

fundamental frequency:

intensity:

longitudinal wave:

natural frequency:

nodes:

oscillate:

over damping:

overtones:

period:

periodic motion:

resonance:

resonate:

restoring force:

simple harmonic motion:

simple harmonic oscillator:

simple pendulum:

superposition:

transverse wave:

under damping:

wave:

wave velocity:

wavelength:

number of events per unit of time

the lowest frequency of a periodic waveform

power per unit area

a wave in which the disturbance is parallel to the direction of propagation

the frequency at which a system would oscillate if there were no driving and no damping forces

the points where the string does not move; more generally, nodes are where the wave disturbance is zero in a
standing wave

moving back and forth regularly between two points

the condition in which damping of an oscillator causes it to return to equilibrium without oscillating; oscillator
moves more slowly toward equilibrium than in the critically damped system

multiples of the fundamental frequency of a sound

time it takes to complete one oscillation

motion that repeats itself at regular time intervals

the phenomenon of driving a system with a frequency equal to the system's natural frequency

a system being driven at its natural frequency

force acting in opposition to the force caused by a deformation

the oscillatory motion in a system where the net force can be described by Hooke’s law

a device that implements Hooke’s law, such as a mass that is attached to a spring, with the
other end of the spring being connected to a rigid support such as a wall

an object with a small mass suspended from a light wire or string

the phenomenon that occurs when two or more waves arrive at the same point

a wave in which the disturbance is perpendicular to the direction of propagation

the condition in which damping of an oscillator causes it to return to equilibrium with the amplitude gradually
decreasing to zero; system returns to equilibrium faster but overshoots and crosses the equilibrium position one or more
times

a disturbance that moves from its source and carries energy

the speed at which the disturbance moves. Also called the propagation velocity or propagation speed

the distance between adjacent identical parts of a wave

Section Summary

16.1 Hooke’s Law: Stress and Strain Revisited
• An oscillation is a back and forth motion of an object between two points of deformation.
• An oscillation may create a wave, which is a disturbance that propagates from where it was created.
• The simplest type of oscillations and waves are related to systems that can be described by Hooke’s law:

= − ,

where is the restoring force, is the displacement from equilibrium or deformation, and is the force constant of the
system.

• Elastic potential energy PEel stored in the deformation of a system that can be described by Hooke’s law is given by

PEel = (1 / 2) 2.

16.2 Period and Frequency in Oscillations
• Periodic motion is a repetitious oscillation.
• The time for one oscillation is the period .

• The number of oscillations per unit time is the frequency .

• These quantities are related by
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= 1 .

16.3 Simple Harmonic Motion: A Special Periodic Motion
• Simple harmonic motion is oscillatory motion for a system that can be described only by Hooke’s law. Such a system is also

called a simple harmonic oscillator.
• Maximum displacement is the amplitude . The period and frequency of a simple harmonic oscillator are given by

= 2π and = 1
2π

, where is the mass of the system.

• Displacement in simple harmonic motion as a function of time is given by ( ) = cos 2π .

• The velocity is given by ( ) = − max sin2πt , where max = / .

• The acceleration is found to be ( ) = − cos 2π .

16.4 The Simple Pendulum
• A mass suspended by a wire of length is a simple pendulum and undergoes simple harmonic motion for amplitudes

less than about 15º.

The period of a simple pendulum is

= 2π ,

where is the length of the string and is the acceleration due to gravity.

16.5 Energy and the Simple Harmonic Oscillator
• Energy in the simple harmonic oscillator is shared between elastic potential energy and kinetic energy, with the total being

constant:

1
2

2 + 1
2

2 = constant.

• Maximum velocity depends on three factors: it is directly proportional to amplitude, it is greater for stiffer systems, and it is
smaller for objects that have larger masses:

max = .

16.6 Uniform Circular Motion and Simple Harmonic Motion
A projection of uniform circular motion undergoes simple harmonic oscillation.

16.7 Damped Harmonic Motion
• Damped harmonic oscillators have non-conservative forces that dissipate their energy.
• Critical damping returns the system to equilibrium as fast as possible without overshooting.
• An underdamped system will oscillate through the equilibrium position.
• An overdamped system moves more slowly toward equilibrium than one that is critically damped.

16.8 Forced Oscillations and Resonance
• A system’s natural frequency is the frequency at which the system will oscillate if not affected by driving or damping forces.
• A periodic force driving a harmonic oscillator at its natural frequency produces resonance. The system is said to resonate.
• The less damping a system has, the higher the amplitude of the forced oscillations near resonance. The more damping a

system has, the broader response it has to varying driving frequencies.

16.9 Waves
• A wave is a disturbance that moves from the point of creation with a wave velocity w .

• A wave has a wavelength , which is the distance between adjacent identical parts of the wave.

• Wave velocity and wavelength are related to the wave’s frequency and period by w = or w = .

• A transverse wave has a disturbance perpendicular to its direction of propagation, whereas a longitudinal wave has a
disturbance parallel to its direction of propagation.

16.10 Superposition and Interference
• Superposition is the combination of two waves at the same location.
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• Constructive interference occurs when two identical waves are superimposed in phase.
• Destructive interference occurs when two identical waves are superimposed exactly out of phase.
• A standing wave is one in which two waves superimpose to produce a wave that varies in amplitude but does not

propagate.
• Nodes are points of no motion in standing waves.
• An antinode is the location of maximum amplitude of a standing wave.
• Waves on a string are resonant standing waves with a fundamental frequency and can occur at higher multiples of the

fundamental, called overtones or harmonics.
• Beats occur when waves of similar frequencies 1 and 2 are superimposed. The resulting amplitude oscillates with a

beat frequency given by

B = ∣ 1 − 2 ∣ .

16.11 Energy in Waves: Intensity
Intensity is defined to be the power per unit area:

= and has units of W/m2 .

Conceptual Questions

16.1 Hooke’s Law: Stress and Strain Revisited
1. Describe a system in which elastic potential energy is stored.

16.3 Simple Harmonic Motion: A Special Periodic Motion
2. What conditions must be met to produce simple harmonic motion?

3. (a) If frequency is not constant for some oscillation, can the oscillation be simple harmonic motion?

(b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?

4. Give an example of a simple harmonic oscillator, specifically noting how its frequency is independent of amplitude.

5. Explain why you expect an object made of a stiff material to vibrate at a higher frequency than a similar object made of a
spongy material.

6. As you pass a freight truck with a trailer on a highway, you notice that its trailer is bouncing up and down slowly. Is it more
likely that the trailer is heavily loaded or nearly empty? Explain your answer.

7. Some people modify cars to be much closer to the ground than when manufactured. Should they install stiffer springs? Explain
your answer.

16.4 The Simple Pendulum
8. Pendulum clocks are made to run at the correct rate by adjusting the pendulum’s length. Suppose you move from one city to
another where the acceleration due to gravity is slightly greater, taking your pendulum clock with you, will you have to lengthen or
shorten the pendulum to keep the correct time, other factors remaining constant? Explain your answer.

16.5 Energy and the Simple Harmonic Oscillator
9. Explain in terms of energy how dissipative forces such as friction reduce the amplitude of a harmonic oscillator. Also explain
how a driving mechanism can compensate. (A pendulum clock is such a system.)

16.7 Damped Harmonic Motion
10. Give an example of a damped harmonic oscillator. (They are more common than undamped or simple harmonic oscillators.)

11. How would a car bounce after a bump under each of these conditions?
• overdamping
• underdamping
• critical damping

12. Most harmonic oscillators are damped and, if undriven, eventually come to a stop. How is this observation related to the
second law of thermodynamics?

16.8 Forced Oscillations and Resonance
13. Why are soldiers in general ordered to “route step” (walk out of step) across a bridge?

16.9 Waves
14. Give one example of a transverse wave and another of a longitudinal wave, being careful to note the relative directions of the
disturbance and wave propagation in each.
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15. What is the difference between propagation speed and the frequency of a wave? Does one or both affect wavelength? If so,
how?

16.10 Superposition and Interference
16. Speakers in stereo systems have two color-coded terminals to indicate how to hook up the wires. If the wires are reversed,
the speaker moves in a direction opposite that of a properly connected speaker. Explain why it is important to have both
speakers connected the same way.

16.11 Energy in Waves: Intensity
17. Two identical waves undergo pure constructive interference. Is the resultant intensity twice that of the individual waves?
Explain your answer.

18. Circular water waves decrease in amplitude as they move away from where a rock is dropped. Explain why.
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Problems & Exercises

16.1 Hooke’s Law: Stress and Strain Revisited
1. Fish are hung on a spring scale to determine their mass
(most fishermen feel no obligation to truthfully report the
mass).

(a) What is the force constant of the spring in such a scale if it
the spring stretches 8.00 cm for a 10.0 kg load?

(b) What is the mass of a fish that stretches the spring 5.50
cm?

(c) How far apart are the half-kilogram marks on the scale?

2. It is weigh-in time for the local under-85-kg rugby team.
The bathroom scale used to assess eligibility can be
described by Hooke’s law and is depressed 0.75 cm by its
maximum load of 120 kg. (a) What is the spring’s effective
spring constant? (b) A player stands on the scales and
depresses it by 0.48 cm. Is he eligible to play on this under-85
kg team?

3. One type of BB gun uses a spring-driven plunger to blow
the BB from its barrel. (a) Calculate the force constant of its
plunger’s spring if you must compress it 0.150 m to drive the
0.0500-kg plunger to a top speed of 20.0 m/s. (b) What force
must be exerted to compress the spring?

4. (a) The springs of a pickup truck act like a single spring

with a force constant of 1.30×105 N/m . By how much will
the truck be depressed by its maximum load of 1000 kg?

(b) If the pickup truck has four identical springs, what is the
force constant of each?

5. When an 80.0-kg man stands on a pogo stick, the spring is
compressed 0.120 m.

(a) What is the force constant of the spring? (b) Will the
spring be compressed more when he hops down the road?

6. A spring has a length of 0.200 m when a 0.300-kg mass
hangs from it, and a length of 0.750 m when a 1.95-kg mass
hangs from it. (a) What is the force constant of the spring? (b)
What is the unloaded length of the spring?

16.2 Period and Frequency in Oscillations

7. What is the period of 60.0 Hz electrical power?

8. If your heart rate is 150 beats per minute during strenuous
exercise, what is the time per beat in units of seconds?

9. Find the frequency of a tuning fork that takes

2.50×10−3 s to complete one oscillation.

10. A stroboscope is set to flash every 8.00×10−5 s . What
is the frequency of the flashes?

11. A tire has a tread pattern with a crevice every 2.00 cm.
Each crevice makes a single vibration as the tire moves.
What is the frequency of these vibrations if the car moves at
30.0 m/s?

12. Engineering Application

Each piston of an engine makes a sharp sound every other
revolution of the engine. (a) How fast is a race car going if its
eight-cylinder engine emits a sound of frequency 750 Hz,
given that the engine makes 2000 revolutions per kilometer?
(b) At how many revolutions per minute is the engine
rotating?

16.3 Simple Harmonic Motion: A Special
Periodic Motion
13. A type of cuckoo clock keeps time by having a mass
bouncing on a spring, usually something cute like a cherub in
a chair. What force constant is needed to produce a period of
0.500 s for a 0.0150-kg mass?

14. If the spring constant of a simple harmonic oscillator is
doubled, by what factor will the mass of the system need to
change in order for the frequency of the motion to remain the
same?

15. A 0.500-kg mass suspended from a spring oscillates with
a period of 1.50 s. How much mass must be added to the
object to change the period to 2.00 s?

16. By how much leeway (both percentage and mass) would
you have in the selection of the mass of the object in the
previous problem if you did not wish the new period to be
greater than 2.01 s or less than 1.99 s?

17. Suppose you attach the object with mass to a vertical
spring originally at rest, and let it bounce up and down. You
release the object from rest at the spring’s original rest length.
(a) Show that the spring exerts an upward force of 2.00

on the object at its lowest point. (b) If the spring has a force
constant of 10.0 N/m and a 0.25-kg-mass object is set in
motion as described, find the amplitude of the oscillations. (c)
Find the maximum velocity.

18. A diver on a diving board is undergoing simple harmonic
motion. Her mass is 55.0 kg and the period of her motion is
0.800 s. The next diver is a male whose period of simple
harmonic oscillation is 1.05 s. What is his mass if the mass of
the board is negligible?

19. Suppose a diving board with no one on it bounces up and
down in a simple harmonic motion with a frequency of 4.00
Hz. The board has an effective mass of 10.0 kg. What is the
frequency of the simple harmonic motion of a 75.0-kg diver on
the board?

20.

Figure 16.46 This child’s toy relies on springs to keep infants
entertained. (credit: By Humboldthead, Flickr)
The device pictured in Figure 16.46 entertains infants while
keeping them from wandering. The child bounces in a
harness suspended from a door frame by a spring constant.
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(a) If the spring stretches 0.250 m while supporting an 8.0-kg
child, what is its spring constant?

(b) What is the time for one complete bounce of this child? (c)
What is the child’s maximum velocity if the amplitude of her
bounce is 0.200 m?

21. A 90.0-kg skydiver hanging from a parachute bounces up
and down with a period of 1.50 s. What is the new period of
oscillation when a second skydiver, whose mass is 60.0 kg,
hangs from the legs of the first, as seen in Figure 16.47.

Figure 16.47 The oscillations of one skydiver are about to be affected
by a second skydiver. (credit: U.S. Army, www.army.mil)

16.4 The Simple Pendulum
As usual, the acceleration due to gravity in these

problems is taken to be = 9.80 m / s2 , unless

otherwise specified.

22. What is the length of a pendulum that has a period of
0.500 s?

23. Some people think a pendulum with a period of 1.00 s can
be driven with “mental energy” or psycho kinetically, because
its period is the same as an average heartbeat. True or not,
what is the length of such a pendulum?

24. What is the period of a 1.00-m-long pendulum?

25. How long does it take a child on a swing to complete one
swing if her center of gravity is 4.00 m below the pivot?

26. The pendulum on a cuckoo clock is 5.00 cm long. What is
its frequency?

27. Two parakeets sit on a swing with their combined center
of mass 10.0 cm below the pivot. At what frequency do they
swing?

28. (a) A pendulum that has a period of 3.00000 s and that is

located where the acceleration due to gravity is 9.79 m/s2 is
moved to a location where it the acceleration due to gravity is

9.82 m/s2 . What is its new period? (b) Explain why so many
digits are needed in the value for the period, based on the
relation between the period and the acceleration due to
gravity.

29. A pendulum with a period of 2.00000 s in one location

= 9.80 m/s2 is moved to a new location where the

period is now 1.99796 s. What is the acceleration due to
gravity at its new location?

30. (a) What is the effect on the period of a pendulum if you
double its length?

(b) What is the effect on the period of a pendulum if you
decrease its length by 5.00%?

31. Find the ratio of the new/old periods of a pendulum if the
pendulum were transported from Earth to the Moon, where

the acceleration due to gravity is 1.63 m/s2 .

32. At what rate will a pendulum clock run on the Moon,

where the acceleration due to gravity is 1.63 m/s2 , if it
keeps time accurately on Earth? That is, find the time (in
hours) it takes the clock’s hour hand to make one revolution
on the Moon.

33. Suppose the length of a clock’s pendulum is changed by
1.000%, exactly at noon one day. What time will it read 24.00
hours later, assuming it the pendulum has kept perfect time
before the change? Note that there are two answers, and
perform the calculation to four-digit precision.

34. If a pendulum-driven clock gains 5.00 s/day, what
fractional change in pendulum length must be made for it to
keep perfect time?

16.5 Energy and the Simple Harmonic
Oscillator
35. The length of nylon rope from which a mountain climber is

suspended has a force constant of 1.40×104 N/m .

(a) What is the frequency at which he bounces, given his
mass plus and the mass of his equipment are 90.0 kg?

(b) How much would this rope stretch to break the climber’s
fall if he free-falls 2.00 m before the rope runs out of slack?
Hint: Use conservation of energy.

(c) Repeat both parts of this problem in the situation where
twice this length of nylon rope is used.

36. Engineering Application

Near the top of the Citigroup Center building in New York City,

there is an object with mass of 4.00×105 kg on springs that

have adjustable force constants. Its function is to dampen
wind-driven oscillations of the building by oscillating at the
same frequency as the building is being driven—the driving
force is transferred to the object, which oscillates instead of
the entire building. (a) What effective force constant should
the springs have to make the object oscillate with a period of
2.00 s? (b) What energy is stored in the springs for a 2.00-m
displacement from equilibrium?

16.6 Uniform Circular Motion and Simple
Harmonic Motion
37. (a)What is the maximum velocity of an 85.0-kg person
bouncing on a bathroom scale having a force constant of

1.50×106 N/m , if the amplitude of the bounce is 0.200 cm?
(b)What is the maximum energy stored in the spring?

38. A novelty clock has a 0.0100-kg mass object bouncing on
a spring that has a force constant of 1.25 N/m. What is the
maximum velocity of the object if the object bounces 3.00 cm
above and below its equilibrium position? (b) How many
joules of kinetic energy does the object have at its maximum
velocity?

39. At what positions is the speed of a simple harmonic
oscillator half its maximum? That is, what values of /

give = ± max / 2 , where is the amplitude of the

motion?
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40. A ladybug sits 12.0 cm from the center of a Beatles music
album spinning at 33.33 rpm. What is the maximum velocity
of its shadow on the wall behind the turntable, if illuminated
parallel to the record by the parallel rays of the setting Sun?

16.7 Damped Harmonic Motion
41. The amplitude of a lightly damped oscillator decreases by
3.0% during each cycle. What percentage of the mechanical
energy of the oscillator is lost in each cycle?

16.8 Forced Oscillations and Resonance
42. How much energy must the shock absorbers of a 1200-kg
car dissipate in order to damp a bounce that initially has a
velocity of 0.800 m/s at the equilibrium position? Assume the
car returns to its original vertical position.

43. If a car has a suspension system with a force constant of

5.00×104 N/m , how much energy must the car’s shocks
remove to dampen an oscillation starting with a maximum
displacement of 0.0750 m?

44. (a) How much will a spring that has a force constant of
40.0 N/m be stretched by an object with a mass of 0.500 kg
when hung motionless from the spring? (b) Calculate the
decrease in gravitational potential energy of the 0.500-kg
object when it descends this distance. (c) Part of this
gravitational energy goes into the spring. Calculate the
energy stored in the spring by this stretch, and compare it
with the gravitational potential energy. Explain where the rest
of the energy might go.

45. Suppose you have a 0.750-kg object on a horizontal
surface connected to a spring that has a force constant of 150
N/m. There is simple friction between the object and surface
with a static coefficient of friction s = 0.100 . (a) How far

can the spring be stretched without moving the mass? (b) If
the object is set into oscillation with an amplitude twice the
distance found in part (a), and the kinetic coefficient of friction
is k = 0.0850 , what total distance does it travel before

stopping? Assume it starts at the maximum amplitude.

46. Engineering Application: A suspension bridge oscillates

with an effective force constant of 1.00×108 N/m . (a) How
much energy is needed to make it oscillate with an amplitude
of 0.100 m? (b) If soldiers march across the bridge with a
cadence equal to the bridge’s natural frequency and impart

1.00×104 J of energy each second, how long does it take
for the bridge’s oscillations to go from 0.100 m to 0.500 m
amplitude?

16.9 Waves
47. Storms in the South Pacific can create waves that travel
all the way to the California coast, which are 12,000 km away.
How long does it take them if they travel at 15.0 m/s?

48. Waves on a swimming pool propagate at 0.750 m/s. You
splash the water at one end of the pool and observe the wave
go to the opposite end, reflect, and return in 30.0 s. How far
away is the other end of the pool?

49. Wind gusts create ripples on the ocean that have a
wavelength of 5.00 cm and propagate at 2.00 m/s. What is
their frequency?

50. How many times a minute does a boat bob up and down
on ocean waves that have a wavelength of 40.0 m and a
propagation speed of 5.00 m/s?

51. Scouts at a camp shake the rope bridge they have just
crossed and observe the wave crests to be 8.00 m apart. If
they shake it the bridge twice per second, what is the
propagation speed of the waves?

52. What is the wavelength of the waves you create in a
swimming pool if you splash your hand at a rate of 2.00 Hz
and the waves propagate at 0.800 m/s?

53. What is the wavelength of an earthquake that shakes you
with a frequency of 10.0 Hz and gets to another city 84.0 km
away in 12.0 s?

54. Radio waves transmitted through space at

3.00×108 m/s by the Voyager spacecraft have a
wavelength of 0.120 m. What is their frequency?

55. Your ear is capable of differentiating sounds that arrive at
the ear just 1.00 ms apart. What is the minimum distance
between two speakers that produce sounds that arrive at
noticeably different times on a day when the speed of sound
is 340 m/s?

56. (a) Seismographs measure the arrival times of
earthquakes with a precision of 0.100 s. To get the distance to
the epicenter of the quake, they compare the arrival times of
S- and P-waves, which travel at different speeds. Figure
16.48) If S- and P-waves travel at 4.00 and 7.20 km/s,
respectively, in the region considered, how precisely can the
distance to the source of the earthquake be determined? (b)
Seismic waves from underground detonations of nuclear
bombs can be used to locate the test site and detect
violations of test bans. Discuss whether your answer to (a)
implies a serious limit to such detection. (Note also that the
uncertainty is greater if there is an uncertainty in the
propagation speeds of the S- and P-waves.)

Figure 16.48 A seismograph as described in above problem.(credit:
Oleg Alexandrov)

16.10 Superposition and Interference
57. A car has two horns, one emitting a frequency of 199 Hz
and the other emitting a frequency of 203 Hz. What beat
frequency do they produce?

58. The middle-C hammer of a piano hits two strings,
producing beats of 1.50 Hz. One of the strings is tuned to
260.00 Hz. What frequencies could the other string have?

59. Two tuning forks having frequencies of 460 and 464 Hz
are struck simultaneously. What average frequency will you
hear, and what will the beat frequency be?
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60. Twin jet engines on an airplane are producing an average
sound frequency of 4100 Hz with a beat frequency of 0.500
Hz. What are their individual frequencies?

61. A wave traveling on a Slinky® that is stretched to 4 m
takes 2.4 s to travel the length of the Slinky and back again.
(a) What is the speed of the wave? (b) Using the same Slinky
stretched to the same length, a standing wave is created
which consists of three antinodes and four nodes. At what
frequency must the Slinky be oscillating?

62. Three adjacent keys on a piano (F, F-sharp, and G) are
struck simultaneously, producing frequencies of 349, 370, and
392 Hz. What beat frequencies are produced by this
discordant combination?

16.11 Energy in Waves: Intensity
63. Medical Application

Ultrasound of intensity 1.50×102 W/m2 is produced by the
rectangular head of a medical imaging device measuring 3.00
by 5.00 cm. What is its power output?

64. The low-frequency speaker of a stereo set has a surface

area of 0.05 m2 and produces 1W of acoustical power.
What is the intensity at the speaker? If the speaker projects
sound uniformly in all directions, at what distance from the

speaker is the intensity 0.1 W/m2 ?

65. To increase intensity of a wave by a factor of 50, by what
factor should the amplitude be increased?

66. Engineering Application

A device called an insolation meter is used to measure the
intensity of sunlight has an area of 100 cm2 and registers

6.50 W. What is the intensity in W/m2 ?

67. Astronomy Application

Energy from the Sun arrives at the top of the Earth’s

atmosphere with an intensity of 1.30 kW/m2. How long

does it take for 1.8×109 J to arrive on an area of 1.00 m2

?

68. Suppose you have a device that extracts energy from
ocean breakers in direct proportion to their intensity. If the
device produces 10.0 kW of power on a day when the
breakers are 1.20 m high, how much will it produce when they
are 0.600 m high?

69. Engineering Application

(a) A photovoltaic array of (solar cells) is 10.0% efficient in
gathering solar energy and converting it to electricity. If the

average intensity of sunlight on one day is 700 W/m2,

what area should your array have to gather energy at the rate
of 100 W? (b) What is the maximum cost of the array if it must
pay for itself in two years of operation averaging 10.0 hours
per day? Assume that it earns money at the rate of 9.00 ¢ per
kilowatt-hour.

70. A microphone receiving a pure sound tone feeds an
oscilloscope, producing a wave on its screen. If the sound

intensity is originally 2.00×10–5 W/m2, but is turned up

until the amplitude increases by 30.0%, what is the new
intensity?

71. Medical Application

(a) What is the intensity in W/m2 of a laser beam used to
burn away cancerous tissue that, when 90.0% absorbed, puts
500 J of energy into a circular spot 2.00 mm in diameter in
4.00 s? (b) Discuss how this intensity compares to the

average intensity of sunlight (about 700 W/m2 ) and the
implications that would have if the laser beam entered your
eye. Note how your answer depends on the time duration of
the exposure.
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Test Prep for AP® Courses

16.1 Hooke’s Law: Stress and Strain Revisited
1. Which of the following represents the distance (how much
ground the particle covers) moved by a particle in a simple
harmonic motion in one time period? (Here, A represents the
amplitude of the oscillation.)

a. 0 cm
b. A cm
c. 2A cm
d. 4A cm

2. A spring has a spring constant of 80 N·m−1. What is the
force required to (a) compress the spring by 5 cm and (b)
expand the spring by 15 cm?

3. In the formula   =  − , what does the minus sign
indicate?

a. It indicates that the restoring force is in the direction of
the displacement.

b. It indicates that the restoring force is in the direction
opposite the displacement.

c. It indicates that mechanical energy in the system
decreases when a system undergoes oscillation.

d. None of the above

4. The splashing of a liquid resembles an oscillation. The
restoring force in this scenario will be due to which of the
following?

a. Potential energy
b. Kinetic energy
c. Gravity
d. Mechanical energy

16.2 Period and Frequency in Oscillations
5. A mass attached to a spring oscillates and completes 50
full cycles in 30 s. What is the time period and frequency of
this system?

16.3 Simple Harmonic Motion: A Special
Periodic Motion
6. Use these figures to answer the following questions.

Figure 16.49
a. Which of the two pendulums oscillates with larger

amplitude?
b. Which of the two pendulums oscillates at a higher

frequency?

7. A particle of mass 100 g undergoes a simple harmonic
motion. The restoring force is provided by a spring with a
spring constant of 40 N·m−1. What is the period of oscillation?

a. 10 s
b. 0.5 s
c. 0.1 s
d. 1

8. The graph shows the simple harmonic motion of a mass m

attached to a spring with spring constant k.

Figure 16.50

What is the displacement at time 8π?

a. 1 m
b. 0 m
c. Not defined
d. −1 m

9. A pendulum of mass 200 g undergoes simple harmonic
motion when acted upon by a force of 15 N. The pendulum
crosses the point of equilibrium at a speed of 5 m·s−1. What is
the energy of the pendulum at the center of the oscillation?

16.4 The Simple Pendulum
10. A ball is attached to a string of length 4 m to make a
pendulum. The pendulum is placed at a location that is away
from the Earth’s surface by twice the radius of the Earth.
What is the acceleration due to gravity at that height and what
is the period of the oscillations?

11. Which of the following gives the correct relation between
the acceleration due to gravity and period of a pendulum?

a.   =  2
2

b.   =  4
2

2

c.   =  2

d.   =  2
2

12. Tom has two pendulums with him. Pendulum 1 has a ball
of mass 0.1 kg attached to it and has a length of 5 m.
Pendulum 2 has a ball of mass 0.5 kg attached to a string of
length 1 m. How does mass of the ball affect the frequency of
the pendulum? Which pendulum will have a higher frequency
and why?

16.5 Energy and the Simple Harmonic
Oscillator
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13. A mass of 1 kg undergoes simple harmonic motion with
amplitude of 1 m. If the period of the oscillation is 1 s,
calculate the internal energy of the system.

16.6 Uniform Circular Motion and Simple
Harmonic Motion

14. In the equation   =    sin  t, what values can the

position take?
a. −1 to +1
b. –A to +A

c. 0
d. –t to t

16.7 Damped Harmonic Motion
15. The non-conservative damping force removes energy
from a system in which form?

a. Mechanical energy
b. Electrical energy
c. Thermal energy
d. None of the above

16. The time rate of change of mechanical energy for a
damped oscillator is always:

a. 0
b. Negative
c. Positive
d. Undefined

17. A 0.5-kg object is connected to a spring that undergoes
oscillatory motion. There is friction between the object and the
surface it is kept on given by coefficient of friction

  =  0.06 . If the object is released 0.2 m from equilibrium,

what is the distance that the object travels? Given that the
force constant of the spring is 50 N m-1 and the frictional force
between the objects is 0.294 N.

16.8 Forced Oscillations and Resonance
18. How is constant amplitude sustained in forced
oscillations?

16.9 Waves
19. What is the difference between the waves coming from a
tuning fork and electromagnetic waves?

20. Represent longitudinal and transverse waves in a
graphical form.

21. Why is the sound produced by a tambourine different from
that produced by drums?

22. A transverse wave is traveling left to right. Which of the
following is correct about the motion of particles in the wave?

a. The particles move up and down when the wave travels
in a vacuum.

b. The particles move left and right when the wave travels
in a medium.

c. The particles move up and down when the wave travels
in a medium.

d. The particles move right and left when the wave travels
in a vacuum.

23.

Figure 16.51 The graph shows propagation of a mechanical
wave. What is the wavelength of this wave?

16.10 Superposition and Interference
24. A guitar string has a number of frequencies at which it
vibrates naturally. Which of the following is true in this
context?

a. The resonant frequencies of the string are integer
multiples of fundamental frequencies.

b. The resonant frequencies of the string are not integer
multiples of fundamental frequencies.

c. They have harmonic overtones.
d. None of the above

25. Explain the principle of superposition with figures that
show the changes in the wave amplitude.

26. In this figure which points represent the points of
constructive interference?

Figure 16.52
a. A, B, F
b. A, B, C, D, E, F
c. A, C, D, E
d. A, B, D

27. A string is fixed on both sides. It is snapped from both
ends at the same time by applying an equal force. What
happens to the shape of the waves generated in the string?
Also, will you observe an overlap of waves?

28. In the preceding question, what would happen to the
amplitude of the waves generated in this way? Also, consider
another scenario where the string is snapped up from one
end and down from the other end. What will happen in this
situation?

29. Two sine waves travel in the same direction in a medium.
The amplitude of each wave is A, and the phase difference
between the two is 180°. What is the resultant amplitude?

a. 2A

b. 3A

c. 0
d. 9A

30. Standing wave patterns consist of nodes and antinodes
formed by repeated interference between two waves of the
same frequency traveling in opposite directions. What are
nodes and antinodes and how are they produced?
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17 PHYSICS OF HEARING

Figure 17.1 This tree fell some time ago. When it fell, atoms in the air were disturbed. Physicists would call this disturbance sound whether someone
was around to hear it or not. (credit: B.A. Bowen Photography)

Chapter Outline
17.1. Sound

17.2. Speed of Sound, Frequency, and Wavelength

17.3. Sound Intensity and Sound Level

17.4. Doppler Effect and Sonic Booms

17.5. Sound Interference and Resonance: Standing Waves in Air Columns

17.6. Hearing

17.7. Ultrasound

Connection for AP® Courses
In this chapter, the concept of waves is specifically applied to the phenomena of sound. As such, Big Idea 6 continues to be
supported, as sound waves carry energy and momentum from one location to another without the permanent transfer of mass.
This energy is carried through vibrations caused by disturbances in air pressure (Enduring Understanding 6.A). As air pressure
increases, amplitudes of vibration and energy transfer do as well. This idea (Enduring Understanding 6.A.4) explains why a very
loud sound can break glass.

The chapter continues the fundamental analysis of waves addressed in Chapter 16. Sound waves are periodic, and can
therefore be expressed as a function of position and time. Furthermore, sound waves are described by amplitude, frequency,
wavelength, and speed (Enduring Understanding 6.B). The relationship between speed and frequency is analyzed further in
Section 17.4, as the frequency of sound depends upon the relative motion between the source and observer. This concept,
known as the Doppler effect, supports Essential Knowledge 6.B.5.

Like all other waves, sound waves can overlap. When they do so, their interaction will produce an amplitude variation within the
resultant wave. This amplitude can be determined by adding the displacement of the two pulses, through a process called
superposition. This process, covered in Section 17.5, reinforces the content in Enduring Understanding 6.D.1.

In situations where the interfering waves are confined, such as on a fixed length of string or in a tube, standing waves can result.
These waves are the result of interference between the incident and reflecting wave. Standing waves are described using nodes
and antinodes, and their wavelengths are determined by the size of the region to which they are confined. This chapter’s
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description of both standing waves and the concept of beats strongly support Enduring Understanding 6.D, as well as Essential
Knowledge 6.D.1, 6.D.3, and 6.D.4.

The concepts in this chapter support:

Big Idea 6 Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and
serve as a mathematical model for the description of other phenomena.

Enduring Understanding 6.B A periodic wave is one that repeats as a function of both time and position and can be described by
its amplitude, frequency, wavelength, speed, and energy.

Essential Knowledge 6.B.5 The observed frequency of a wave depends on the relative motion of the source and the observer.
This is a qualitative measurement only.

Enduring Understanding 6.D Interference and superposition lead to standing waves and beats.

Essential Knowledge 6.D.1 Two or more wave pulses can interact in such a way as to produce amplitude variations in the
resultant wave. When two pulses cross, they travel through each other; they do not bounce off each other. Where the pulses
overlap, the resulting displacement can be determined by adding the displacements of the two pulses. This is called
superposition.

Essential Knowledge 6.D.3 Standing waves are the result of the addition of incident and reflected waves that are confined to a
region and have nodes and antinodes. Examples should include waves on a fixed length of string, and sound waves in both
closed and open tubes.

Essential Knowledge 6.D.4 The possible wavelengths of a standing wave are determined by the size of the region in which it is
confined.

17.1 Sound

Learning Objectives
By the end of this section, you will be able to:

• Define sound and hearing.
• Describe sound as a longitudinal wave.

Figure 17.2 This glass has been shattered by a high-intensity sound wave of the same frequency as the resonant frequency of the glass. While the
sound is not visible, the effects of the sound prove its existence. (credit: ||read||, Flickr)

Sound can be used as a familiar illustration of waves. Because hearing is one of our most important senses, it is interesting to
see how the physical properties of sound correspond to our perceptions of it. Hearing is the perception of sound, just as vision is
the perception of visible light. But sound has important applications beyond hearing. Ultrasound, for example, is not heard but
can be employed to form medical images and is also used in treatment.

The physical phenomenon of sound is defined to be a disturbance of matter that is transmitted from its source outward. Sound is
a wave. On the atomic scale, it is a disturbance of atoms that is far more ordered than their thermal motions. In many instances,
sound is a periodic wave, and the atoms undergo simple harmonic motion. In this text, we shall explore such periodic sound
waves.

A vibrating string produces a sound wave as illustrated in Figure 17.3, Figure 17.4, and Figure 17.5. As the string oscillates
back and forth, it transfers energy to the air, mostly as thermal energy created by turbulence. But a small part of the string’s
energy goes into compressing and expanding the surrounding air, creating slightly higher and lower local pressures. These
compressions (high pressure regions) and rarefactions (low pressure regions) move out as longitudinal pressure waves having
the same frequency as the string—they are the disturbance that is a sound wave. (Sound waves in air and most fluids are
longitudinal, because fluids have almost no shear strength. In solids, sound waves can be both transverse and longitudinal.)
Figure 17.5 shows a graph of gauge pressure versus distance from the vibrating string.
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Figure 17.3 A vibrating string moving to the right compresses the air in front of it and expands the air behind it.

Figure 17.4 As the string moves to the left, it creates another compression and rarefaction as the ones on the right move away from the string.

Figure 17.5 After many vibrations, there are a series of compressions and rarefactions moving out from the string as a sound wave. The graph shows
gauge pressure versus distance from the source. Pressures vary only slightly from atmospheric for ordinary sounds.

The amplitude of a sound wave decreases with distance from its source, because the energy of the wave is spread over a larger
and larger area. But it is also absorbed by objects, such as the eardrum in Figure 17.6, and converted to thermal energy by the
viscosity of air. In addition, during each compression a little heat transfers to the air and during each rarefaction even less heat
transfers from the air, so that the heat transfer reduces the organized disturbance into random thermal motions. (These
processes can be viewed as a manifestation of the second law of thermodynamics presented in Introduction to the Second
Law of Thermodynamics: Heat Engines and Their Efficiency.) Whether the heat transfer from compression to rarefaction is
significant depends on how far apart they are—that is, it depends on wavelength. Wavelength, frequency, amplitude, and speed
of propagation are important for sound, as they are for all waves.

Figure 17.6 Sound wave compressions and rarefactions travel up the ear canal and force the eardrum to vibrate. There is a net force on the eardrum,
since the sound wave pressures differ from the atmospheric pressure found behind the eardrum. A complicated mechanism converts the vibrations to
nerve impulses, which are perceived by the person.
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PhET Explorations: Wave Interference

Make waves with a dripping faucet, audio speaker, or laser! Add a second source or a pair of slits to create an interference
pattern.

Figure 17.7 Wave Interference (http://cnx.org/content/m55288/1.2/wave-interference_en.jar)

17.2 Speed of Sound, Frequency, and Wavelength

Learning Objectives
By the end of this section, you will be able to:

• Define pitch.
• Describe the relationship between the speed of sound, its frequency, and its wavelength.
• Describe the effects on the speed of sound as it travels through various media.
• Describe the effects of temperature on the speed of sound.

The information presented in this section supports the following AP® learning objectives and science practices:

• 6.B.4.1 The student is able to design an experiment to determine the relationship between periodic wave speed,
wavelength, and frequency, and relate these concepts to everyday examples. (S.P. 4.2, 5.1, 7.2)

Figure 17.8 When a firework explodes, the light energy is perceived before the sound energy. Sound travels more slowly than light does. (credit:
Dominic Alves, Flickr)

Sound, like all waves, travels at a certain speed and has the properties of frequency and wavelength. You can observe direct
evidence of the speed of sound while watching a fireworks display. The flash of an explosion is seen well before its sound is
heard, implying both that sound travels at a finite speed and that it is much slower than light. You can also directly sense the
frequency of a sound. Perception of frequency is called pitch. The wavelength of sound is not directly sensed, but indirect
evidence is found in the correlation of the size of musical instruments with their pitch. Small instruments, such as a piccolo,
typically make high-pitch sounds, while large instruments, such as a tuba, typically make low-pitch sounds. High pitch means
small wavelength, and the size of a musical instrument is directly related to the wavelengths of sound it produces. So a small
instrument creates short-wavelength sounds. Similar arguments hold that a large instrument creates long-wavelength sounds.

The relationship of the speed of sound, its frequency, and wavelength is the same as for all waves:

(17.1)w =

where w is the speed of sound, is its frequency, and is its wavelength. The wavelength of a sound is the distance

between adjacent identical parts of a wave—for example, between adjacent compressions as illustrated in Figure 17.9. The
frequency is the same as that of the source and is the number of waves that pass a point per unit time.
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Figure 17.9 A sound wave emanates from a source vibrating at a frequency , propagates at w , and has a wavelength .

Table 17.4 makes it apparent that the speed of sound varies greatly in different media. The speed of sound in a medium is
determined by a combination of the medium’s rigidity (or compressibility in gases) and its density. The more rigid (or less
compressible) the medium, the faster the speed of sound. This observation is analogous to the fact that the frequency of a
simple harmonic motion is directly proportional to the stiffness of the oscillating object. The greater the density of a medium, the
slower the speed of sound. This observation is analogous to the fact that the frequency of a simple harmonic motion is inversely
proportional to the mass of the oscillating object. The speed of sound in air is low, because air is compressible. Because liquids
and solids are relatively rigid and very difficult to compress, the speed of sound in such media is generally greater than in gases.

Applying the Science Practices: Bottle Music

When liquid is poured into a small-necked container like a soda bottle, it can make for a fun musical experience! Find a
small-necked bottle and pour water into it. When you blow across the surface of the bottle, a musical pitch should be
created. This pitch, which corresponds to the resonant frequency of the air remaining in the bottle, can be determined using
Equation 17.1. Your task is to design an experiment and collect data to confirm this relationship between the frequency
created by blowing into the bottle and the depth of air remaining.

1. Use the explanation above to design an experiment that will yield data on depth of air column and frequency of pitch.
Use the data table below to record your data.

Table 17.1

Depth of air column (λ) Frequency of pitch generated (f)

2. Construct a graph using the information collected above. The graph should include all five data points and should
display frequency on the dependent axis.

3. What type of relationship is displayed on your graph? (direct, inverse, quadratic, etc.)

4. Does your graph align with equation 17.1, given earlier in this section? Explain.

Note: For an explanation of why a frequency is created when you blow across a small-necked container, explore Section
17.5 later in this chapter.

Answer
1. As the depth of the air column increases, the frequency values must decrease. A sample set of data is displayed

below.
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Table 17.2

Depth of air column (λ) Frequency of pitch generated (f)

24 cm 689.6 Hz

22 cm 752.3 Hz

20 cm 827.5 Hz

18 cm 919.4 Hz

16 cm 1034.4 Hz

2. The graph drawn should have frequency on the vertical axis, contain five data points, and trend downward and to
the right. A graph using the sample data from above is displayed below.

Figure 17.10 A graph of the depth of air column versus the frequency of pitch generated.

3. Inverse relationship.

Table 17.3

Depth of air column (λ) Frequency of pitch generated (f) Product of wavelength and frequency

24 cm 689.6 Hz 165.5

22 cm 752.3 Hz 165.5

20 cm 827.5 Hz 165.5

18 cm 919.4 Hz 165.5

16 cm 1034.4 Hz 165.5

4. The graph does align with the equation v = f λ. As the wavelength decreases, the frequency of the pitch generated
increases. This relationship is validated by both the sample data table and the sample graph. Additionally, as
Table 17.1 demonstrates, the product of λ and f is constant across all five data points.
In addition to these explanations, the student may use the formula as given in the problem statement to show that
the product f × air column height is consistently 165.5.
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Table 17.4 Speed of Sound in
Various Media

Medium vw(m/s)

Gases at 0ºC

Air 331

Carbon dioxide 259

Oxygen 316

Helium 965

Hydrogen 1290

Liquids at 20ºC

Ethanol 1160

Mercury 1450

Water, fresh 1480

Sea water 1540

Human tissue 1540

Solids (longitudinal or bulk)

Vulcanized rubber 54

Polyethylene 920

Marble 3810

Glass, Pyrex 5640

Lead 1960

Aluminum 5120

Steel 5960

Earthquakes, essentially sound waves in Earth’s crust, are an interesting example of how the speed of sound depends on the
rigidity of the medium. Earthquakes have both longitudinal and transverse components, and these travel at different speeds. The
bulk modulus of granite is greater than its shear modulus. For that reason, the speed of longitudinal or pressure waves (P-
waves) in earthquakes in granite is significantly higher than the speed of transverse or shear waves (S-waves). Both components
of earthquakes travel slower in less rigid material, such as sediments. P-waves have speeds of 4 to 7 km/s, and S-waves
correspondingly range in speed from 2 to 5 km/s, both being faster in more rigid material. The P-wave gets progressively farther
ahead of the S-wave as they travel through Earth’s crust. The time between the P- and S-waves is routinely used to determine
the distance to their source, the epicenter of the earthquake.

The speed of sound is affected by temperature in a given medium. For air at sea level, the speed of sound is given by

(17.2)
w = (331 m/s)

273 K
,

where the temperature (denoted as ) is in units of kelvin. The speed of sound in gases is related to the average speed of
particles in the gas, rms , and that

(17.3)
rms = 3 ,

where is the Boltzmann constant ( 1.38×10−23 J/K ) and is the mass of each (identical) particle in the gas. So, it is
reasonable that the speed of sound in air and other gases should depend on the square root of temperature. While not
negligible, this is not a strong dependence. At 0ºC , the speed of sound is 331 m/s, whereas at 20.0ºC it is 343 m/s, less than
a 4% increase. Figure 17.11 shows a use of the speed of sound by a bat to sense distances. Echoes are also used in medical
imaging.
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Figure 17.11 A bat uses sound echoes to find its way about and to catch prey. The time for the echo to return is directly proportional to the distance.

One of the more important properties of sound is that its speed is nearly independent of frequency. This independence is
certainly true in open air for sounds in the audible range of 20 to 20,000 Hz. If this independence were not true, you would
certainly notice it for music played by a marching band in a football stadium, for example. Suppose that high-frequency sounds
traveled faster—then the farther you were from the band, the more the sound from the low-pitch instruments would lag that from
the high-pitch ones. But the music from all instruments arrives in cadence independent of distance, and so all frequencies must
travel at nearly the same speed. Recall that

(17.4)w =

In a given medium under fixed conditions, w is constant, so that there is a relationship between and ; the higher the

frequency, the smaller the wavelength. See Figure 17.12 and consider the following example.

Figure 17.12 Because they travel at the same speed in a given medium, low-frequency sounds must have a greater wavelength than high-frequency
sounds. Here, the lower-frequency sounds are emitted by the large speaker, called a woofer, while the higher-frequency sounds are emitted by the
small speaker, called a tweeter.

Example 17.1 Calculating Wavelengths: What Are the Wavelengths of Audible Sounds?

Calculate the wavelengths of sounds at the extremes of the audible range, 20 and 20,000 Hz, in 30.0ºC air. (Assume that
the frequency values are accurate to two significant figures.)

Strategy

To find wavelength from frequency, we can use w = .

Solution

1. Identify knowns. The value for w , is given by

(17.5)
w = (331 m/s)

273 K
.

2. Convert the temperature into kelvin and then enter the temperature into the equation

(17.6)
w = (331 m/s) 303 K

273 K
= 348.7 m/s.

3. Solve the relationship between speed and wavelength for :

(17.7)= w.

4. Enter the speed and the minimum frequency to give the maximum wavelength:

(17.8)
max = 348.7 m/s

20 Hz
= 17 m.
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5. Enter the speed and the maximum frequency to give the minimum wavelength:

(17.9)
min = 348.7 m/s

20,000 Hz
= 0.017 m = 1.7 cm.

Discussion

Because the product of multiplied by equals a constant, the smaller is, the larger must be, and vice versa.

The speed of sound can change when sound travels from one medium to another. However, the frequency usually remains the
same because it is like a driven oscillation and has the frequency of the original source. If w changes and remains the

same, then the wavelength must change. That is, because w = , the higher the speed of a sound, the greater its

wavelength for a given frequency.

Making Connections: Take-Home Investigation—Voice as a Sound Wave

Suspend a sheet of paper so that the top edge of the paper is fixed and the bottom edge is free to move. You could tape the
top edge of the paper to the edge of a table. Gently blow near the edge of the bottom of the sheet and note how the sheet
moves. Speak softly and then louder such that the sounds hit the edge of the bottom of the paper, and note how the sheet
moves. Explain the effects.

Check Your Understanding

Imagine you observe two fireworks explode. You hear the explosion of one as soon as you see it. However, you see the
other firework for several milliseconds before you hear the explosion. Explain why this is so.

Solution
Sound and light both travel at definite speeds. The speed of sound is slower than the speed of light. The first firework is
probably very close by, so the speed difference is not noticeable. The second firework is farther away, so the light arrives at
your eyes noticeably sooner than the sound wave arrives at your ears.

Check Your Understanding

You observe two musical instruments that you cannot identify. One plays high-pitch sounds and the other plays low-pitch
sounds. How could you determine which is which without hearing either of them play?

Solution
Compare their sizes. High-pitch instruments are generally smaller than low-pitch instruments because they generate a
smaller wavelength.

17.3 Sound Intensity and Sound Level

Learning Objectives
By the end of this section, you will be able to:

• Define intensity, sound intensity, and sound pressure level.
• Calculate sound intensity levels in decibels (dB).

The information presented in this section supports the following AP® learning objectives and science practices:

• 6.A.4.1 The student is able to explain and/or predict qualitatively how the energy carried by a sound wave relates to the
amplitude of the wave, and/or apply this concept to a real-world example. (S.P. 6.4)
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Figure 17.13 Noise on crowded roadways like this one in Delhi makes it hard to hear others unless they shout. (credit: Lingaraj G J, Flickr)

In a quiet forest, you can sometimes hear a single leaf fall to the ground. After settling into bed, you may hear your blood pulsing
through your ears. But when a passing motorist has his stereo turned up, you cannot even hear what the person next to you in
your car is saying. We are all very familiar with the loudness of sounds and aware that they are related to how energetically the
source is vibrating. In cartoons depicting a screaming person (or an animal making a loud noise), the cartoonist often shows an
open mouth with a vibrating uvula, the hanging tissue at the back of the mouth, to suggest a loud sound coming from the throat
Figure 17.14. High noise exposure is hazardous to hearing, and it is common for musicians to have hearing losses that are
sufficiently severe that they interfere with the musicians’ abilities to perform. The relevant physical quantity is sound intensity, a
concept that is valid for all sounds whether or not they are in the audible range.

Intensity is defined to be the power per unit area carried by a wave. Power is the rate at which energy is transferred by the wave.
In equation form, intensity is

(17.10)= ,

where is the power through an area . The SI unit for is W/m2 . The intensity of a sound wave is related to its amplitude
squared by the following relationship:

(17.11)
=

Δ 2

2 w
.

Here Δ is the pressure variation or pressure amplitude (half the difference between the maximum and minimum pressure in

the sound wave) in units of pascals (Pa) or N/m2 . (We are using a lower case for pressure to distinguish it from power,

denoted by above.) The energy (as kinetic energy
2

2
) of an oscillating element of air due to a traveling sound wave is

proportional to its amplitude squared. In this equation, is the density of the material in which the sound wave travels, in units

of kg/m3 , and w is the speed of sound in the medium, in units of m/s. The pressure variation is proportional to the amplitude

of the oscillation, and so varies as (Δ )2 (Figure 17.14). This relationship is consistent with the fact that the sound wave is

produced by some vibration; the greater its pressure amplitude, the more the air is compressed in the sound it creates.

Figure 17.14 Graphs of the gauge pressures in two sound waves of different intensities. The more intense sound is produced by a source that has
larger-amplitude oscillations and has greater pressure maxima and minima. Because pressures are higher in the greater-intensity sound, it can exert
larger forces on the objects it encounters.

732 Chapter 17 | Physics of Hearing

This content is available for free at http://cnx.org/content/col11844/1.13



Sound intensity levels are quoted in decibels (dB) much more often than sound intensities in watts per meter squared. Decibels
are the unit of choice in the scientific literature as well as in the popular media. The reasons for this choice of units are related to
how we perceive sounds. How our ears perceive sound can be more accurately described by the logarithm of the intensity rather
than directly to the intensity. The sound intensity level in decibels of a sound having an intensity in watts per meter

squared is defined to be

(17.12)
(dB) = 10 log10

0
,

where 0 = 10–12 W/m2 is a reference intensity. In particular, 0 is the lowest or threshold intensity of sound a person with

normal hearing can perceive at a frequency of 1000 Hz. Sound intensity level is not the same as intensity. Because is defined

in terms of a ratio, it is a unitless quantity telling you the level of the sound relative to a fixed standard ( 10–12 W/m2 , in this
case). The units of decibels (dB) are used to indicate this ratio is multiplied by 10 in its definition. The bel, upon which the decibel
is based, is named for Alexander Graham Bell, the inventor of the telephone.

Table 17.5 Sound Intensity Levels and Intensities

Sound intensity level β (dB) Intensity I(W/m2) Example/effect

0 1×10–12 Threshold of hearing at 1000 Hz

10 1×10–11 Rustle of leaves

20 1×10–10 Whisper at 1 m distance

30 1×10–9 Quiet home

40 1×10–8 Average home

50 1×10–7 Average office, soft music

60 1×10–6 Normal conversation

70 1×10–5 Noisy office, busy traffic

80 1×10–4 Loud radio, classroom lecture

90 1×10–3 Inside a heavy truck; damage from prolonged exposure[1]

100 1×10–2 Noisy factory, siren at 30 m; damage from 8 h per day exposure

110 1×10–1 Damage from 30 min per day exposure

120 1 Loud rock concert, pneumatic chipper at 2 m; threshold of pain

140 1×102 Jet airplane at 30 m; severe pain, damage in seconds

160 1×104 Bursting of eardrums

The decibel level of a sound having the threshold intensity of 10 – 12 W/m2 is = 0 dB , because log10 1 = 0 . That is, the

threshold of hearing is 0 decibels. Table 17.5 gives levels in decibels and intensities in watts per meter squared for some familiar
sounds.

One of the more striking things about the intensities in Table 17.5 is that the intensity in watts per meter squared is quite small for
most sounds. The ear is sensitive to as little as a trillionth of a watt per meter squared—even more impressive when you realize

that the area of the eardrum is only about 1 cm2 , so that only 10 – 16 W falls on it at the threshold of hearing! Air molecules in
a sound wave of this intensity vibrate over a distance of less than one molecular diameter, and the gauge pressures involved are

less than 10 – 9 atm.

1. Several government agencies and health-related professional associations recommend that 85 dB not be exceeded for
8-hour daily exposures in the absence of hearing protection.
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Another impressive feature of the sounds in Table 17.5 is their numerical range. Sound intensity varies by a factor of 1012 from
threshold to a sound that causes damage in seconds. You are unaware of this tremendous range in sound intensity because how
your ears respond can be described approximately as the logarithm of intensity. Thus, sound intensity levels in decibels fit your
experience better than intensities in watts per meter squared. The decibel scale is also easier to relate to because most people

are more accustomed to dealing with numbers such as 0, 53, or 120 than numbers such as 1.00×10 – 11 .

One more observation readily verified by examining Table 17.5 or using =
Δ

2 w

2

is that each factor of 10 in intensity

corresponds to 10 dB. For example, a 90 dB sound compared with a 60 dB sound is 30 dB greater, or three factors of 10 (that is,

103 times) as intense. Another example is that if one sound is 107 as intense as another, it is 70 dB higher. See Table 17.6.

Table 17.6 Ratios of
Intensities and
Corresponding Differences
in Sound Intensity Levels

I
2 / I

1
β

2
– β

1

2.0 3.0 dB

5.0 7.0 dB

10.0 10.0 dB

Example 17.2 Calculating Sound Intensity Levels: Sound Waves

Calculate the sound intensity level in decibels for a sound wave traveling in air at 0ºC and having a pressure amplitude of
0.656 Pa.

Strategy

We are given Δ , so we can calculate using the equation = Δ 2 / 2 w
2 . Using , we can calculate straight

from its definition in (dB) = 10 log10 / 0 .

Solution

(1) Identify knowns:

Sound travels at 331 m/s in air at 0ºC .

Air has a density of 1.29 kg/m3 at atmospheric pressure and 0ºC .

(2) Enter these values and the pressure amplitude into = Δ 2 / 2 w :

(17.13)
=

Δ 2

2 w
=

(0.656 Pa)2

2 1.29 kg/m3 (331 m/s)
= 5.04×10−4 W/m2.

(3) Enter the value for and the known value for 0 into (dB) = 10 log10 / 0 . Calculate to find the sound intensity

level in decibels:

(17.14)10 log10 5.04×108 = 10 8.70 dB = 87 dB.

Discussion

This 87 dB sound has an intensity five times as great as an 80 dB sound. So a factor of five in intensity corresponds to a
difference of 7 dB in sound intensity level. This value is true for any intensities differing by a factor of five.

Example 17.3 Change Intensity Levels of a Sound: What Happens to the Decibel Level?

Show that if one sound is twice as intense as another, it has a sound level about 3 dB higher.

Strategy

You are given that the ratio of two intensities is 2 to 1, and are then asked to find the difference in their sound levels in
decibels. You can solve this problem using of the properties of logarithms.
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Solution

(1) Identify knowns:

The ratio of the two intensities is 2 to 1, or:

(17.15)2

1
= 2.00.

We wish to show that the difference in sound levels is about 3 dB. That is, we want to show:

(17.16)
2 − 1 = 3 dB.

Note that:

(17.17)
log10 − log10 = log10 .

(2) Use the definition of to get:

(17.18)
2 − 1 = 10 log10

2

1
= 10 log10 2.00 = 10 (0.301) dB.

Thus,

(17.19)
2 − 1 = 3.01 dB.

Discussion

This means that the two sound intensity levels differ by 3.01 dB, or about 3 dB, as advertised. Note that because only the
ratio 2 / 1 is given (and not the actual intensities), this result is true for any intensities that differ by a factor of two. For

example, a 56.0 dB sound is twice as intense as a 53.0 dB sound, a 97.0 dB sound is half as intense as a 100 dB sound,
and so on.

It should be noted at this point that there is another decibel scale in use, called the sound pressure level, based on the ratio of
the pressure amplitude to a reference pressure. This scale is used particularly in applications where sound travels in water. It is
beyond the scope of most introductory texts to treat this scale because it is not commonly used for sounds in air, but it is
important to note that very different decibel levels may be encountered when sound pressure levels are quoted. For example,
ocean noise pollution produced by ships may be as great as 200 dB expressed in the sound pressure level, where the more
familiar sound intensity level we use here would be something under 140 dB for the same sound.

Take-Home Investigation: Feeling Sound

Find a CD player and a CD that has rock music. Place the player on a light table, insert the CD into the player, and start
playing the CD. Place your hand gently on the table next to the speakers. Increase the volume and note the level when the
table just begins to vibrate as the rock music plays. Increase the reading on the volume control until it doubles. What has
happened to the vibrations?

Check Your Understanding

Describe how amplitude is related to the loudness of a sound.

Solution
Amplitude is directly proportional to the experience of loudness. As amplitude increases, loudness increases.

Check Your Understanding

Identify common sounds at the levels of 10 dB, 50 dB, and 100 dB.

Solution

10 dB: Running fingers through your hair.

50 dB: Inside a quiet home with no television or radio.

100 dB: Take-off of a jet plane.
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17.4 Doppler Effect and Sonic Booms

Learning Objectives
By the end of this section, you will be able to:

• Define Doppler effect, Doppler shift, and sonic boom.
• Calculate the frequency of a sound heard by someone observing Doppler shift.
• Describe the sounds produced by objects moving faster than the speed of sound.

The information presented in this section supports the following AP® learning objectives and science practices:

• 6.B.5.1 The student is able to create or use a wave front diagram to demonstrate or interpret qualitatively the observed
frequency of a wave, dependent upon relative motions of source and observer. (S.P. 1.4)

The characteristic sound of a motorcycle buzzing by is an example of the Doppler effect. The high-pitch scream shifts
dramatically to a lower-pitch roar as the motorcycle passes by a stationary observer. The closer the motorcycle brushes by, the
more abrupt the shift. The faster the motorcycle moves, the greater the shift. We also hear this characteristic shift in frequency
for passing race cars, airplanes, and trains. It is so familiar that it is used to imply motion and children often mimic it in play.

The Doppler effect is an alteration in the observed frequency of a sound due to motion of either the source or the observer.
Although less familiar, this effect is easily noticed for a stationary source and moving observer. For example, if you ride a train
past a stationary warning bell, you will hear the bell’s frequency shift from high to low as you pass by. The actual change in
frequency due to relative motion of source and observer is called a Doppler shift. The Doppler effect and Doppler shift are
named for the Austrian physicist and mathematician Christian Johann Doppler (1803–1853), who did experiments with both
moving sources and moving observers. Doppler, for example, had musicians play on a moving open train car and also play
standing next to the train tracks as a train passed by. Their music was observed both on and off the train, and changes in
frequency were measured.

What causes the Doppler shift? Figure 17.15, Figure 17.16, and Figure 17.17 compare sound waves emitted by stationary and
moving sources in a stationary air mass. Each disturbance spreads out spherically from the point where the sound was emitted.
If the source is stationary, then all of the spheres representing the air compressions in the sound wave centered on the same
point, and the stationary observers on either side see the same wavelength and frequency as emitted by the source, as in Figure
17.15. If the source is moving, as in Figure 17.16, then the situation is different. Each compression of the air moves out in a
sphere from the point where it was emitted, but the point of emission moves. This moving emission point causes the air
compressions to be closer together on one side and farther apart on the other. Thus, the wavelength is shorter in the direction
the source is moving (on the right in Figure 17.16), and longer in the opposite direction (on the left in Figure 17.16). Finally, if the
observers move, as in Figure 17.17, the frequency at which they receive the compressions changes. The observer moving
toward the source receives them at a higher frequency, and the person moving away from the source receives them at a lower
frequency.

Figure 17.15 Sounds emitted by a source spread out in spherical waves. Because the source, observers, and air are stationary, the wavelength and
frequency are the same in all directions and to all observers.

Figure 17.16 Sounds emitted by a source moving to the right spread out from the points at which they were emitted. The wavelength is reduced and,
consequently, the frequency is increased in the direction of motion, so that the observer on the right hears a higher-pitch sound. The opposite is true for
the observer on the left, where the wavelength is increased and the frequency is reduced.
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Figure 17.17 The same effect is produced when the observers move relative to the source. Motion toward the source increases frequency as the
observer on the right passes through more wave crests than she would if stationary. Motion away from the source decreases frequency as the observer
on the left passes through fewer wave crests than he would if stationary.

We know that wavelength and frequency are related by w = , where w is the fixed speed of sound. The sound moves in a

medium and has the same speed w in that medium whether the source is moving or not. Thus multiplied by is a

constant. Because the observer on the right in Figure 17.16 receives a shorter wavelength, the frequency she receives must be
higher. Similarly, the observer on the left receives a longer wavelength, and hence he hears a lower frequency. The same thing
happens in Figure 17.17. A higher frequency is received by the observer moving toward the source, and a lower frequency is
received by an observer moving away from the source. In general, then, relative motion of source and observer toward one
another increases the received frequency. Relative motion apart decreases frequency. The greater the relative speed is, the
greater the effect.

The Doppler Effect

The Doppler effect occurs not only for sound but for any wave when there is relative motion between the observer and the
source. There are Doppler shifts in the frequency of sound, light, and water waves, for example. Doppler shifts can be used
to determine velocity, such as when ultrasound is reflected from blood in a medical diagnostic. The recession of galaxies is
determined by the shift in the frequencies of light received from them and has implied much about the origins of the
universe. Modern physics has been profoundly affected by observations of Doppler shifts.

For a stationary observer and a moving source, the frequency fobs received by the observer can be shown to be

(17.20)
obs = s

w

w ± s
,

where s is the frequency of the source, s is the speed of the source along a line joining the source and observer, and w is

the speed of sound. The minus sign is used for motion toward the observer and the plus sign for motion away from the observer,
producing the appropriate shifts up and down in frequency. Note that the greater the speed of the source, the greater the effect.
Similarly, for a stationary source and moving observer, the frequency received by the observer obs is given by

(17.21)
obs = s

w ± obs
w

,

where obs is the speed of the observer along a line joining the source and observer. Here the plus sign is for motion toward the

source, and the minus is for motion away from the source.

Example 17.4 Calculate Doppler Shift: A Train Horn

Suppose a train that has a 150-Hz horn is moving at 35.0 m/s in still air on a day when the speed of sound is 340 m/s.

(a) What frequencies are observed by a stationary person at the side of the tracks as the train approaches and after it
passes?

(b) What frequency is observed by the train’s engineer traveling on the train?

Strategy

To find the observed frequency in (a), obs = s
w

w ± s
, must be used because the source is moving. The minus sign

is used for the approaching train, and the plus sign for the receding train. In (b), there are two Doppler shifts—one for a
moving source and the other for a moving observer.

Solution for (a)
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(1) Enter known values into obs = s
w

w – s
.

(17.22)
obs = s

w
w − s

= (150 Hz) 340 m/s
340 m/s – 35.0 m/s

(2) Calculate the frequency observed by a stationary person as the train approaches.

(17.23)
obs = (150 Hz)(1.11) = 167 Hz

(3) Use the same equation with the plus sign to find the frequency heard by a stationary person as the train recedes.

(17.24)
obs = s

w

w + s
= (150 Hz) 340 m/s

340 m/s + 35.0 m/s

(4) Calculate the second frequency.

(17.25)
obs = (150 Hz)(0.907) = 136 Hz

Discussion on (a)

The numbers calculated are valid when the train is far enough away that the motion is nearly along the line joining train and
observer. In both cases, the shift is significant and easily noticed. Note that the shift is 17.0 Hz for motion toward and 14.0
Hz for motion away. The shifts are not symmetric.

Solution for (b)

(1) Identify knowns:

• It seems reasonable that the engineer would receive the same frequency as emitted by the horn, because the relative
velocity between them is zero.

• Relative to the medium (air), the speeds are s = obs = 35.0 m/s.

• The first Doppler shift is for the moving observer; the second is for the moving source.

(2) Use the following equation:

(17.26)
obs = s

w ± obs
w

w

w ± s
.

The quantity in the square brackets is the Doppler-shifted frequency due to a moving observer. The factor on the right is the
effect of the moving source.

(3) Because the train engineer is moving in the direction toward the horn, we must use the plus sign for obs; however,

because the horn is also moving in the direction away from the engineer, we also use the plus sign for s . But the train is

carrying both the engineer and the horn at the same velocity, so s = obs . As a result, everything but s cancels, yielding

(17.27)
obs = s.

Discussion for (b)

We may expect that there is no change in frequency when source and observer move together because it fits your
experience. For example, there is no Doppler shift in the frequency of conversations between driver and passenger on a
motorcycle. People talking when a wind moves the air between them also observe no Doppler shift in their conversation.
The crucial point is that source and observer are not moving relative to each other.

Sonic Booms to Bow Wakes
What happens to the sound produced by a moving source, such as a jet airplane, that approaches or even exceeds the speed of
sound? The answer to this question applies not only to sound but to all other waves as well.

Suppose a jet airplane is coming nearly straight at you, emitting a sound of frequency s . The greater the plane’s speed s , the

greater the Doppler shift and the greater the value observed for obs . Now, as s approaches the speed of sound, obs

approaches infinity, because the denominator in obs = s
w

w ± s
approaches zero. At the speed of sound, this result

means that in front of the source, each successive wave is superimposed on the previous one because the source moves
forward at the speed of sound. The observer gets them all at the same instant, and so the frequency is infinite. (Before airplanes
exceeded the speed of sound, some people argued it would be impossible because such constructive superposition would
produce pressures great enough to destroy the airplane.) If the source exceeds the speed of sound, no sound is received by the
observer until the source has passed, so that the sounds from the approaching source are mixed with those from it when
receding. This mixing appears messy, but something interesting happens—a sonic boom is created. (See Figure 17.18.)
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Figure 17.18 Sound waves from a source that moves faster than the speed of sound spread spherically from the point where they are emitted, but the
source moves ahead of each. Constructive interference along the lines shown (actually a cone in three dimensions) creates a shock wave called a
sonic boom. The faster the speed of the source, the smaller the angle .

There is constructive interference along the lines shown (a cone in three dimensions) from similar sound waves arriving there
simultaneously. This superposition forms a disturbance called a sonic boom, a constructive interference of sound created by an
object moving faster than sound. Inside the cone, the interference is mostly destructive, and so the sound intensity there is much
less than on the shock wave. An aircraft creates two sonic booms, one from its nose and one from its tail. (See Figure 17.19.)
During television coverage of space shuttle landings, two distinct booms could often be heard. These were separated by exactly
the time it would take the shuttle to pass by a point. Observers on the ground often do not see the aircraft creating the sonic
boom, because it has passed by before the shock wave reaches them, as seen in Figure 17.19. If the aircraft flies close by at
low altitude, pressures in the sonic boom can be destructive and break windows as well as rattle nerves. Because of how
destructive sonic booms can be, supersonic flights are banned over populated areas of the United States.

Figure 17.19 Two sonic booms, created by the nose and tail of an aircraft, are observed on the ground after the plane has passed by.

Sonic booms are one example of a broader phenomenon called bow wakes. A bow wake, such as the one in Figure 17.20, is
created when the wave source moves faster than the wave propagation speed. Water waves spread out in circles from the point
where created, and the bow wake is the familiar V-shaped wake trailing the source. A more exotic bow wake is created when a
subatomic particle travels through a medium faster than the speed of light travels in that medium. (In a vacuum, the maximum

speed of light will be = 3.00×108 m/s ; in the medium of water, the speed of light is closer to 0.75 . If the particle creates
light in its passage, that light spreads on a cone with an angle indicative of the speed of the particle, as illustrated in Figure
17.21. Such a bow wake is called Cerenkov radiation and is commonly observed in particle physics.

Figure 17.20 Bow wake created by a duck. Constructive interference produces the rather structured wake, while there is relatively little wave action
inside the wake, where interference is mostly destructive. (credit: Horia Varlan, Flickr)
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Figure 17.21 The blue glow in this research reactor pool is Cerenkov radiation caused by subatomic particles traveling faster than the speed of light in
water. (credit: U.S. Nuclear Regulatory Commission)

Doppler shifts and sonic booms are interesting sound phenomena that occur in all types of waves. They can be of considerable
use. For example, the Doppler shift in ultrasound can be used to measure blood velocity, while police use the Doppler shift in
radar (a microwave) to measure car velocities. In meteorology, the Doppler shift is used to track the motion of storm clouds; such
“Doppler Radar” can give velocity and direction and rain or snow potential of imposing weather fronts. In astronomy, we can
examine the light emitted from distant galaxies and determine their speed relative to ours. As galaxies move away from us, their
light is shifted to a lower frequency, and so to a longer wavelength—the so-called red shift. Such information from galaxies far, far
away has allowed us to estimate the age of the universe (from the Big Bang) as about 14 billion years.

Check Your Understanding

Why did scientist Christian Doppler observe musicians both on a moving train and also from a stationary point not on the
train?

Solution
Doppler needed to compare the perception of sound when the observer is stationary and the sound source moves, as well
as when the sound source and the observer are both in motion.

Check Your Understanding

Describe a situation in your life when you might rely on the Doppler shift to help you either while driving a car or walking near
traffic.

Solution
If I am driving and I hear Doppler shift in an ambulance siren, I would be able to tell when it was getting closer and also if it
has passed by. This would help me to know whether I needed to pull over and let the ambulance through.

17.5 Sound Interference and Resonance: Standing Waves in Air Columns

Learning Objectives
By the end of this section, you will be able to:

• Define antinode, node, fundamental, overtones, and harmonics.
• Identify instances of sound interference in everyday situations.
• Describe how sound interference occurring inside open and closed tubes changes the characteristics of the sound, and

how this applies to sounds produced by musical instruments.
• Calculate the length of a tube using sound wave measurements.

The information presented in this section supports the following AP® learning objectives and science practices:

• 6.D.1.1 The student is able to use representations of individual pulses and construct representations to model the
interaction of two wave pulses to analyze the superposition of two pulses. (S.P. 1.1, 1.4)

• 6.D.1.2 The student is able to design a suitable experiment and analyze data illustrating the superposition of
mechanical waves (only for wave pulses or standing waves). (S.P. 4.2, 5.1)

• 6.D.1.3 The student is able to design a plan for collecting data to quantify the amplitude variations when two or more
traveling waves or wave pulses interact in a given medium. (S.P. 4.2)
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• 6.D.3.1 The student is able to refine a scientific question related to standing waves and design a detailed plan for the
experiment that can be conducted to examine the phenomenon qualitatively or quantitatively. (S.P. 2.1, 2.2, 4.2)

• 6.D.3.2 The student is able to predict properties of standing waves that result from the addition of incident and reflected
waves that are confined to a region and have nodes and antinodes. (S.P. 6.4)

• 6.D.3.3 The student is able to plan data collection strategies, predict the outcome based on the relationship under test,
perform data analysis, evaluate evidence compared to the prediction, explain any discrepancy and, if necessary, revise
the relationship among variables responsible for establishing standing waves on a string or in a column of air. (S.P. 3.2,
4.1, 5.1, 5.2, 5.3)

• 6.D.3.4 The student is able to describe representations and models of situations in which standing waves result from
the addition of incident and reflected waves confined to a region. (S.P. 1.2)

• 6.D.4.2 The student is able to calculate wavelengths and frequencies (if given wave speed) of standing waves based
on boundary conditions and length of region within which the wave is confined, and calculate numerical values of
wavelengths and frequencies. Examples should include musical instruments. (S.P. 2.2)

Figure 17.22 Some types of headphones use the phenomena of constructive and destructive interference to cancel out outside noises. (credit: JVC
America, Flickr)

Interference is the hallmark of waves, all of which exhibit constructive and destructive interference exactly analogous to that seen
for water waves. In fact, one way to prove something “is a wave” is to observe interference effects. So, sound being a wave, we
expect it to exhibit interference; we have already mentioned a few such effects, such as the beats from two similar notes played
simultaneously.

Figure 17.23 shows a clever use of sound interference to cancel noise. Larger-scale applications of active noise reduction by
destructive interference are contemplated for entire passenger compartments in commercial aircraft. To obtain destructive
interference, a fast electronic analysis is performed, and a second sound is introduced with its maxima and minima exactly
reversed from the incoming noise. Sound waves in fluids are pressure waves and consistent with Pascal’s principle; pressures
from two different sources add and subtract like simple numbers; that is, positive and negative gauge pressures add to a much
smaller pressure, producing a lower-intensity sound. Although completely destructive interference is possible only under the
simplest conditions, it is possible to reduce noise levels by 30 dB or more using this technique.

Figure 17.23 Headphones designed to cancel noise with destructive interference create a sound wave exactly opposite to the incoming sound. These
headphones can be more effective than the simple passive attenuation used in most ear protection. Such headphones were used on the record-
setting, around the world nonstop flight of the Voyager aircraft to protect the pilots’ hearing from engine noise.

Where else can we observe sound interference? All sound resonances, such as in musical instruments, are due to constructive
and destructive interference. Only the resonant frequencies interfere constructively to form standing waves, while others interfere
destructively and are absent. From the toot made by blowing over a bottle, to the characteristic flavor of a violin’s sounding box,
to the recognizability of a great singer’s voice, resonance and standing waves play a vital role.
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Interference

Interference is such a fundamental aspect of waves that observing interference is proof that something is a wave. The wave
nature of light was established by experiments showing interference. Similarly, when electrons scattered from crystals
exhibited interference, their wave nature was confirmed to be exactly as predicted by symmetry with certain wave
characteristics of light.

Applying the Science Practices: Standing Wave

Figure 17.24 The standing wave pattern of a rubber tube attached to a doorknob.

Tie one end of a strip of long rubber tubing to a stable object (doorknob, fence post, etc.) and shake the other end up and
down until a standing wave pattern is achieved. Devise a method to determine the frequency and wavelength generated by
your arm shaking. Do your results align with the equation? Do you find that the velocity of the wave generated is consistent
for each trial? If not, explain why this is the case.

Answer

This task will likely require two people. The frequency of the wave pattern can be found by timing how long it takes the
student shaking the rubber tubing to move his or her hand up and down one full time. (It may be beneficial to time how
long it takes the student to do this ten times, and then divide by ten to reduce error.) The wavelength of the standing
wave can be measured with a meter stick by measuring the distance between two nodes and multiplying by two. This
information should be gathered for standing wave patterns of multiple different wavelengths. As students collect their
data, they can use the equation to determine if the wave velocity is consistent. There will likely be some error in the
experiment yielding velocities of slightly different value. This error is probably due to an inaccuracy in the wavelength
and/or frequency measurements.

Suppose we hold a tuning fork near the end of a tube that is closed at the other end, as shown in Figure 17.25, Figure 17.26,
Figure 17.27, and Figure 17.28. If the tuning fork has just the right frequency, the air column in the tube resonates loudly, but at
most frequencies it vibrates very little. This observation just means that the air column has only certain natural frequencies. The
figures show how a resonance at the lowest of these natural frequencies is formed. A disturbance travels down the tube at the
speed of sound and bounces off the closed end. If the tube is just the right length, the reflected sound arrives back at the tuning
fork exactly half a cycle later, and it interferes constructively with the continuing sound produced by the tuning fork. The incoming
and reflected sounds form a standing wave in the tube as shown.

Figure 17.25 Resonance of air in a tube closed at one end, caused by a tuning fork. A disturbance moves down the tube.
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Figure 17.26 Resonance of air in a tube closed at one end, caused by a tuning fork. The disturbance reflects from the closed end of the tube.

Figure 17.27 Resonance of air in a tube closed at one end, caused by a tuning fork. If the length of the tube is just right, the disturbance gets back
to the tuning fork half a cycle later and interferes constructively with the continuing sound from the tuning fork. This interference forms a standing wave,
and the air column resonates.

Figure 17.28 Resonance of air in a tube closed at one end, caused by a tuning fork. A graph of air displacement along the length of the tube shows
none at the closed end, where the motion is constrained, and a maximum at the open end. This standing wave has one-fourth of its wavelength in the
tube, so that = 4 .

The standing wave formed in the tube has its maximum air displacement (an antinode) at the open end, where motion is
unconstrained, and no displacement (a node) at the closed end, where air movement is halted. The distance from a node to an
antinode is one-fourth of a wavelength, and this equals the length of the tube; thus, = 4 . This same resonance can be
produced by a vibration introduced at or near the closed end of the tube, as shown in Figure 17.29. It is best to consider this a
natural vibration of the air column independently of how it is induced.
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Figure 17.29 The same standing wave is created in the tube by a vibration introduced near its closed end.

Given that maximum air displacements are possible at the open end and none at the closed end, there are other, shorter
wavelengths that can resonate in the tube, such as the one shown in Figure 17.30. Here the standing wave has three-fourths of
its wavelength in the tube, or = (3 / 4) ′ , so that ′ = 4 / 3 . Continuing this process reveals a whole series of shorter-

wavelength and higher-frequency sounds that resonate in the tube. We use specific terms for the resonances in any system. The
lowest resonant frequency is called the fundamental, while all higher resonant frequencies are called overtones. All resonant
frequencies are integral multiples of the fundamental, and they are collectively called harmonics. The fundamental is the first
harmonic, the first overtone is the second harmonic, and so on. Figure 17.31 shows the fundamental and the first three
overtones (the first four harmonics) in a tube closed at one end.

Figure 17.30 Another resonance for a tube closed at one end. This has maximum air displacements at the open end, and none at the closed end. The
wavelength is shorter, with three-fourths ′ equaling the length of the tube, so that ′ = 4 / 3 . This higher-frequency vibration is the first
overtone.

Figure 17.31 The fundamental and three lowest overtones for a tube closed at one end. All have maximum air displacements at the open end and
none at the closed end.

The fundamental and overtones can be present simultaneously in a variety of combinations. For example, middle C on a trumpet
has a sound distinctively different from middle C on a clarinet, both instruments being modified versions of a tube closed at one
end. The fundamental frequency is the same (and usually the most intense), but the overtones and their mix of intensities are
different and subject to shading by the musician. This mix is what gives various musical instruments (and human voices) their
distinctive characteristics, whether they have air columns, strings, sounding boxes, or drumheads. In fact, much of our speech is
determined by shaping the cavity formed by the throat and mouth and positioning the tongue to adjust the fundamental and
combination of overtones. Simple resonant cavities can be made to resonate with the sound of the vowels, for example. (See
Figure 17.32.) In boys, at puberty, the larynx grows and the shape of the resonant cavity changes giving rise to the difference in
predominant frequencies in speech between men and women.
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Figure 17.32 The throat and mouth form an air column closed at one end that resonates in response to vibrations in the voice box. The spectrum of
overtones and their intensities vary with mouth shaping and tongue position to form different sounds. The voice box can be replaced with a mechanical
vibrator, and understandable speech is still possible. Variations in basic shapes make different voices recognizable.

Now let us look for a pattern in the resonant frequencies for a simple tube that is closed at one end. The fundamental has
= 4 , and frequency is related to wavelength and the speed of sound as given by:

(17.28)w =

Solving for in this equation gives

(17.29)= w = w

4
,

where w is the speed of sound in air. Similarly, the first overtone has ′ = 4 / 3 (see Figure 17.31), so that

(17.30)′ = 3 w

4
= 3 .

Because ′ = 3 , we call the first overtone the third harmonic. Continuing this process, we see a pattern that can be

generalized in a single expression. The resonant frequencies of a tube closed at one end are

(17.31)= w

4
, = 1,3,5,

where 1 is the fundamental, 3 is the first overtone, and so on. It is interesting that the resonant frequencies depend on the

speed of sound and, hence, on temperature. This dependence poses a noticeable problem for organs in old unheated
cathedrals, and it is also the reason why musicians commonly bring their wind instruments to room temperature before playing
them.

Example 17.5 Find the Length of a Tube with a 128 Hz Fundamental

(a) What length should a tube closed at one end have on a day when the air temperature, is 22.0ºC , if its fundamental
frequency is to be 128 Hz (C below middle C)?

(b) What is the frequency of its fourth overtone?

Strategy

The length can be found from the relationship in = w

4
, but we will first need to find the speed of sound w .

Solution for (a)

(1) Identify knowns:

• the fundamental frequency is 128 Hz
• the air temperature is 22.0ºC

(2) Use = w

4
to find the fundamental frequency ( = 1 ).

(17.32)
1 = w

4

(3) Solve this equation for length.

(17.33)= w

4 1
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(4) Find the speed of sound using w = (331 m/s)
273 K

.

(17.34)
w = (331 m/s) 295 K

273 K
= 344 m/s

(5) Enter the values of the speed of sound and frequency into the expression for .

(17.35)
= w

4 1
= 344 m/s

4(128 Hz)
= 0.672 m

Discussion on (a)

Many wind instruments are modified tubes that have finger holes, valves, and other devices for changing the length of the
resonating air column and hence, the frequency of the note played. Horns producing very low frequencies, such as tubas,
require tubes so long that they are coiled into loops.

Solution for (b)

(1) Identify knowns:

• the first overtone has = 3

• the second overtone has = 5

• the third overtone has = 7

• the fourth overtone has = 9

(2) Enter the value for the fourth overtone into = w

4
.

(17.36)
9 = 9 w

4
= 9 1 = 1.15 kHz

Discussion on (b)

Whether this overtone occurs in a simple tube or a musical instrument depends on how it is stimulated to vibrate and the
details of its shape. The trombone, for example, does not produce its fundamental frequency and only makes overtones.

Another type of tube is one that is open at both ends. Examples are some organ pipes, flutes, and oboes. The resonances of
tubes open at both ends can be analyzed in a very similar fashion to those for tubes closed at one end. The air columns in tubes
open at both ends have maximum air displacements at both ends, as illustrated in Figure 17.33. Standing waves form as shown.

Figure 17.33 The resonant frequencies of a tube open at both ends are shown, including the fundamental and the first three overtones. In all cases the
maximum air displacements occur at both ends of the tube, giving it different natural frequencies than a tube closed at one end.

Based on the fact that a tube open at both ends has maximum air displacements at both ends, and using Figure 17.33 as a
guide, we can see that the resonant frequencies of a tube open at both ends are:

(17.37)= w

2
, = 1, 2, 3...,

where 1 is the fundamental, 2 is the first overtone, 3 is the second overtone, and so on. Note that a tube open at both

ends has a fundamental frequency twice what it would have if closed at one end. It also has a different spectrum of overtones
than a tube closed at one end. So if you had two tubes with the same fundamental frequency but one was open at both ends and
the other was closed at one end, they would sound different when played because they have different overtones. Middle C, for
example, would sound richer played on an open tube, because it has even multiples of the fundamental as well as odd. A closed
tube has only odd multiples.
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Applying the Science Practices: Closed- and Open-Ended Tubes

Strike an open-ended length of plastic pipe while holding it in the air. Now place one end of the pipe on a hard surface,
sealing one opening, and strike it again. How does the sound change? Further investigate the sound created by the pipe by
striking pipes of different lengths and composition.

Answer

When the pipe is placed on the ground, the standing wave within the pipe changes from being open on both ends to
being closed on one end. As a result, the fundamental frequency will change from =

2
to =

4
. This decrease

in frequency results in a decrease in observed pitch.

Real-World Applications: Resonance in Everyday Systems

Resonance occurs in many different systems, including strings, air columns, and atoms. Resonance is the driven or forced
oscillation of a system at its natural frequency. At resonance, energy is transferred rapidly to the oscillating system, and the
amplitude of its oscillations grows until the system can no longer be described by Hooke’s law. An example of this is the
distorted sound intentionally produced in certain types of rock music.

Wind instruments use resonance in air columns to amplify tones made by lips or vibrating reeds. Other instruments also use air
resonance in clever ways to amplify sound. Figure 17.34 shows a violin and a guitar, both of which have sounding boxes but
with different shapes, resulting in different overtone structures. The vibrating string creates a sound that resonates in the
sounding box, greatly amplifying the sound and creating overtones that give the instrument its characteristic flavor. The more
complex the shape of the sounding box, the greater its ability to resonate over a wide range of frequencies. The marimba, like
the one shown in Figure 17.35 uses pots or gourds below the wooden slats to amplify their tones. The resonance of the pot can
be adjusted by adding water.

Figure 17.34 String instruments such as violins and guitars use resonance in their sounding boxes to amplify and enrich the sound created by their
vibrating strings. The bridge and supports couple the string vibrations to the sounding boxes and air within. (credits: guitar, Feliciano Guimares,
Fotopedia; violin, Steve Snodgrass, Flickr)
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Figure 17.35 Resonance has been used in musical instruments since prehistoric times. This marimba uses gourds as resonance chambers to amplify
its sound. (credit: APC Events, Flickr)

We have emphasized sound applications in our discussions of resonance and standing waves, but these ideas apply to any
system that has wave characteristics. Vibrating strings, for example, are actually resonating and have fundamentals and
overtones similar to those for air columns. More subtle are the resonances in atoms due to the wave character of their electrons.
Their orbitals can be viewed as standing waves, which have a fundamental (ground state) and overtones (excited states). It is
fascinating that wave characteristics apply to such a wide range of physical systems.

Check Your Understanding

Describe how noise-canceling headphones differ from standard headphones used to block outside sounds.

Solution
Regular headphones only block sound waves with a physical barrier. Noise-canceling headphones use destructive
interference to reduce the loudness of outside sounds.

Check Your Understanding

How is it possible to use a standing wave's node and antinode to determine the length of a closed-end tube?

Solution
When the tube resonates at its natural frequency, the wave's node is located at the closed end of the tube, and the antinode
is located at the open end. The length of the tube is equal to one-fourth of the wavelength of this wave. Thus, if we know the
wavelength of the wave, we can determine the length of the tube.

PhET Explorations: Sound

This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave
changes. Move the listener around and hear what she hears.

Figure 17.36 Sound (http://cnx.org/content/m55293/1.2/sound_en.jar)

Applying the Science Practices: Variables Affecting Superposition

In the PhET Interactive Simulation above, select the tab titled ‘Two Source Interference.’ Within this tab, manipulate the
variables present (frequency, amplitude, and speaker separation) to investigate the relationship the variables have with the
superposition pattern constructed on the screen. Record all observations.
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acoustic impedance:

antinode:

bow wake:

(3) Calculate to find the frequency returning to the source: 2,500,649 Hz.

Solution for (c)

(1) Identify knowns:

• The beat frequency is simply the absolute value of the difference between s and obs , as stated in:

(17.47)
B = ∣ obs − s ∣ .

(2) Substitute known values:

(17.48)∣ 2,500 649 Hz − 2,500 000 Hz ∣

(3) Calculate to find the beat frequency: 649 Hz.

Discussion

The Doppler shifts are quite small compared with the original frequency of 2.50 MHz. It is far easier to measure the beat
frequency than it is to measure the echo frequency with an accuracy great enough to see shifts of a few hundred hertz out of
a couple of megahertz. Furthermore, variations in the source frequency do not greatly affect the beat frequency, because
both s and obs would increase or decrease. Those changes subtract out in B = ∣ obs − s ∣ .

Industrial and Other Applications of Ultrasound

Industrial, retail, and research applications of ultrasound are common. A few are discussed here. Ultrasonic cleaners have
many uses. Jewelry, machined parts, and other objects that have odd shapes and crevices are immersed in a cleaning fluid
that is agitated with ultrasound typically about 40 kHz in frequency. The intensity is great enough to cause cavitation, which
is responsible for most of the cleansing action. Because cavitation-produced shock pressures are large and well transmitted
in a fluid, they reach into small crevices where even a low-surface-tension cleaning fluid might not penetrate.

Sonar is a familiar application of ultrasound. Sonar typically employs ultrasonic frequencies in the range from 30.0 to 100
kHz. Bats, dolphins, submarines, and even some birds use ultrasonic sonar. Echoes are analyzed to give distance and size
information both for guidance and finding prey. In most sonar applications, the sound reflects quite well because the objects
of interest have significantly different density than the medium in which they travel. When the Doppler shift is observed,
velocity information can also be obtained. Submarine sonar can be used to obtain such information, and there is evidence
that some bats also sense velocity from their echoes.

Similarly, there are a range of relatively inexpensive devices that measure distance by timing ultrasonic echoes. Many
cameras, for example, use such information to focus automatically. Some doors open when their ultrasonic ranging devices
detect a nearby object, and certain home security lights turn on when their ultrasonic rangers observe motion. Ultrasonic
“measuring tapes” also exist to measure such things as room dimensions. Sinks in public restrooms are sometimes
automated with ultrasound devices to turn faucets on and off when people wash their hands. These devices reduce the
spread of germs and can conserve water.

Ultrasound is used for nondestructive testing in industry and by the military. Because ultrasound reflects well from any large
change in density, it can reveal cracks and voids in solids, such as aircraft wings, that are too small to be seen with x-rays.
For similar reasons, ultrasound is also good for measuring the thickness of coatings, particularly where there are several
layers involved.

Basic research in solid state physics employs ultrasound. Its attenuation is related to a number of physical characteristics,
making it a useful probe. Among these characteristics are structural changes such as those found in liquid crystals, the
transition of a material to a superconducting phase, as well as density and other properties.

These examples of the uses of ultrasound are meant to whet the appetites of the curious, as well as to illustrate the
underlying physics of ultrasound. There are many more applications, as you can easily discover for yourself.

Check Your Understanding

Why is it possible to use ultrasound both to observe a fetus in the womb and also to destroy cancerous tumors in the body?

Solution
Ultrasound can be used medically at different intensities. Lower intensities do not cause damage and are used for medical
imaging. Higher intensities can pulverize and destroy targeted substances in the body, such as tumors.

Glossary
property of medium that makes the propagation of sound waves more difficult

point of maximum displacement

V-shaped disturbance created when the wave source moves faster than the wave propagation speed
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Doppler effect:

Doppler shift:

Doppler-shifted ultrasound:

fundamental:

harmonics:

hearing:

infrasound:

intensity:

intensity reflection coefficient:

loudness:

node:

note:

overtones:

phon:

pitch:

sonic boom:

sound:

sound intensity level:

sound pressure level:

timbre:

tone:

ultrasound:

an alteration in the observed frequency of a sound due to motion of either the source or the observer

the actual change in frequency due to relative motion of source and observer

a medical technique to detect motion and determine velocity through the Doppler shift of an
echo

the lowest-frequency resonance

the term used to refer collectively to the fundamental and its overtones

the perception of sound

sounds below 20 Hz

the power per unit area carried by a wave

a measure of the ratio of the intensity of the wave reflected off a boundary between two
media relative to the intensity of the incident wave

the perception of sound intensity

point of zero displacement

basic unit of music with specific names, combined to generate tunes

all resonant frequencies higher than the fundamental

the numerical unit of loudness

the perception of the frequency of a sound

a constructive interference of sound created by an object moving faster than sound

a disturbance of matter that is transmitted from its source outward

a unitless quantity telling you the level of the sound relative to a fixed standard

the ratio of the pressure amplitude to a reference pressure

number and relative intensity of multiple sound frequencies

number and relative intensity of multiple sound frequencies

sounds above 20,000 Hz

Section Summary

17.1 Sound
• Sound is a disturbance of matter that is transmitted from its source outward.
• Sound is one type of wave.
• Hearing is the perception of sound.

17.2 Speed of Sound, Frequency, and Wavelength

The relationship of the speed of sound w , its frequency , and its wavelength is given by

w = ,

which is the same relationship given for all waves.

In air, the speed of sound is related to air temperature by

w = (331 m/s)
273 K

.

w is the same for all frequencies and wavelengths.

17.3 Sound Intensity and Sound Level
• Intensity is the same for a sound wave as was defined for all waves; it is
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= ,

where is the power crossing area . The SI unit for is watts per meter squared. The intensity of a sound wave is

also related to the pressure amplitude Δ

=
Δ 2

2 w
,

where is the density of the medium in which the sound wave travels and w is the speed of sound in the medium.

• Sound intensity level in units of decibels (dB) is

(dB) = 10 log10
0

,

where 0 = 10–12 W/m2 is the threshold intensity of hearing.

17.4 Doppler Effect and Sonic Booms
• The Doppler effect is an alteration in the observed frequency of a sound due to motion of either the source or the observer.
• The actual change in frequency is called the Doppler shift.
• A sonic boom is constructive interference of sound created by an object moving faster than sound.
• A sonic boom is a type of bow wake created when any wave source moves faster than the wave propagation speed.
• For a stationary observer and a moving source, the observed frequency obs is:

obs = s
w

w ± s
,

where s is the frequency of the source, s is the speed of the source, and w is the speed of sound. The minus sign is

used for motion toward the observer and the plus sign for motion away.
• For a stationary source and moving observer, the observed frequency is:

obs = s
w ± obs

w
,

where obs is the speed of the observer.

17.5 Sound Interference and Resonance: Standing Waves in Air Columns
• Sound interference and resonance have the same properties as defined for all waves.
• In air columns, the lowest-frequency resonance is called the fundamental, whereas all higher resonant frequencies are

called overtones. Collectively, they are called harmonics.
• The resonant frequencies of a tube closed at one end are:

= w

4
, = 1, 3, 5...,

1 is the fundamental and is the length of the tube.

• The resonant frequencies of a tube open at both ends are:

= w

2
, = 1, 2, 3...

17.6 Hearing
• The range of audible frequencies is 20 to 20,000 Hz.
• Those sounds above 20,000 Hz are ultrasound, whereas those below 20 Hz are infrasound.
• The perception of frequency is pitch.
• The perception of intensity is loudness.
• Loudness has units of phons.

17.7 Ultrasound
• The acoustic impedance is defined as:

= ,

is the density of a medium through which the sound travels and is the speed of sound through that medium.

• The intensity reflection coefficient , a measure of the ratio of the intensity of the wave reflected off a boundary between
two media relative to the intensity of the incident wave, is given by
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= 2 − 1
2

1 + 2
2
.

• The intensity reflection coefficient is a unitless quantity.

Conceptual Questions

17.2 Speed of Sound, Frequency, and Wavelength
1. How do sound vibrations of atoms differ from thermal motion?

2. When sound passes from one medium to another where its propagation speed is different, does its frequency or wavelength
change? Explain your answer briefly.

17.3 Sound Intensity and Sound Level
3. Six members of a synchronized swim team wear earplugs to protect themselves against water pressure at depths, but they
can still hear the music and perform the combinations in the water perfectly. One day, they were asked to leave the pool so the
dive team could practice a few dives, and they tried to practice on a mat, but seemed to have a lot more difficulty. Why might this
be?

4. A community is concerned about a plan to bring train service to their downtown from the town’s outskirts. The current sound
intensity level, even though the rail yard is blocks away, is 70 dB downtown. The mayor assures the public that there will be a
difference of only 30 dB in sound in the downtown area. Should the townspeople be concerned? Why?

17.4 Doppler Effect and Sonic Booms
5. Is the Doppler shift real or just a sensory illusion?

6. Due to efficiency considerations related to its bow wake, the supersonic transport aircraft must maintain a cruising speed that
is a constant ratio to the speed of sound (a constant Mach number). If the aircraft flies from warm air into colder air, should it
increase or decrease its speed? Explain your answer.

7. When you hear a sonic boom, you often cannot see the plane that made it. Why is that?

17.5 Sound Interference and Resonance: Standing Waves in Air Columns
8. How does an unamplified guitar produce sounds so much more intense than those of a plucked string held taut by a simple
stick?

9. You are given two wind instruments of identical length. One is open at both ends, whereas the other is closed at one end.
Which is able to produce the lowest frequency?

10. What is the difference between an overtone and a harmonic? Are all harmonics overtones? Are all overtones harmonics?

17.6 Hearing
11. Why can a hearing test show that your threshold of hearing is 0 dB at 250 Hz, when Figure 17.39 implies that no one can
hear such a frequency at less than 20 dB?

17.7 Ultrasound
12. If audible sound follows a rule of thumb similar to that for ultrasound, in terms of its absorption, would you expect the high or
low frequencies from your neighbor’s stereo to penetrate into your house? How does this expectation compare with your
experience?

13. Elephants and whales are known to use infrasound to communicate over very large distances. What are the advantages of
infrasound for long distance communication?

14. It is more difficult to obtain a high-resolution ultrasound image in the abdominal region of someone who is overweight than for
someone who has a slight build. Explain why this statement is accurate.

15. Suppose you read that 210-dB ultrasound is being used to pulverize cancerous tumors. You calculate the intensity in watts

per centimeter squared and find it is unreasonably high ( 105 W/cm2 ). What is a possible explanation?
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Problems & Exercises

17.2 Speed of Sound, Frequency, and
Wavelength
1. When poked by a spear, an operatic soprano lets out a
1200-Hz shriek. What is its wavelength if the speed of sound
is 345 m/s?

2. What frequency sound has a 0.10-m wavelength when the
speed of sound is 340 m/s?

3. Calculate the speed of sound on a day when a 1500 Hz
frequency has a wavelength of 0.221 m.

4. (a) What is the speed of sound in a medium where a
100-kHz frequency produces a 5.96-cm wavelength? (b)
Which substance in Table 17.4 is this likely to be?

5. Show that the speed of sound in 20.0ºC air is 343 m/s, as
claimed in the text.

6. Air temperature in the Sahara Desert can reach 56.0ºC

(about 134ºF ). What is the speed of sound in air at that
temperature?

7. Dolphins make sounds in air and water. What is the ratio of
the wavelength of a sound in air to its wavelength in
seawater? Assume air temperature is 20.0ºC .

8. A sonar echo returns to a submarine 1.20 s after being
emitted. What is the distance to the object creating the echo?
(Assume that the submarine is in the ocean, not in fresh
water.)

9. (a) If a submarine’s sonar can measure echo times with a
precision of 0.0100 s, what is the smallest difference in
distances it can detect? (Assume that the submarine is in the
ocean, not in fresh water.)

(b) Discuss the limits this time resolution imposes on the
ability of the sonar system to detect the size and shape of the
object creating the echo.

10. A physicist at a fireworks display times the lag between
seeing an explosion and hearing its sound, and finds it to be
0.400 s. (a) How far away is the explosion if air temperature is
24.0ºC and if you neglect the time taken for light to reach
the physicist? (b) Calculate the distance to the explosion
taking the speed of light into account. Note that this distance
is negligibly greater.

11. Suppose a bat uses sound echoes to locate its insect
prey, 3.00 m away. (See Figure 17.11.) (a) Calculate the
echo times for temperatures of 5.00ºC and 35.0ºC . (b)
What percent uncertainty does this cause for the bat in
locating the insect? (c) Discuss the significance of this
uncertainty and whether it could cause difficulties for the bat.
(In practice, the bat continues to use sound as it closes in,
eliminating most of any difficulties imposed by this and other
effects, such as motion of the prey.)

17.3 Sound Intensity and Sound Level
12. What is the intensity in watts per meter squared of
85.0-dB sound?

13. The warning tag on a lawn mower states that it produces
noise at a level of 91.0 dB. What is this in watts per meter
squared?

14. A sound wave traveling in 20ºC air has a pressure
amplitude of 0.5 Pa. What is the intensity of the wave?

15. What intensity level does the sound in the preceding
problem correspond to?

16. What sound intensity level in dB is produced by

earphones that create an intensity of 4.00×10−2 W/m2 ?

17. Show that an intensity of 10–12 W/m2 is the same as

10–16 W/cm2 .

18. (a) What is the decibel level of a sound that is twice as
intense as a 90.0-dB sound? (b) What is the decibel level of a
sound that is one-fifth as intense as a 90.0-dB sound?

19. (a) What is the intensity of a sound that has a level 7.00

dB lower than a 4.00×10–9 W/m2 sound? (b) What is the
intensity of a sound that is 3.00 dB higher than a

4.00×10–9 W/m2 sound?

20. (a) How much more intense is a sound that has a level
17.0 dB higher than another? (b) If one sound has a level
23.0 dB less than another, what is the ratio of their
intensities?

21. People with good hearing can perceive sounds as low in
level as –8.00 dB at a frequency of 3000 Hz. What is the
intensity of this sound in watts per meter squared?

22. If a large housefly 3.0 m away from you makes a noise of
40.0 dB, what is the noise level of 1000 flies at that distance,
assuming interference has a negligible effect?

23. Ten cars in a circle at a boom box competition produce a
120-dB sound intensity level at the center of the circle. What
is the average sound intensity level produced there by each
stereo, assuming interference effects can be neglected?

24. The amplitude of a sound wave is measured in terms of
its maximum gauge pressure. By what factor does the
amplitude of a sound wave increase if the sound intensity
level goes up by 40.0 dB?

25. If a sound intensity level of 0 dB at 1000 Hz corresponds
to a maximum gauge pressure (sound amplitude) of

10–9 atm , what is the maximum gauge pressure in a 60-dB
sound? What is the maximum gauge pressure in a 120-dB
sound?

26. An 8-hour exposure to a sound intensity level of 90.0 dB
may cause hearing damage. What energy in joules falls on a
0.800-cm-diameter eardrum so exposed?

27. (a) Ear trumpets were never very common, but they did
aid people with hearing losses by gathering sound over a
large area and concentrating it on the smaller area of the
eardrum. What decibel increase does an ear trumpet produce

if its sound gathering area is 900 cm2 and the area of the

eardrum is 0.500 cm2 , but the trumpet only has an
efficiency of 5.00% in transmitting the sound to the eardrum?
(b) Comment on the usefulness of the decibel increase found
in part (a).

28. Sound is more effectively transmitted into a stethoscope
by direct contact than through the air, and it is further
intensified by being concentrated on the smaller area of the
eardrum. It is reasonable to assume that sound is transmitted
into a stethoscope 100 times as effectively compared with
transmission though the air. What, then, is the gain in
decibels produced by a stethoscope that has a sound

gathering area of 15.0 cm2 , and concentrates the sound
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onto two eardrums with a total area of 0.900 cm2 with an
efficiency of 40.0%?

29. Loudspeakers can produce intense sounds with
surprisingly small energy input in spite of their low
efficiencies. Calculate the power input needed to produce a
90.0-dB sound intensity level for a 12.0-cm-diameter speaker
that has an efficiency of 1.00%. (This value is the sound
intensity level right at the speaker.)

17.4 Doppler Effect and Sonic Booms
30. (a) What frequency is received by a person watching an
oncoming ambulance moving at 110 km/h and emitting a
steady 800-Hz sound from its siren? The speed of sound on
this day is 345 m/s. (b) What frequency does she receive
after the ambulance has passed?

31. (a) At an air show a jet flies directly toward the stands at a
speed of 1200 km/h, emitting a frequency of 3500 Hz, on a
day when the speed of sound is 342 m/s. What frequency is
received by the observers? (b) What frequency do they
receive as the plane flies directly away from them?

32. What frequency is received by a mouse just before being
dispatched by a hawk flying at it at 25.0 m/s and emitting a
screech of frequency 3500 Hz? Take the speed of sound to
be 331 m/s.

33. A spectator at a parade receives an 888-Hz tone from an
oncoming trumpeter who is playing an 880-Hz note. At what
speed is the musician approaching if the speed of sound is
338 m/s?

34. A commuter train blows its 200-Hz horn as it approaches
a crossing. The speed of sound is 335 m/s. (a) An observer
waiting at the crossing receives a frequency of 208 Hz. What
is the speed of the train? (b) What frequency does the
observer receive as the train moves away?

35. Can you perceive the shift in frequency produced when
you pull a tuning fork toward you at 10.0 m/s on a day when
the speed of sound is 344 m/s? To answer this question,
calculate the factor by which the frequency shifts and see if it
is greater than 0.300%.

36. Two eagles fly directly toward one another, the first at
15.0 m/s and the second at 20.0 m/s. Both screech, the first
one emitting a frequency of 3200 Hz and the second one
emitting a frequency of 3800 Hz. What frequencies do they
receive if the speed of sound is 330 m/s?

37. What is the minimum speed at which a source must travel
toward you for you to be able to hear that its frequency is
Doppler shifted? That is, what speed produces a shift of
0.300% on a day when the speed of sound is 331 m/s?

17.5 Sound Interference and Resonance:
Standing Waves in Air Columns
38. A “showy” custom-built car has two brass horns that are
supposed to produce the same frequency but actually emit
263.8 and 264.5 Hz. What beat frequency is produced?

39. What beat frequencies will be present: (a) If the musical
notes A and C are played together (frequencies of 220 and
264 Hz)? (b) If D and F are played together (frequencies of
297 and 352 Hz)? (c) If all four are played together?

40. What beat frequencies result if a piano hammer hits three
strings that emit frequencies of 127.8, 128.1, and 128.3 Hz?

41. A piano tuner hears a beat every 2.00 s when listening to
a 264.0-Hz tuning fork and a single piano string. What are the
two possible frequencies of the string?

42. (a) What is the fundamental frequency of a 0.672-m-long
tube, open at both ends, on a day when the speed of sound is
344 m/s? (b) What is the frequency of its second harmonic?

43. If a wind instrument, such as a tuba, has a fundamental
frequency of 32.0 Hz, what are its first three overtones? It is
closed at one end. (The overtones of a real tuba are more
complex than this example, because it is a tapered tube.)

44. What are the first three overtones of a bassoon that has a
fundamental frequency of 90.0 Hz? It is open at both ends.
(The overtones of a real bassoon are more complex than this
example, because its double reed makes it act more like a
tube closed at one end.)

45. How long must a flute be in order to have a fundamental
frequency of 262 Hz (this frequency corresponds to middle C
on the evenly tempered chromatic scale) on a day when air
temperature is 20.0ºC ? It is open at both ends.

46. What length should an oboe have to produce a
fundamental frequency of 110 Hz on a day when the speed of
sound is 343 m/s? It is open at both ends.

47. What is the length of a tube that has a fundamental
frequency of 176 Hz and a first overtone of 352 Hz if the
speed of sound is 343 m/s?

48. (a) Find the length of an organ pipe closed at one end that
produces a fundamental frequency of 256 Hz when air
temperature is 18.0ºC . (b) What is its fundamental

frequency at 25.0ºC ?

49. By what fraction will the frequencies produced by a wind
instrument change when air temperature goes from 10.0ºC

to 30.0ºC ? That is, find the ratio of the frequencies at those
temperatures.

50. The ear canal resonates like a tube closed at one end.
(See Figure 17.41.) If ear canals range in length from 1.80 to
2.60 cm in an average population, what is the range of
fundamental resonant frequencies? Take air temperature to
be 37.0ºC , which is the same as body temperature. How
does this result correlate with the intensity versus frequency
graph (Figure 17.39 of the human ear?

51. Calculate the first overtone in an ear canal, which
resonates like a 2.40-cm-long tube closed at one end, by
taking air temperature to be 37.0ºC . Is the ear particularly
sensitive to such a frequency? (The resonances of the ear
canal are complicated by its nonuniform shape, which we
shall ignore.)

52. A crude approximation of voice production is to consider
the breathing passages and mouth to be a resonating tube
closed at one end. (See Figure 17.32.) (a) What is the
fundamental frequency if the tube is 0.240-m long, by taking
air temperature to be 37.0ºC ? (b) What would this frequency
become if the person replaced the air with helium? Assume
the same temperature dependence for helium as for air.

53. (a) Students in a physics lab are asked to find the length
of an air column in a tube closed at one end that has a
fundamental frequency of 256 Hz. They hold the tube
vertically and fill it with water to the top, then lower the water
while a 256-Hz tuning fork is rung and listen for the first
resonance. What is the air temperature if the resonance
occurs for a length of 0.336 m? (b) At what length will they
observe the second resonance (first overtone)?
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54. What frequencies will a 1.80-m-long tube produce in the
audible range at 20.0ºC if: (a) The tube is closed at one
end? (b) It is open at both ends?

17.6 Hearing

55. The factor of 10−12 in the range of intensities to which
the ear can respond, from threshold to that causing damage
after brief exposure, is truly remarkable. If you could measure
distances over the same range with a single instrument and
the smallest distance you could measure was 1 mm, what
would the largest be?

56. The frequencies to which the ear responds vary by a

factor of 103 . Suppose the speedometer on your car

measured speeds differing by the same factor of 103 , and
the greatest speed it reads is 90.0 mi/h. What would be the
slowest nonzero speed it could read?

57. What are the closest frequencies to 500 Hz that an
average person can clearly distinguish as being different in
frequency from 500 Hz? The sounds are not present
simultaneously.

58. Can the average person tell that a 2002-Hz sound has a
different frequency than a 1999-Hz sound without playing
them simultaneously?

59. If your radio is producing an average sound intensity level
of 85 dB, what is the next lowest sound intensity level that is
clearly less intense?

60. Can you tell that your roommate turned up the sound on
the TV if its average sound intensity level goes from 70 to 73
dB?

61. Based on the graph in Figure 17.38, what is the threshold
of hearing in decibels for frequencies of 60, 400, 1000, 4000,
and 15,000 Hz? Note that many AC electrical appliances
produce 60 Hz, music is commonly 400 Hz, a reference
frequency is 1000 Hz, your maximum sensitivity is near 4000
Hz, and many older TVs produce a 15,750 Hz whine.

62. What sound intensity levels must sounds of frequencies
60, 3000, and 8000 Hz have in order to have the same
loudness as a 40-dB sound of frequency 1000 Hz (that is, to
have a loudness of 40 phons)?

63. What is the approximate sound intensity level in decibels
of a 600-Hz tone if it has a loudness of 20 phons? If it has a
loudness of 70 phons?

64. (a) What are the loudnesses in phons of sounds having
frequencies of 200, 1000, 5000, and 10,000 Hz, if they are all
at the same 60.0-dB sound intensity level? (b) If they are all
at 110 dB? (c) If they are all at 20.0 dB?

65. Suppose a person has a 50-dB hearing loss at all
frequencies. By how many factors of 10 will low-intensity
sounds need to be amplified to seem normal to this person?
Note that smaller amplification is appropriate for more intense
sounds to avoid further hearing damage.

66. If a woman needs an amplification of 5.0×1012 times
the threshold intensity to enable her to hear at all frequencies,
what is her overall hearing loss in dB? Note that smaller
amplification is appropriate for more intense sounds to avoid
further damage to her hearing from levels above 90 dB.

67. (a) What is the intensity in watts per meter squared of a
just barely audible 200-Hz sound? (b) What is the intensity in
watts per meter squared of a barely audible 4000-Hz sound?

68. (a) Find the intensity in watts per meter squared of a
60.0-Hz sound having a loudness of 60 phons. (b) Find the
intensity in watts per meter squared of a 10,000-Hz sound
having a loudness of 60 phons.

69. A person has a hearing threshold 10 dB above normal at
100 Hz and 50 dB above normal at 4000 Hz. How much more
intense must a 100-Hz tone be than a 4000-Hz tone if they
are both barely audible to this person?

70. A child has a hearing loss of 60 dB near 5000 Hz, due to
noise exposure, and normal hearing elsewhere. How much
more intense is a 5000-Hz tone than a 400-Hz tone if they are
both barely audible to the child?

71. What is the ratio of intensities of two sounds of identical
frequency if the first is just barely discernible as louder to a
person than the second?

17.7 Ultrasound
Unless otherwise indicated, for problems in this section,
assume that the speed of sound through human tissues
is 1540 m/s.

72. What is the sound intensity level in decibels of ultrasound

of intensity 105 W/m2 , used to pulverize tissue during
surgery?

73. Is 155-dB ultrasound in the range of intensities used for
deep heating? Calculate the intensity of this ultrasound and
compare this intensity with values quoted in the text.

74. Find the sound intensity level in decibels of

2.00×10–2 W/m2 ultrasound used in medical diagnostics.

75. The time delay between transmission and the arrival of
the reflected wave of a signal using ultrasound traveling
through a piece of fat tissue was 0.13 ms. At what depth did
this reflection occur?

76. In the clinical use of ultrasound, transducers are always
coupled to the skin by a thin layer of gel or oil, replacing the
air that would otherwise exist between the transducer and the
skin. (a) Using the values of acoustic impedance given in
Table 17.8 calculate the intensity reflection coefficient
between transducer material and air. (b) Calculate the
intensity reflection coefficient between transducer material
and gel (assuming for this problem that its acoustic
impedance is identical to that of water). (c) Based on the
results of your calculations, explain why the gel is used.

77. (a) Calculate the minimum frequency of ultrasound that
will allow you to see details as small as 0.250 mm in human
tissue. (b) What is the effective depth to which this sound is
effective as a diagnostic probe?

78. (a) Find the size of the smallest detail observable in
human tissue with 20.0-MHz ultrasound. (b) Is its effective
penetration depth great enough to examine the entire eye
(about 3.00 cm is needed)? (c) What is the wavelength of
such ultrasound in 0ºC air?

79. (a) Echo times are measured by diagnostic ultrasound
scanners to determine distances to reflecting surfaces in a
patient. What is the difference in echo times for tissues that
are 3.50 and 3.60 cm beneath the surface? (This difference is
the minimum resolving time for the scanner to see details as
small as 0.100 cm, or 1.00 mm. Discrimination of smaller time
differences is needed to see smaller details.) (b) Discuss
whether the period of this ultrasound must be smaller than
the minimum time resolution. If so, what is the minimum
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frequency of the ultrasound and is that out of the normal
range for diagnostic ultrasound?

80. (a) How far apart are two layers of tissue that produce
echoes having round-trip times (used to measure distances)
that differ by 0.750 μs ? (b) What minimum frequency must

the ultrasound have to see detail this small?

81. (a) A bat uses ultrasound to find its way among trees. If
this bat can detect echoes 1.00 ms apart, what minimum
distance between objects can it detect? (b) Could this
distance explain the difficulty that bats have finding an open
door when they accidentally get into a house?

82. A dolphin is able to tell in the dark that the ultrasound
echoes received from two sharks come from two different
objects only if the sharks are separated by 3.50 m, one being
that much farther away than the other. (a) If the ultrasound
has a frequency of 100 kHz, show this ability is not limited by
its wavelength. (b) If this ability is due to the dolphin’s ability
to detect the arrival times of echoes, what is the minimum
time difference the dolphin can perceive?

83. A diagnostic ultrasound echo is reflected from moving
blood and returns with a frequency 500 Hz higher than its
original 2.00 MHz. What is the velocity of the blood? (Assume
that the frequency of 2.00 MHz is accurate to seven
significant figures and 500 Hz is accurate to three significant
figures.)

84. Ultrasound reflected from an oncoming bloodstream that
is moving at 30.0 cm/s is mixed with the original frequency of
2.50 MHz to produce beats. What is the beat frequency?
(Assume that the frequency of 2.50 MHz is accurate to seven
significant figures.)

Test Prep for AP® Courses

17.2 Speed of Sound, Frequency, and
Wavelength
1. A teacher wants to demonstrate that the speed of sound is
not a constant value. Considering her regular classroom voice
as the control, which of the following will increase the speed
of sound leaving her mouth?

I. Submerge her mouth underwater and speak at the
same volume.

II. Increase the temperature of the room and speak at the
same volume.

III. Increase the pitch of her voice and speak at the same
volume.

a. I only
b. I and II only
c. I, II and III
d. II and III
e. III only

2. All members of an orchestra begin tuning their instruments
at the same time. While some woodwind instruments play
high frequency notes, other stringed instruments play notes of
lower frequency. Yet an audience member will hear all notes
simultaneously, in apparent contrast to the equation.

Explain how a student could demonstrate the flaw in the
above logic, using a slinky, stopwatch, and meter stick. Make
sure to explain what relationship is truly demonstrated in the
above equation, in addition to what would be necessary to get
the speed of the slinky to actually change. You may include
diagrams and equations as part of your explanation.

17.3 Sound Intensity and Sound Level

3. In order to waken a sleeping child, the volume on an alarm
clock is tripled. Under this new scenario, how much more
energy will be striking the child’s ear drums each second?

a. twice as much
b. three times as much
c. approximately 4.8 times as much
d. six times as much
e. nine times as much

4. A musician strikes the strings of a guitar such that they
vibrate with twice the amplitude.

a. Explain why this requires an energy input greater than
twice the original value.

b. Explain why the sound leaving the string will not result in
a decibel level that is twice as great.

17.4 Doppler Effect and Sonic Booms
5. A baggage handler stands on the edge of a runway as a
landing plane approaches. Compared to the pitch of the plane
as heard by the plane’s pilot, which of the following correctly
describes the sensation experienced by the handler?

a. The frequency of the plane will be lower pitched
according to the baggage handler and will become even
lower pitched as the plane slows to a stop.

b. The frequency of the plane will be lower pitched
according to the baggage handler but will increase in
pitch as the plane slows to a stop.

c. The frequency of the plane will be higher pitched
according to the baggage handler but will decrease in
pitch as the plane slows to a stop.

d. The frequency of the plane will be higher pitched
according to the baggage handler and will further
increase in pitch as the plane slows to a stop.

6. The following graph represents the perceived frequency of
a car as it passes a student.
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Figure 17.51 Plot of time versus perceived frequency to illustrate the
Doppler effect.

a. If the true frequency of the car’s horn is 200 Hz, how
fast was the car traveling?

b. On the graph above, draw a line demonstrating the
perceived frequency for a car traveling twice as fast.
Label all intercepts, maximums, and minimums on the
graph.

17.5 Sound Interference and Resonance:
Standing Waves in Air Columns
7. A common misconception is that two wave pulses traveling
in opposite directions will reflect off each other. Outline a
procedure that you would use to convince someone that the
two wave pulses do not reflect off each other, but instead
travel through each other. You may use sketches to represent
your understanding. Be sure to provide evidence to not only
refute the original claim, but to support yours as well.

8. Two wave pulses are traveling toward each other on a
string, as shown below. Which of the following
representations correctly shows the string as the two pulses
overlap?

Figure 17.52

a.

Figure 17.53

b.

Figure 17.54

c.

Figure 17.55

d.

Figure 17.56

9. A student sends a transverse wave pulse of amplitude A

along a rope attached at one end. As the pulse returns to the
student, a second pulse of amplitude 3A is sent along the
opposite side of the rope. What is the resulting amplitude
when the two pulses interact?

a. 4A

b. A

c. 2A, on the side of the original wave pulse
d. 2A, on the side of the second wave pulse

10. A student would like to demonstrate destructive
interference using two sound sources. Explain how the
student could set up this demonstration and what restrictions
they would need to place upon their sources. Be sure to
consider both the layout of space and the sounds created in
your explanation.

11. A student is shaking a flexible string attached to a wooden
board in a rhythmic manner. Which of the following choices
will decrease the wavelength within the rope?

I. The student could shake her hand back and forth with
greater frequency.

II. The student could shake her hand back in forth with a
greater amplitude.

III. The student could increase the tension within the rope
by stepping backwards from the board.

a. I only
b. I and II
c. I and III
d. II and III
e. I, II, and III

12. A ripple tank has two locations (L1 and L2) that vibrate in
tandem as shown below. Both L1 and L2 vibrate in a plane
perpendicular to the page, creating a two-dimensional
interference pattern.
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Figure 17.57

Describe an experimental procedure to determine the speed
of the waves created within the water, including all additional
equipment that you would need. You may use the diagram
below to help your description, or you may create one of your
own. Include enough detail so that another student could
carry out your experiment.

13. A string is vibrating between two posts as shown above.
Students are to determine the speed of the wave within this
string. They have already measured the amount of time
necessary for the wave to oscillate up and down. The
students must also take what other measurements to
determine the speed of the wave?

a. The distance between the two posts.
b. The amplitude of the wave
c. The tension in the string
d. The amplitude of the wave and the tension in the string
e. The distance between the two posts, the amplitude of

the wave, and the tension in the string

14. The accepted speed of sound in room temperature air is
346 m/s. Knowing that their school is colder than usual, a
group of students is asked to determine the speed of sound in
their room. They are permitted to use any materials
necessary; however, their lab procedure must utilize standing
wave patterns. The students collect the information Table
17.9.

Table 17.9

Trial
Number

Wavelength
(m)

Frequency
(Hz)

1 3.45 95

2 2.32 135

3 1.70 190

4 1.45 240

5 1.08 305

a. Describe an experimental procedure the group of
students could have used to obtain this data. Include
diagrams of the experimental setup and any equipment
used in the process.

b. Select a set of data points from the table and plot those
points on a graph to determine the speed of sound
within the classroom. Fill in the blank column in the table
for any quantities you graph other than the given data.
Label the axes and indicate the scale for each. Draw a
best-fit line or curve through your data points.

c. Using information from the graph, determine the speed
of sound within the student’s classroom, and explain
what characteristic of the graph provides this evidence.

d. Determine the temperature of the classroom.

15. A tube is open at one end. If the fundamental frequency f

is created by a wavelength λ, then which of the following
describes the frequency and wavelength associated with the
tube’s fourth overtone?

f λ

(a) 4f λ/4

(b) 4f λ

(c) 9f λ/9

(d) 9f λ

16. A group of students were tasked with collecting
information about standing waves. Table 17.10 a series of
their data, showing the length of an air column and a resonant
frequency present when the column is struck.

Table 17.10

Length (m) Resonant Frequency (Hz)

1 85.75

2 43

3 29

4 21.5

a. From their data, determine whether the air column was
open or closed on each end.

b. Predict the resonant frequency of the column at a length
of 2.5 meters.

17. When a student blows across a glass half-full of water, a
resonant frequency is created within the air column remaining
in the glass. Which of the following can the student do to
increase this resonant frequency?

I. Add more water to the glass.
II. Replace the water with a more dense fluid.
III. Increase the temperature of the room.
a. I only
b. I and III
c. II and III
d. all of the above

18. A wooden ruler rests on a desk with half of its length
protruding off the desk edge. A student holds one end in
place and strikes the protruding end with his other hand,
creating a musical sound.

a. Explain, without using a sound meter, how the student
could experimentally determine the speed of sound that
travels within the ruler.

b. A sound meter is then used to measure the true
frequency of the ruler. It is found that the experimental
result is lower than the true value. Explain a factor that
may have caused this difference. Also explain what
affect this result has on the calculated speed of sound.

19. A musician stands outside in a field and plucks a string on
an acoustic guitar. Standing waves will most likely occur in
which of the following media? Select two answers.

a. The guitar string
b. The air inside the guitar
c. The air surrounding the guitar
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d. The ground beneath the musician

20.

Figure 17.58 This figure shows two tubes that are identical
except for their slightly different lengths. Both tubes have one
open end and one closed end. A speaker connected to a
variable frequency generator is placed in front of the tubes, as
shown. The speaker is set to produce a note of very low
frequency when turned on. The frequency is then slowly
increased to produce resonances in the tubes. Students
observe that at first only one of the tubes resonates at a time.
Later, as the frequency gets very high, there are times when
both tubes resonate.

In a clear, coherent, paragraph-length answer, explain why
there are some high frequencies, but no low frequencies, at
which both tubes resonate. You may include diagrams and/or
equations as part of your explanation.

Figure 17.59

21. A student connects one end of a string with negligible
mass to an oscillator. The other end of the string is passed
over a pulley and attached to a suspended weight, as shown
above. The student finds that a standing wave with one
antinode is formed on the string when the frequency of the
oscillator is f0. The student then moves the oscillator to
shorten the horizontal segment of string to half its original
length. At what frequency will a standing wave with one
antinode now be formed on the string?

a. f0/2
b. f0
c. 2f0
d. There is no frequency at which a standing wave will be

formed.

22. A guitar string of length L is bound at both ends. Table
17.11 shows the string’s harmonic frequencies when struck.

Table 17.11

Harmonic Number Frequency

1 225/L

2 450/L

3 675/L

4 900/L

a. Based on the information above, what is the speed of
the wave within the string?

b. The guitarist then slides her finger along the neck of the
guitar, changing the string length as a result. Calculate
the fundamental frequency of the string and wave speed
present if the string length is reduced to 2/3 L.
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18 ELECTRIC CHARGE AND ELECTRIC
FIELD

Figure 18.1 Static electricity from this plastic slide causes the child's hair to stand on end. The sliding motion stripped electrons away from the child's
body, leaving an excess of positive charges, which repel each other along each strand of hair. (credit: Ken Bosma/Wikimedia Commons)

Chapter Outline
18.1. Static Electricity and Charge: Conservation of Charge

18.2. Conductors and Insulators

18.3. Conductors and Electric Fields in Static Equilibrium

18.4. Coulomb’s Law

18.5. Electric Field: Concept of a Field Revisited

18.6. Electric Field Lines: Multiple Charges

18.7. Electric Forces in Biology

18.8. Applications of Electrostatics

Connection for AP® Courses
The image of American politician and scientist Benjamin Franklin (1706–1790) flying a kite in a thunderstorm (shown in Figure
18.2) is familiar to every schoolchild. In this experiment, Franklin demonstrated a connection between lightning and static
electricity. Sparks were drawn from a key hung on a kite string during an electrical storm. These sparks were like those produced
by static electricity, such as the spark that jumps from your finger to a metal doorknob after you walk across a wool carpet. Much
has been written about Franklin. His experiments were only part of the life of a man who was a scientist, inventor, revolutionary,
statesman, and writer. Franklin's experiments were not performed in isolation, nor were they the only ones to reveal connections.
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Figure 18.2 Benjamin Franklin, his kite, and electricity.

When Benjamin Franklin demonstrated that lightning was related to static electricity, he made a connection that is now part of the
evidence that all directly experienced forces (except gravitational force) are manifestations of the electromagnetic force. For
example, the Italian scientist Luigi Galvani (1737-1798) performed a series of experiments in which static electricity was used to
stimulate contractions of leg muscles of dead frogs, an effect already known in humans subjected to static discharges. But
Galvani also found that if he joined one end of two metal wires (say copper and zinc) and touched the other ends of the wires to
muscles; he produced the same effect in frogs as static discharge. Alessandro Volta (1745-1827), partly inspired by Galvani's
work, experimented with various combinations of metals and developed the battery.

During the same era, other scientists made progress in discovering fundamental connections. The periodic table was developed
as systematic properties of the elements were discovered. This influenced the development and refinement of the concept of
atoms as the basis of matter. Such submicroscopic descriptions of matter also help explain a great deal more. Atomic and
molecular interactions, such as the forces of friction, cohesion, and adhesion, are now known to be manifestations of the
electromagnetic force.

Static electricity is just one aspect of the electromagnetic force, which also includes moving electricity and magnetism. All the
macroscopic forces that we experience directly, such as the sensations of touch and the tension in a rope, are due to the
electromagnetic force, one of the four fundamental forces in nature. The gravitational force, another fundamental force, is
actually sensed through the electromagnetic interaction of molecules, such as between those in our feet and those on the top of
a bathroom scale. (The other two fundamental forces, the strong nuclear force and the weak nuclear force, cannot be sensed on
the human scale.)

This chapter begins the study of electromagnetic phenomena at a fundamental level. The next several chapters will cover static
electricity, moving electricity, and magnetism – collectively known as electromagnetism. In this chapter, we begin with the study
of electric phenomena due to charges that are at least temporarily stationary, called electrostatics, or static electricity.

The chapter introduces several very important concepts of charge, electric force, and electric field, as well as defining the
relationships between these concepts. The charge is defined as a property of a system (Big Idea 1) that can affect its interaction
with other charged systems (Enduring Understanding 1.B). The law of conservation of electric charge is also discussed
(Essential Knowledge 1.B.1). The two kinds of electric charge are defined as positive and negative, providing an explanation for
having positively charged, negatively charged, or neutral objects (containing equal quantities of positive and negative charges)
(Essential Knowledge 1.B.2). The discrete nature of the electric charge is introduced in this chapter by defining the elementary
charge as the smallest observed unit of charge that can be isolated, which is the electron charge (Essential Knowledge 1.B.3).
The concepts of a system (having internal structure) and of an object (having no internal structure) are implicitly introduced to
explain charges carried by the electron and proton (Enduring Understanding 1.A, Essential Knowledge 1.A.1).

An electric field is caused by the presence of charged objects (Enduring Understanding 2.C) and can be used to explain
interactions between electrically charged objects (Big Idea 2). The electric force represents the effect of an electric field on a
charge placed in the field. The magnitude and direction of the electric force are defined by the magnitude and direction of the
electric field and magnitude and sign of the charge (Essential Knowledge 2.C.1). The magnitude of the electric field is
proportional to the net charge of the objects that created that field (Essential Knowledge 2.C.2). For the special case of a
spherically symmetric charged object, the electric field outside the object is radial, and its magnitude varies as the inverse square
of the radial distance from the center of that object (Essential Knowledge 2.C.3). The chapter provides examples of vector field
maps for various charged systems, including point charges, spherically symmetric charge distributions, and uniformly charged
parallel plates (Essential Knowledge 2.C.1, Essential Knowledge 2.C.2). For multiple point charges, the chapter explains how to
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find the vector field map by adding the electric field vectors of each individual object, including the special case of two equal
charges having opposite signs, known as an electric dipole (Essential Knowledge 2.C.4). The special case of two oppositely
charged parallel plates with uniformly distributed electric charge when the electric field is perpendicular to the plates and is
constant in both magnitude and direction is described in detail, providing many opportunities for problem solving and applications
(Essential Knowledge 2.C.5).

The idea that interactions can be described by forces is also reinforced in this chapter (Big Idea 3). Like all other forces that you
have learned about so far, electric force is a vector that affects the motion according to Newton's laws (Enduring Understanding
3.A). It is clearly stated in the chapter that electric force appears as a result of interactions between two charged objects
(Essential Knowledge 3.A.3, Essential Knowledge 3.C.2). At the macroscopic level the electric force is a long-range force
(Enduring Understanding 3.C); however, at the microscopic level many contact forces, such as friction, can be explained by
interatomic electric forces (Essential Knowledge 3.C.4). This understanding of friction is helpful when considering properties of
conductors and insulators and the transfer of charge by conduction.

Interactions between systems can result in changes in those systems (Big Idea 4). In the case of charged systems, such
interactions can lead to changes of electric properties (Enduring Understanding 4.E), such as charge distribution (Essential
Knowledge 4.E.3). Any changes are governed by conservation laws (Big Idea 5). Depending on whether the system is closed or
open, certain quantities of the system remain the same or changes in those quantities are equal to the amount of transfer of this
quantity from or to the system (Enduring Understanding 5.A). The electric charge is one of these quantities (Essential Knowledge
5.A.2). Therefore, the electric charge of a system is conserved (Enduring Understanding 5.C) and the exchange of electric
charge between objects in a system does not change the total electric charge of the system (Essential Knowledge 5.C.2).

Big Idea 1 Objects and systems have properties such as mass and charge. Systems may have internal structure.

Enduring Understanding 1.A The internal structure of a system determines many properties of the system.

Essential Knowledge 1.A.1 A system is an object or a collection of objects. Objects are treated as having no internal structure.

Enduring Understanding 1.B Electric charge is a property of an object or system that affects its interactions with other objects or
systems containing charge.

Essential Knowledge 1.B.1 Electric charge is conserved. The net charge of a system is equal to the sum of the charges of all the
objects in the system.

Essential Knowledge 1.B.2 There are only two kinds of electric charge. Neutral objects or systems contain equal quantities of
positive and negative charge, with the exception of some fundamental particles that have no electric charge.

Essential Knowledge 1.B.3 The smallest observed unit of charge that can be isolated is the electron charge, also known as the
elementary charge.

Big Idea 2 Fields existing in space can be used to explain interactions.

Enduring Understanding 2.C An electric field is caused by an object with electric charge.

Essential Knowledge 2.C.1 The magnitude of the electric force F exerted on an object with electric charge q by an electric field (
→

is
→

=
→

. The direction of the force is determined by the direction of the field and the sign of the charge, with

positively charged objects accelerating in the direction of the field and negatively charged objects accelerating in the direction
opposite the field. This should include a vector field map for positive point charges, negative point charges, spherically symmetric
charge distribution, and uniformly charged parallel plates.

Essential Knowledge 2.C.2 The magnitude of the electric field vector is proportional to the net electric charge of the object(s)
creating that field. This includes positive point charges, negative point charges, spherically symmetric charge distributions, and
uniformly charged parallel plates.

Essential Knowledge 2.C.3 The electric field outside a spherically symmetric charged object is radial, and its magnitude varies as
the inverse square of the radial distance from the center of that object. Electric field lines are not in the curriculum. Students will
be expected to rely only on the rough intuitive sense underlying field lines, wherein the field is viewed as analogous to something
emanating uniformly from a source.

Essential Knowledge 2.C.4 The electric field around dipoles and other systems of electrically charged objects (that can be
modeled as point objects) is found by vector addition of the field of each individual object. Electric dipoles are treated qualitatively
in this course as a teaching analogy to facilitate student understanding of magnetic dipoles.

Essential Knowledge 2.C.5 Between two oppositely charged parallel plates with uniformly distributed electric charge, at points far
from the edges of the plates, the electric field is perpendicular to the plates and is constant in both magnitude and direction.

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.3 A force exerted on an object is always due to the interaction of that object with another object.

Enduring Understanding 3.C At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance)
forces or contact forces.

Essential Knowledge 3.C.2 Electric force results from the interaction of one object that has an electric charge with another object
that has an electric charge.
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Essential Knowledge 3.C.4 Contact forces result from the interaction of one object touching another object, and they arise from
interatomic electric forces. These forces include tension, friction, normal, spring (Physics 1), and buoyant (Physics 2).

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.E The electric and magnetic properties of a system can change in response to the presence of, or
changes in, other objects or systems.

Essential Knowledge 4.E.3 The charge distribution in a system can be altered by the effects of electric forces produced by a
charged object.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.A Certain quantities are conserved, in the sense that the changes of those quantities in a given
system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.

Essential Knowledge 5.A.2 For all systems under all circumstances, energy, charge, linear momentum, and angular momentum
are conserved.

Enduring Understanding 5.C The electric charge of a system is conserved.

Essential Knowledge 5.C.2 The exchange of electric charges among a set of objects in a system conserves electric charge.

18.1 Static Electricity and Charge: Conservation of Charge

Learning Objectives
By the end of this section, you will be able to:

• Define electric charge, and describe how the two types of charge interact.
• Describe three common situations that generate static electricity.
• State the law of conservation of charge.

The information presented in this section supports the following AP® learning objectives and science practices:

• 1.B.1.1 The student is able to make claims about natural phenomena based on conservation of electric charge. (S.P.
6.4)

• 1.B.1.2 The student is able to make predictions, using the conservation of electric charge, about the sign and relative
quantity of net charge of objects or systems after various charging processes, including conservation of charge in
simple circuits. (S.P. 6.4, 7.2)

• 1.B.2.1 The student is able to construct an explanation of the two-charge model of electric charge based on evidence
produced through scientific practices. (S.P. 6.4)

• 1.B.3.1 The student is able to challenge the claim that an electric charge smaller than the elementary charge has been
isolated. (S.P. 1.5, 6.1, 7.2)

• 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts
for energy, charge, and linear momentum to those situations. (S.P. 6.4, 7.2)

• 5.C.2.1 The student is able to predict electric charges on objects within a system by application of the principle of
charge conservation within a system. (S.P. 6.4)

• 5.C.2.2 The student is able to design a plan to collect data on the electrical charging of objects and electric charge
induction on neutral objects and qualitatively analyze that data. (S.P. 4.2, 5.1)

• 5.C.2.3 The student is able to justify the selection of data relevant to an investigation of the electrical charging of
objects and electric charge induction on neutral objects. (S.P. 4.1)

Figure 18.3 Borneo amber was mined in Sabah, Malaysia, from shale-sandstone-mudstone veins. When a piece of amber is rubbed with a piece of
silk, the amber gains more electrons, giving it a net negative charge. At the same time, the silk, having lost electrons, becomes positively charged.
(credit: Sebakoamber, Wikimedia Commons)
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What makes plastic wrap cling? Static electricity. Not only are applications of static electricity common these days, its existence
has been known since ancient times. The first record of its effects dates to ancient Greeks who noted more than 500 years B.C.
that polishing amber temporarily enabled it to attract bits of straw (see Figure 18.3). The very word electric derives from the
Greek word for amber (electron).

Many of the characteristics of static electricity can be explored by rubbing things together. Rubbing creates the spark you get
from walking across a wool carpet, for example. Static cling generated in a clothes dryer and the attraction of straw to recently
polished amber also result from rubbing. Similarly, lightning results from air movements under certain weather conditions. You
can also rub a balloon on your hair, and the static electricity created can then make the balloon cling to a wall. We also have to
be cautious of static electricity, especially in dry climates. When we pump gasoline, we are warned to discharge ourselves (after
sliding across the seat) on a metal surface before grabbing the gas nozzle. Attendants in hospital operating rooms must wear
booties with aluminum foil on the bottoms to avoid creating sparks which may ignite the oxygen being used.

Some of the most basic characteristics of static electricity include:

• The effects of static electricity are explained by a physical quantity not previously introduced, called electric charge.
• There are only two types of charge, one called positive and the other called negative.
• Like charges repel, whereas unlike charges attract.
• The force between charges decreases with distance.

How do we know there are two types of electric charge? When various materials are rubbed together in controlled ways, certain
combinations of materials always produce one type of charge on one material and the opposite type on the other. By convention,
we call one type of charge “positive”, and the other type “negative.” For example, when glass is rubbed with silk, the glass
becomes positively charged and the silk negatively charged. Since the glass and silk have opposite charges, they attract one
another like clothes that have rubbed together in a dryer. Two glass rods rubbed with silk in this manner will repel one another,
since each rod has positive charge on it. Similarly, two silk cloths so rubbed will repel, since both cloths have negative charge.
Figure 18.4 shows how these simple materials can be used to explore the nature of the force between charges.

Figure 18.4 A glass rod becomes positively charged when rubbed with silk, while the silk becomes negatively charged. (a) The glass rod is attracted to
the silk because their charges are opposite. (b) Two similarly charged glass rods repel. (c) Two similarly charged silk cloths repel.

More sophisticated questions arise. Where do these charges come from? Can you create or destroy charge? Is there a smallest
unit of charge? Exactly how does the force depend on the amount of charge and the distance between charges? Such questions
obviously occurred to Benjamin Franklin and other early researchers, and they interest us even today.

Charge Carried by Electrons and Protons
Franklin wrote in his letters and books that he could see the effects of electric charge but did not understand what caused the
phenomenon. Today we have the advantage of knowing that normal matter is made of atoms, and that atoms contain positive
and negative charges, usually in equal amounts.

Figure 18.5 shows a simple model of an atom with negative electrons orbiting its positive nucleus. The nucleus is positive due
to the presence of positively charged protons. Nearly all charge in nature is due to electrons and protons, which are two of the
three building blocks of most matter. (The third is the neutron, which is neutral, carrying no charge.) Other charge-carrying
particles are observed in cosmic rays and nuclear decay, and are created in particle accelerators. All but the electron and proton
survive only a short time and are quite rare by comparison.
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Figure 18.5 This simplified (and not to scale) view of an atom is called the planetary model of the atom. Negative electrons orbit a much heavier
positive nucleus, as the planets orbit the much heavier sun. There the similarity ends, because forces in the atom are electromagnetic, whereas those
in the planetary system are gravitational. Normal macroscopic amounts of matter contain immense numbers of atoms and molecules and, hence, even
greater numbers of individual negative and positive charges.

The charges of electrons and protons are identical in magnitude but opposite in sign. Furthermore, all charged objects in nature
are integral multiples of this basic quantity of charge, meaning that all charges are made of combinations of a basic unit of
charge. Usually, charges are formed by combinations of electrons and protons. The magnitude of this basic charge is

(18.1)∣ ∣ = 1.60×10−19 C.

The symbol is commonly used for charge and the subscript indicates the charge of a single electron (or proton).

The SI unit of charge is the coulomb (C). The number of protons needed to make a charge of 1.00 C is

(18.2)
1.00 C×

1 proton

1.60×10−19 C
= 6.25×1018 protons.

Similarly, 6.25×1018 electrons have a combined charge of −1.00 coulomb. Just as there is a smallest bit of an element (an

atom), there is a smallest bit of charge. There is no directly observed charge smaller than ∣ ∣ (see Things Great and

Small: The Submicroscopic Origin of Charge), and all observed charges are integral multiples of ∣ ∣ .

Things Great and Small: The Submicroscopic Origin of Charge

With the exception of exotic, short-lived particles, all charge in nature is carried by electrons and protons. Electrons carry the
charge we have named negative. Protons carry an equal-magnitude charge that we call positive. (See Figure 18.6.)
Electron and proton charges are considered fundamental building blocks, since all other charges are integral multiples of
those carried by electrons and protons. Electrons and protons are also two of the three fundamental building blocks of
ordinary matter. The neutron is the third and has zero total charge.

Figure 18.6 shows a person touching a Van de Graaff generator and receiving excess positive charge. The expanded view of a
hair shows the existence of both types of charges but an excess of positive. The repulsion of these positive like charges causes
the strands of hair to repel other strands of hair and to stand up. The further blowup shows an artist's conception of an electron
and a proton perhaps found in an atom in a strand of hair.
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Figure 18.6 When this person touches a Van de Graaff generator, she receives an excess of positive charge, causing her hair to stand on end. The
charges in one hair are shown. An artist's conception of an electron and a proton illustrate the particles carrying the negative and positive charges. We
cannot really see these particles with visible light because they are so small (the electron seems to be an infinitesimal point), but we know a great deal
about their measurable properties, such as the charges they carry.

The electron seems to have no substructure; in contrast, when the substructure of protons is explored by scattering extremely
energetic electrons from them, it appears that there are point-like particles inside the proton. These sub-particles, named quarks,
have never been directly observed, but they are believed to carry fractional charges as seen in Figure 18.7. Charges on
electrons and protons and all other directly observable particles are unitary, but these quark substructures carry charges of either

−1
3

or +2
3

. There are continuing attempts to observe fractional charge directly and to learn of the properties of quarks, which

are perhaps the ultimate substructure of matter.

Figure 18.7 Artist's conception of fractional quark charges inside a proton. A group of three quark charges add up to the single positive charge on the

proton: −1
3

+ 2
3

+ 2
3

= +1 .

Separation of Charge in Atoms
Charges in atoms and molecules can be separated—for example, by rubbing materials together. Some atoms and molecules
have a greater affinity for electrons than others and will become negatively charged by close contact in rubbing, leaving the other
material positively charged. (See Figure 18.8.) Positive charge can similarly be induced by rubbing. Methods other than rubbing
can also separate charges. Batteries, for example, use combinations of substances that interact in such a way as to separate
charges. Chemical interactions may transfer negative charge from one substance to the other, making one battery terminal
negative and leaving the first one positive.
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Figure 18.8 When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for electrons than another.
(a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny fraction of the charges are involved, and only a
few of them are shown here. (b) When rubbed together, some negative charge is transferred to the amber, leaving the cloth with a net positive charge.
(c) When separated, the amber and cloth now have net charges, but the absolute value of the net positive and negative charges will be equal.

No charge is actually created or destroyed when charges are separated as we have been discussing. Rather, existing charges
are moved about. In fact, in all situations the total amount of charge is always constant. This universally obeyed law of nature is
called the law of conservation of charge.

Law of Conservation of Charge

Total charge is constant in any process.

Making Connections: Net Charge

Hence if a closed system is neutral, it will remain neutral. Similarly, if a closed system has a charge, say, −10e, it will always
have that charge. The only way to change the charge of a system is to transfer charge outside, either by bringing in charge
or removing charge. If it is possible to transfer charge outside, the system is no longer closed/isolated and is known as an
open system. However, charge is always conserved, for both open and closed systems. Consequently, the charge
transferred to/from an open system is equal to the change in the system's charge.

For example, each of the two materials (amber and cloth) discussed in Figure 18.8 have no net charge initially. The only
way to change their charge is to transfer charge from outside each object. When they are rubbed together, negative charge
is transferred to the amber and the final charge of the amber is the sum of the initial charge and the charge transferred to it.
On the other hand, the final charge on the cloth is equal to its initial charge minus the charge transferred out.

Similarly when glass is rubbed with silk, the net charge on the silk is its initial charge plus the incoming charge and the
charge on the glass is the initial charge minus the outgoing charge. Also the charge gained by the silk will be equal to the
charge lost by the glass, which means that if the silk gains –5e charge, the glass would have lost −5e charge.

In more exotic situations, such as in particle accelerators, mass, Δ , can be created from energy in the amount Δ =
2

.

Sometimes, the created mass is charged, such as when an electron is created. Whenever a charged particle is created, another
having an opposite charge is always created along with it, so that the total charge created is zero. Usually, the two particles are
“matter-antimatter” counterparts. For example, an antielectron would usually be created at the same time as an electron. The
antielectron has a positive charge (it is called a positron), and so the total charge created is zero. (See Figure 18.9.) All particles
have antimatter counterparts with opposite signs. When matter and antimatter counterparts are brought together, they completely
annihilate one another. By annihilate, we mean that the mass of the two particles is converted to energy E, again obeying the

relationship Δ =
2

. Since the two particles have equal and opposite charge, the total charge is zero before and after the

annihilation; thus, total charge is conserved.

Making Connections: Conservation Laws

Only a limited number of physical quantities are universally conserved. Charge is one—energy, momentum, and angular
momentum are others. Because they are conserved, these physical quantities are used to explain more phenomena and
form more connections than other, less basic quantities. We find that conserved quantities give us great insight into the rules
followed by nature and hints to the organization of nature. Discoveries of conservation laws have led to further discoveries,
such as the weak nuclear force and the quark substructure of protons and other particles.
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Figure 18.9 (a) When enough energy is present, it can be converted into matter. Here the matter created is an electron–antielectron pair. ( is the

electron's mass.) The total charge before and after this event is zero. (b) When matter and antimatter collide, they annihilate each other; the total
charge is conserved at zero before and after the annihilation.

The law of conservation of charge is absolute—it has never been observed to be violated. Charge, then, is a special physical
quantity, joining a very short list of other quantities in nature that are always conserved. Other conserved quantities include
energy, momentum, and angular momentum.

PhET Explorations: Balloons and Static Electricity

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks
to the sweater. View the charges in the sweater, balloons, and the wall.

Figure 18.10 Balloons and Static Electricity (http://cnx.org/content/m55300/1.2/balloons_en.jar)

Applying the Science Practices: Electrical Charging

Design an experiment to demonstrate the electrical charging of objects, by using a glass rod, a balloon, small bits of paper,
and different pieces of cloth (like silk, wool, or nylon). Also show that like charges repel each other whereas unlike charges
attract each other.

18.2 Conductors and Insulators

Learning Objectives
By the end of this section, you will be able to:

• Define conductor and insulator, explain the difference, and give examples of each.
• Describe three methods for charging an object.
• Explain what happens to an electric force as you move farther from the source.
• Define polarization.

The information presented in this section supports the following AP® learning objectives and science practices:
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• 1.B.2.2 The student is able to make a qualitative prediction about the distribution of positive and negative electric
charges within neutral systems as they undergo various processes. (S.P. 6.4, 7.2)

• 1.B.2.3 The student is able to challenge claims that polarization of electric charge or separation of charge must result in
a net charge on the object. (S.P. 6.1)

• 4.E.3.1 The student is able to make predictions about the redistribution of charge during charging by friction,
conduction, and induction. (S.P. 6.4)

• 4.E.3.2 The student is able to make predictions about the redistribution of charge caused by the electric field due to
other systems, resulting in charged or polarized objects. (S.P. 6.4, 7.2)

• 4.E.3.3 The student is able to construct a representation of the distribution of fixed and mobile charge in insulators and
conductors. (S.P. 1.1, 1.4, 6.4)

• 4.E.3.4 The student is able to construct a representation of the distribution of fixed and mobile charge in insulators and
conductors that predicts charge distribution in processes involving induction or conduction. (S.P. 1.1, 1.4, 6.4)

• 4.E.3.5 The student is able to plan and/or analyze the results of experiments in which electric charge rearrangement
occurs by electrostatic induction, or is able to refine a scientific question relating to such an experiment by identifying
anomalies in a data set or procedure. (S.P. 3.2, 4.1, 4.2, 5.1, 5.3)

Figure 18.11 This power adapter uses metal wires and connectors to conduct electricity from the wall socket to a laptop computer. The conducting
wires allow electrons to move freely through the cables, which are shielded by rubber and plastic. These materials act as insulators that don't allow
electric charge to escape outward. (credit: Evan-Amos, Wikimedia Commons)

Some substances, such as metals and salty water, allow charges to move through them with relative ease. Some of the
electrons in metals and similar conductors are not bound to individual atoms or sites in the material. These free electrons can
move through the material much as air moves through loose sand. Any substance that has free electrons and allows charge to
move relatively freely through it is called a conductor. The moving electrons may collide with fixed atoms and molecules, losing
some energy, but they can move in a conductor. Superconductors allow the movement of charge without any loss of energy.
Salty water and other similar conducting materials contain free ions that can move through them. An ion is an atom or molecule
having a positive or negative (nonzero) total charge. In other words, the total number of electrons is not equal to the total number
of protons.

Other substances, such as glass, do not allow charges to move through them. These are called insulators. Electrons and ions in

insulators are bound in the structure and cannot move easily—as much as 1023 times more slowly than in conductors. Pure
water and dry table salt are insulators, for example, whereas molten salt and salty water are conductors.

Figure 18.12 An electroscope is a favorite instrument in physics demonstrations and student laboratories. It is typically made with gold foil leaves hung
from a (conducting) metal stem and is insulated from the room air in a glass-walled container. (a) A positively charged glass rod is brought near the tip
of the electroscope, attracting electrons to the top and leaving a net positive charge on the leaves. Like charges in the light flexible gold leaves repel,
separating them. (b) When the rod is touched against the ball, electrons are attracted and transferred, reducing the net charge on the glass rod but
leaving the electroscope positively charged. (c) The excess charges are evenly distributed in the stem and leaves of the electroscope once the glass
rod is removed.

Charging by Contact
Figure 18.12 shows an electroscope being charged by touching it with a positively charged glass rod. Because the glass rod is
an insulator, it must actually touch the electroscope to transfer charge to or from it. (Note that the extra positive charges reside
on the surface of the glass rod as a result of rubbing it with silk before starting the experiment.) Since only electrons move in
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metals, we see that they are attracted to the top of the electroscope. There, some are transferred to the positive rod by touch,
leaving the electroscope with a net positive charge.

Electrostatic repulsion in the leaves of the charged electroscope separates them. The electrostatic force has a horizontal
component that results in the leaves moving apart as well as a vertical component that is balanced by the gravitational force.
Similarly, the electroscope can be negatively charged by contact with a negatively charged object.

Charging by Induction
It is not necessary to transfer excess charge directly to an object in order to charge it. Figure 18.13 shows a method of
induction wherein a charge is created in a nearby object, without direct contact. Here we see two neutral metal spheres in
contact with one another but insulated from the rest of the world. A positively charged rod is brought near one of them, attracting
negative charge to that side, leaving the other sphere positively charged.

This is an example of induced polarization of neutral objects. Polarization is the separation of charges in an object that remains
neutral. If the spheres are now separated (before the rod is pulled away), each sphere will have a net charge. Note that the
object closest to the charged rod receives an opposite charge when charged by induction. Note also that no charge is removed
from the charged rod, so that this process can be repeated without depleting the supply of excess charge.

Another method of charging by induction is shown in Figure 18.14. The neutral metal sphere is polarized when a charged rod is
brought near it. The sphere is then grounded, meaning that a conducting wire is run from the sphere to the ground. Since the
earth is large and most ground is a good conductor, it can supply or accept excess charge easily. In this case, electrons are
attracted to the sphere through a wire called the ground wire, because it supplies a conducting path to the ground. The ground
connection is broken before the charged rod is removed, leaving the sphere with an excess charge opposite to that of the rod.
Again, an opposite charge is achieved when charging by induction and the charged rod loses none of its excess charge.

Figure 18.13 Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each other but insulated from the rest of the world.
(b) A positively charged glass rod is brought near the sphere on the left, attracting negative charge and leaving the other sphere positively charged. (c)
The spheres are separated before the rod is removed, thus separating negative and positive charge. (d) The spheres retain net charges after the
inducing rod is removed—without ever having been touched by a charged object.
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Figure 18.14 Charging by induction, using a ground connection. (a) A positively charged rod is brought near a neutral metal sphere, polarizing it. (b)
The sphere is grounded, allowing electrons to be attracted from the earth's ample supply. (c) The ground connection is broken. (d) The positive rod is
removed, leaving the sphere with an induced negative charge.

Figure 18.15 Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object brought near a neutral
insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the molecule, with unlike charges being brought
nearer and like charges moved away. Since the electrostatic force decreases with distance, there is a net attraction. (b) A negative object produces the
opposite polarization, but again attracts the neutral object. (c) The same effect occurs for a conductor; since the unlike charges are closer, there is a
net attraction.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are neutral, for example.
If you run a plastic comb through your hair, the charged comb can pick up neutral pieces of paper. Figure 18.15 shows how the
polarization of atoms and molecules in neutral objects results in their attraction to a charged object.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in atoms and
molecules is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like charge is repelled. Since the
electrostatic force decreases with distance, the repulsion of like charges is weaker than the attraction of unlike charges, and so
there is a net attraction. Thus a positively charged glass rod attracts neutral pieces of paper, as will a negatively charged rubber
rod. Some molecules, like water, are polar molecules. Polar molecules have a natural or inherent separation of charge, although
they are neutral overall. Polar molecules are particularly affected by other charged objects and show greater polarization effects
than molecules with naturally uniform charge distributions.

Check Your Understanding

Can you explain the attraction of water to the charged rod in the figure below?
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Figure 18.16

Solution

Water molecules are polarized, giving them slightly positive and slightly negative sides. This makes water even more
susceptible to a charged rod's attraction. As the water flows downward, due to the force of gravity, the charged conductor
exerts a net attraction to the opposite charges in the stream of water, pulling it closer.

Applying the Science Practices: Electrostatic Induction

Plan an experiment to demonstrate electrostatic induction using household items, like balloons, woolen cloth, aluminum
drink cans, or foam cups. Explain the process of induction in your experiment by discussing details of (and making diagrams
relating to) the movement and alignment of charges.

PhET Explorations: John Travoltage

Make sparks fly with John Travoltage. Wiggle Johnnie's foot and he picks up charges from the carpet. Bring his hand close
to the door knob and get rid of the excess charge.

Figure 18.17 John Travoltage (http://cnx.org/content/m55301/1.2/travoltage_en.jar)

18.3 Conductors and Electric Fields in Static Equilibrium

Learning Objectives
By the end of this section, you will be able to:

• List the three properties of a conductor in electrostatic equilibrium.
• Explain the effect of an electric field on free charges in a conductor.
• Explain why no electric field may exist inside a conductor.
• Describe the electric field surrounding Earth.
• Explain what happens to an electric field applied to an irregular conductor.
• Describe how a lightning rod works.
• Explain how a metal car may protect passengers inside from the dangerous electric fields caused by a downed line

touching the car.

The information presented in this section supports the following AP learning objectives:

• 2.C.3.1 The student is able to explain the inverse square dependence of the electric field surrounding a spherically
symmetric electrically charged object.
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• 2.C.5.1 The student is able to create representations of the magnitude and direction of the electric field at various
distances (small compared to plate size) from two electrically charged plates of equal magnitude and opposite signs
and is able to recognize that the assumption of uniform field is not appropriate near edges of plates.

Conductors contain free charges that move easily. When excess charge is placed on a conductor or the conductor is put into a
static electric field, charges in the conductor quickly respond to reach a steady state called electrostatic equilibrium.

Figure 18.18 shows the effect of an electric field on free charges in a conductor. The free charges move until the field is
perpendicular to the conductor's surface. There can be no component of the field parallel to the surface in electrostatic
equilibrium, since, if there were, it would produce further movement of charge. A positive free charge is shown, but free charges
can be either positive or negative and are, in fact, negative in metals. The motion of a positive charge is equivalent to the motion
of a negative charge in the opposite direction.

Figure 18.18 When an electric field E is applied to a conductor, free charges inside the conductor move until the field is perpendicular to the surface.

(a) The electric field is a vector quantity, with both parallel and perpendicular components. The parallel component ( E∥ ) exerts a force ( F∥ ) on

the free charge , which moves the charge until F∥ = 0 . (b) The resulting field is perpendicular to the surface. The free charge has been brought

to the conductor's surface, leaving electrostatic forces in equilibrium.

A conductor placed in an electric field will be polarized. Figure 18.19 shows the result of placing a neutral conductor in an
originally uniform electric field. The field becomes stronger near the conductor but entirely disappears inside it.

Figure 18.19 This illustration shows a spherical conductor in static equilibrium with an originally uniform electric field. Free charges move within the
conductor, polarizing it, until the electric field lines are perpendicular to the surface. The field lines end on excess negative charge on one section of the
surface and begin again on excess positive charge on the opposite side. No electric field exists inside the conductor, since free charges in the
conductor would continue moving in response to any field until it was neutralized.

Misconception Alert: Electric Field inside a Conductor

Excess charges placed on a spherical conductor repel and move until they are evenly distributed, as shown in Figure 18.20.
Excess charge is forced to the surface until the field inside the conductor is zero. Outside the conductor, the field is exactly
the same as if the conductor were replaced by a point charge at its center equal to the excess charge.
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Figure 18.20 The mutual repulsion of excess positive charges on a spherical conductor distributes them uniformly on its surface. The resulting
electric field is perpendicular to the surface and zero inside. Outside the conductor, the field is identical to that of a point charge at the center
equal to the excess charge.

Properties of a Conductor in Electrostatic Equilibrium
1. The electric field is zero inside a conductor.

2. Just outside a conductor, the electric field lines are perpendicular to its surface, ending or beginning on charges on the
surface.

3. Any excess charge resides entirely on the surface or surfaces of a conductor.

The properties of a conductor are consistent with the situations already discussed and can be used to analyze any conductor in
electrostatic equilibrium. This can lead to some interesting new insights, such as described below.

How can a very uniform electric field be created? Consider a system of two metal plates with opposite charges on them, as
shown in Figure 18.21. The properties of conductors in electrostatic equilibrium indicate that the electric field between the plates
will be uniform in strength and direction. Except near the edges, the excess charges distribute themselves uniformly, producing
field lines that are uniformly spaced (hence uniform in strength) and perpendicular to the surfaces (hence uniform in direction,
since the plates are flat). The edge effects are less important when the plates are close together.

Figure 18.21 Two metal plates with equal, but opposite, excess charges. The field between them is uniform in strength and direction except near the
edges. One use of such a field is to produce uniform acceleration of charges between the plates, such as in the electron gun of a TV tube.

Earth's Electric Field
A near uniform electric field of approximately 150 N/C, directed downward, surrounds Earth, with the magnitude increasing
slightly as we get closer to the surface. What causes the electric field? At around 100 km above the surface of Earth we have a
layer of charged particles, called the ionosphere. The ionosphere is responsible for a range of phenomena including the electric
field surrounding Earth. In fair weather the ionosphere is positive and the Earth largely negative, maintaining the electric field
(Figure 18.22(a)).

In storm conditions clouds form and localized electric fields can be larger and reversed in direction (Figure 18.22(b)). The exact
charge distributions depend on the local conditions, and variations of Figure 18.22(b) are possible.

If the electric field is sufficiently large, the insulating properties of the surrounding material break down and it becomes

conducting. For air this occurs at around 3×106 N/C. Air ionizes ions and electrons recombine, and we get discharge in the
form of lightning sparks and corona discharge.
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Figure 18.22 Earth's electric field. (a) Fair weather field. Earth and the ionosphere (a layer of charged particles) are both conductors. They produce a
uniform electric field of about 150 N/C. (credit: D. H. Parks) (b) Storm fields. In the presence of storm clouds, the local electric fields can be larger. At
very high fields, the insulating properties of the air break down and lightning can occur. (credit: Jan-Joost Verhoef)

Electric Fields on Uneven Surfaces
So far we have considered excess charges on a smooth, symmetrical conductor surface. What happens if a conductor has sharp
corners or is pointed? Excess charges on a nonuniform conductor become concentrated at the sharpest points. Additionally,
excess charge may move on or off the conductor at the sharpest points.

To see how and why this happens, consider the charged conductor in Figure 18.23. The electrostatic repulsion of like charges is
most effective in moving them apart on the flattest surface, and so they become least concentrated there. This is because the
forces between identical pairs of charges at either end of the conductor are identical, but the components of the forces parallel to
the surfaces are different. The component parallel to the surface is greatest on the flattest surface and, hence, more effective in
moving the charge.

The same effect is produced on a conductor by an externally applied electric field, as seen in Figure 18.23 (c). Since the field
lines must be perpendicular to the surface, more of them are concentrated on the most curved parts.

Figure 18.23 Excess charge on a nonuniform conductor becomes most concentrated at the location of greatest curvature. (a) The forces between
identical pairs of charges at either end of the conductor are identical, but the components of the forces parallel to the surface are different. It is F∥

that moves the charges apart once they have reached the surface. (b) F∥ is smallest at the more pointed end, the charges are left closer together,

producing the electric field shown. (c) An uncharged conductor in an originally uniform electric field is polarized, with the most concentrated charge at
its most pointed end.

Applications of Conductors
On a very sharply curved surface, such as shown in Figure 18.24, the charges are so concentrated at the point that the resulting
electric field can be great enough to remove them from the surface. This can be useful.

Lightning rods work best when they are most pointed. The large charges created in storm clouds induce an opposite charge on a
building that can result in a lightning bolt hitting the building. The induced charge is bled away continually by a lightning rod,
preventing the more dramatic lightning strike.

Of course, we sometimes wish to prevent the transfer of charge rather than to facilitate it. In that case, the conductor should be
very smooth and have as large a radius of curvature as possible. (See Figure 18.25.) Smooth surfaces are used on high-voltage
transmission lines, for example, to avoid leakage of charge into the air.

Another device that makes use of some of these principles is a Faraday cage. This is a metal shield that encloses a volume. All
electrical charges will reside on the outside surface of this shield, and there will be no electrical field inside. A Faraday cage is
used to prohibit stray electrical fields in the environment from interfering with sensitive measurements, such as the electrical
signals inside a nerve cell.

During electrical storms if you are driving a car, it is best to stay inside the car as its metal body acts as a Faraday cage with zero
electrical field inside. If in the vicinity of a lightning strike, its effect is felt on the outside of the car and the inside is unaffected,
provided you remain totally inside. This is also true if an active (“hot”) electrical wire was broken (in a storm or an accident) and
fell on your car.
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Figure 18.24 A very pointed conductor has a large charge concentration at the point. The electric field is very strong at the point and can exert a force
large enough to transfer charge on or off the conductor. Lightning rods are used to prevent the buildup of large excess charges on structures and, thus,
are pointed.

Figure 18.25 (a) A lightning rod is pointed to facilitate the transfer of charge. (credit: Romaine, Wikimedia Commons) (b) This Van de Graaff generator
has a smooth surface with a large radius of curvature to prevent the transfer of charge and allow a large voltage to be generated. The mutual repulsion
of like charges is evident in the person's hair while touching the metal sphere. (credit: Jon ‘ShakataGaNai' Davis/Wikimedia Commons).

18.4 Coulomb’s Law

Learning Objectives
By the end of this section, you will be able to:

• State Coulomb's law in terms of how the electrostatic force changes with the distance between two objects.
• Calculate the electrostatic force between two point charges, such as electrons or protons.
• Compare the electrostatic force to the gravitational attraction for a proton and an electron; for a human and the Earth.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

• 3.A.3.4 The student is able to make claims about the force on an object due to the presence of other objects with the
same property: mass, electric charge. (S.P. 6.1, 6.4)

• 3.C.2.1 The student is able to use Coulomb's law qualitatively and quantitatively to make predictions about the
interaction between two electric point charges (interactions between collections of electric point charges are not
covered in Physics 1 and instead are restricted to Physics 2). (S.P. 2.2, 6.4)

• 3.C.2.2 The student is able to connect the concepts of gravitational force and electric force to compare similarities and
differences between the forces. (S.P. 7.2)
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Figure 18.26 This NASA image of Arp 87 shows the result of a strong gravitational attraction between two galaxies. In contrast, at the subatomic level,
the electrostatic attraction between two objects, such as an electron and a proton, is far greater than their mutual attraction due to gravity. (credit:
NASA/HST)

Through the work of scientists in the late 18th century, the main features of the electrostatic force—the existence of two types
of charge, the observation that like charges repel, unlike charges attract, and the decrease of force with distance—were
eventually refined, and expressed as a mathematical formula. The mathematical formula for the electrostatic force is called
Coulomb's law after the French physicist Charles Coulomb (1736–1806), who performed experiments and first proposed a
formula to calculate it.

Coulomb's Law
(18.3)

= | 1 2|
2

.

Coulomb's law calculates the magnitude of the force between two point charges, 1 and 2 , separated by a distance

. In SI units, the constant is equal to

(18.4)
= 8.988×109N ⋅ m2

C2
≈ 8.99×109N ⋅ m2

C2
.

The electrostatic force is a vector quantity and is expressed in units of newtons. The force is understood to be along the line
joining the two charges. (See Figure 18.27.)

Although the formula for Coulomb's law is simple, it was no mean task to prove it. The experiments Coulomb did, with the
primitive equipment then available, were difficult. Modern experiments have verified Coulomb's law to great precision. For

example, it has been shown that the force is inversely proportional to distance between two objects squared ∝ 1 / 2 to an

accuracy of 1 part in 1016 . No exceptions have ever been found, even at the small distances within the atom.

Figure 18.27 The magnitude of the electrostatic force between point charges 1 and 2 separated by a distance is given by Coulomb's law.

Note that Newton's third law (every force exerted creates an equal and opposite force) applies as usual—the force on 1 is equal in magnitude and

opposite in direction to the force it exerts on 2 . (a) Like charges. (b) Unlike charges.

Making Connections: Comparing Gravitational and Electrostatic Forces

Recall that the gravitational force (Newton's law of gravitation) quantifies force as =
2

.

The comparison between the two forces—gravitational and electrostatic—shows some similarities and differences.
Gravitational force is proportional to the masses of interacting objects, and the electrostatic force is proportional to the
magnitudes of the charges of interacting objects. Hence both forces are proportional to a property that represents the
strength of interaction for a given field. In addition, both forces are inversely proportional to the square of the distances
between them. It may seem that the two forces are related but that is not the case. In fact, there are huge variations in the
magnitudes of the two forces as they depend on different parameters and different mechanisms. For electrons (or protons),
electrostatic force is dominant and is much greater than the gravitational force. On the other hand, gravitational force is

790 Chapter 18 | Electric Charge and Electric Field

This content is available for free at http://cnx.org/content/col11844/1.13



generally dominant for objects with large masses. Another major difference between the two forces is that gravitational force
can only be attractive, whereas electrostatic could be attractive or repulsive (depending on the sign of charges; unlike
charges attract and like charges repel).

Example 18.1 How Strong is the Coulomb Force Relative to the Gravitational Force?

Compare the electrostatic force between an electron and proton separated by 0.530×10−10 m with the gravitational force
between them. This distance is their average separation in a hydrogen atom.

Strategy

To compare the two forces, we first compute the electrostatic force using Coulomb's law, = | 1 2|
2

. We then calculate

the gravitational force using Newton's universal law of gravitation. Finally, we take a ratio to see how the forces compare in
magnitude.

Solution

Entering the given and known information about the charges and separation of the electron and proton into the expression of
Coulomb's law yields

(18.5)
= | 1 2|

2

(18.6)
= 8.99×109 N ⋅ m2 / C2 ×

(1.60×10–19 C)(1.60×10–19 C)

(0.530×10–10 m)2

Thus the Coulomb force is

(18.7)= 8.19×10–8 N.

The charges are opposite in sign, so this is an attractive force. This is a very large force for an electron—it would cause an

acceleration of 8.99×1022 m / s2 (verification is left as an end-of-section problem).The gravitational force is given by
Newton's law of gravitation as:

(18.8)=
2

,

where = 6.67×10−11 N ⋅ m2 / kg2 . Here and represent the electron and proton masses, which can be found

in the appendices. Entering values for the knowns yields

(18.9)
= (6.67×10 – 11 N ⋅ m2 / kg2)×

(9.11×10–31 kg)(1.67×10–27 kg)

(0.530×10–10 m)2
= 3.61×10–47 N

This is also an attractive force, although it is traditionally shown as positive since gravitational force is always attractive. The
ratio of the magnitude of the electrostatic force to gravitational force in this case is, thus,

(18.10)= 2.27×1039.

Discussion

This is a remarkably large ratio! Note that this will be the ratio of electrostatic force to gravitational force for an electron and a
proton at any distance (taking the ratio before entering numerical values shows that the distance cancels). This ratio gives
some indication of just how much larger the Coulomb force is than the gravitational force between two of the most common
particles in nature.

As the example implies, gravitational force is completely negligible on a small scale, where the interactions of individual charged
particles are important. On a large scale, such as between the Earth and a person, the reverse is true. Most objects are nearly
electrically neutral, and so attractive and repulsive Coulomb forces nearly cancel. Gravitational force on a large scale
dominates interactions between large objects because it is always attractive, while Coulomb forces tend to cancel.
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The Van de Graaff Generator
Van de Graaff generators (or Van de Graaffs) are not only spectacular devices used to demonstrate high voltage due to static
electricity—they are also used for serious research. The first was built by Robert Van de Graaff in 1931 (based on original
suggestions by Lord Kelvin) for use in nuclear physics research. Figure 18.38 shows a schematic of a large research version.
Van de Graaffs utilize both smooth and pointed surfaces, and conductors and insulators to generate large static charges and,
hence, large voltages.

A very large excess charge can be deposited on the sphere, because it moves quickly to the outer surface. Practical limits arise
because the large electric fields polarize and eventually ionize surrounding materials, creating free charges that neutralize
excess charge or allow it to escape. Nevertheless, voltages of 15 million volts are well within practical limits.

Figure 18.38 Schematic of Van de Graaff generator. A battery (A) supplies excess positive charge to a pointed conductor, the points of which spray the
charge onto a moving insulating belt near the bottom. The pointed conductor (B) on top in the large sphere picks up the charge. (The induced electric
field at the points is so large that it removes the charge from the belt.) This can be done because the charge does not remain inside the conducting
sphere but moves to its outside surface. An ion source inside the sphere produces positive ions, which are accelerated away from the positive sphere
to high velocities.

Take-Home Experiment: Electrostatics and Humidity

Rub a comb through your hair and use it to lift pieces of paper. It may help to tear the pieces of paper rather than cut them
neatly. Repeat the exercise in your bathroom after you have had a long shower and the air in the bathroom is moist. Is it
easier to get electrostatic effects in dry or moist air? Why would torn paper be more attractive to the comb than cut paper?
Explain your observations.

Xerography
Most copy machines use an electrostatic process called xerography—a word coined from the Greek words xeros for dry and
graphos for writing. The heart of the process is shown in simplified form in Figure 18.39.

A selenium-coated aluminum drum is sprayed with positive charge from points on a device called a corotron. Selenium is a
substance with an interesting property—it is a photoconductor. That is, selenium is an insulator when in the dark and a
conductor when exposed to light.

In the first stage of the xerography process, the conducting aluminum drum is grounded so that a negative charge is induced
under the thin layer of uniformly positively charged selenium. In the second stage, the surface of the drum is exposed to the
image of whatever is to be copied. Where the image is light, the selenium becomes conducting, and the positive charge is
neutralized. In dark areas, the positive charge remains, and so the image has been transferred to the drum.

The third stage takes a dry black powder, called toner, and sprays it with a negative charge so that it will be attracted to the
positive regions of the drum. Next, a blank piece of paper is given a greater positive charge than on the drum so that it will pull
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conductor:

conductor:

Coulomb force:

Coulomb interaction:

Coulomb's law:

dipole:

electric charge:

electric field:

electric field lines:

electric field is given to be upward, the electric force is upward. We thus have a one-dimensional (vertical direction) problem,
and we can state Newton's second law as

(18.24)
= net.

where net = − . Entering this and the known values into the expression for Newton's second law yields

(18.25)= −

= 9.60×10−14 N − 3.92×10−14 N

4.00×10−15 kg

= 14.2 m/s2.

Discussion for (c)

This is an upward acceleration great enough to carry the drop to places where you might not wish to have gasoline.

This worked example illustrates how to apply problem-solving strategies to situations that include topics in different chapters.
The first step is to identify the physical principles involved in the problem. The second step is to solve for the unknown using
familiar problem-solving strategies. These are found throughout the text, and many worked examples show how to use them
for single topics. In this integrated concepts example, you can see how to apply them across several topics. You will find
these techniques useful in applications of physics outside a physics course, such as in your profession, in other science
disciplines, and in everyday life. The following problems will build your skills in the broad application of physical principles.

Unreasonable Results

The Unreasonable Results exercises for this module have results that are unreasonable because some premise is
unreasonable or because certain of the premises are inconsistent with one another. Physical principles applied correctly
then produce unreasonable results. The purpose of these problems is to give practice in assessing whether nature is being
accurately described, and if it is not to trace the source of difficulty.

Problem-Solving Strategy

To determine if an answer is reasonable, and to determine the cause if it is not, do the following.

1. Solve the problem using strategies as outlined above. Use the format followed in the worked examples in the text
to solve the problem as usual.

2. Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper
units, and so on?

3. If the answer is unreasonable, look for what specifically could cause the identified difficulty. Usually, the manner in
which the answer is unreasonable is an indication of the difficulty. For example, an extremely large Coulomb force
could be due to the assumption of an excessively large separated charge.

Glossary
a material that allows electrons to move separately from their atomic orbits

an object with properties that allow charges to move about freely within it

another term for the electrostatic force

the interaction between two charged particles generated by the Coulomb forces they exert on one
another

the mathematical equation calculating the electrostatic force vector between two charged particles

a molecule's lack of symmetrical charge distribution, causing one side to be more positive and another to be more
negative

a physical property of an object that causes it to be attracted toward or repelled from another charged object;
each charged object generates and is influenced by a force called an electromagnetic force

a three-dimensional map of the electric force extended out into space from a point charge

a series of lines drawn from a point charge representing the magnitude and direction of force exerted by
that charge
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electromagnetic force:

electron:

electrostatic equilibrium:

electrostatic force:

electrostatic precipitators:

electrostatic repulsion:

electrostatics:

Faraday cage:

field:

free charge:

free electron:

grounded:

grounded:

induction:

ink-jet printer:

insulator:

ionosphere:

laser printer:

law of conservation of charge:

photoconductor:

point charge:

polar molecule:

polarization:

polarized:

proton:

screening:

static electricity:

test charge:

Van de Graaff generator:

vector:

vector addition:

xerography:

one of the four fundamental forces of nature; the electromagnetic force consists of static electricity,
moving electricity and magnetism

a particle orbiting the nucleus of an atom and carrying the smallest unit of negative charge

an electrostatically balanced state in which all free electrical charges have stopped moving about

the amount and direction of attraction or repulsion between two charged bodies

filters that apply charges to particles in the air, then attract those charges to a filter, removing
them from the airstream

the phenomenon of two objects with like charges repelling each other

the study of electric forces that are static or slow-moving

a metal shield which prevents electric charge from penetrating its surface

a map of the amount and direction of a force acting on other objects, extending out into space

an electrical charge (either positive or negative) which can move about separately from its base molecule

an electron that is free to move away from its atomic orbit

when a conductor is connected to the Earth, allowing charge to freely flow to and from Earth's unlimited reservoir

connected to the ground with a conductor, so that charge flows freely to and from the Earth to the grounded object

the process by which an electrically charged object brought near a neutral object creates a charge in that object

small ink droplets sprayed with an electric charge are controlled by electrostatic plates to create images on
paper

a material that holds electrons securely within their atomic orbits

a layer of charged particles located around 100 km above the surface of Earth, which is responsible for a range
of phenomena including the electric field surrounding Earth

uses a laser to create a photoconductive image on a drum, which attracts dry ink particles that are then rolled
onto a sheet of paper to print a high-quality copy of the image

states that whenever a charge is created, an equal amount of charge with the opposite sign
is created simultaneously

a substance that is an insulator until it is exposed to light, when it becomes a conductor

A charged particle, designated , generating an electric field

a molecule with an asymmetrical distribution of positive and negative charge

slight shifting of positive and negative charges to opposite sides of an atom or molecule

a state in which the positive and negative charges within an object have collected in separate locations

a particle in the nucleus of an atom and carrying a positive charge equal in magnitude and opposite in sign to the
amount of negative charge carried by an electron

the dilution or blocking of an electrostatic force on a charged object by the presence of other charges nearby

a buildup of electric charge on the surface of an object

A particle (designated ) with either a positive or negative charge set down within an electric field generated by

a point charge

a machine that produces a large amount of excess charge, used for experiments with high voltage

a quantity with both magnitude and direction

mathematical combination of two or more vectors, including their magnitudes, directions, and positions

a dry copying process based on electrostatics
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Section Summary

18.1 Static Electricity and Charge: Conservation of Charge
• There are only two types of charge, which we call positive and negative.
• Like charges repel, unlike charges attract, and the force between charges decreases with the square of the distance.
• The vast majority of positive charge in nature is carried by protons, while the vast majority of negative charge is carried by

electrons.
• The electric charge of one electron is equal in magnitude and opposite in sign to the charge of one proton.
• An ion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.
• The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal magnitude;

the magnitude of this basic charge ∣ ∣ is

∣ ∣ = 1.60×10−19 C.
• Whenever charge is created or destroyed, equal amounts of positive and negative are involved.
• Most often, existing charges are separated from neutral objects to obtain some net charge.
• Both positive and negative charges exist in neutral objects and can be separated by rubbing one object with another. For

macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion of
electrons.

• The law of conservation of charge ensures that whenever a charge is created, an equal charge of the opposite sign is
created at the same time.

18.2 Conductors and Insulators
• Polarization is the separation of positive and negative charges in a neutral object.
• A conductor is a substance that allows charge to flow freely through its atomic structure.
• An insulator holds charge within its atomic structure.
• Objects with like charges repel each other, while those with unlike charges attract each other.
• A conducting object is said to be grounded if it is connected to the Earth through a conductor. Grounding allows transfer of

charge to and from the earth's large reservoir.
• Objects can be charged by contact with another charged object and obtain the same sign charge.
• If an object is temporarily grounded, it can be charged by induction, and obtains the opposite sign charge.
• Polarized objects have their positive and negative charges concentrated in different areas, giving them a non-symmetrical

charge.
• Polar molecules have an inherent separation of charge.

18.3 Conductors and Electric Fields in Static Equilibrium
• A conductor allows free charges to move about within it.
• The electrical forces around a conductor will cause free charges to move around inside the conductor until static equilibrium

is reached.
• Any excess charge will collect along the surface of a conductor.
• Conductors with sharp corners or points will collect more charge at those points.
• A lightning rod is a conductor with sharply pointed ends that collect excess charge on the building caused by an electrical

storm and allow it to dissipate back into the air.
• Electrical storms result when the electrical field of Earth's surface in certain locations becomes more strongly charged, due

to changes in the insulating effect of the air.
• A Faraday cage acts like a shield around an object, preventing electric charge from penetrating inside.

18.4 Coulomb’s Law
• Frenchman Charles Coulomb was the first to publish the mathematical equation that describes the electrostatic force

between two objects.
• Coulomb's law gives the magnitude of the force between point charges. It is

= | 1 2|
2

,

where 1 and 2 are two point charges separated by a distance , and ≈ 8.99×109 N · m2 / C2

• This Coulomb force is extremely basic, since most charges are due to point-like particles. It is responsible for all
electrostatic effects and underlies most macroscopic forces.

• The Coulomb force is extraordinarily strong compared with the gravitational force, another basic force—but unlike
gravitational force it can cancel, since it can be either attractive or repulsive.

• The electrostatic force between two subatomic particles is far greater than the gravitational force between the same two
particles.

18.5 Electric Field: Concept of a Field Revisited
• The electrostatic force field surrounding a charged object extends out into space in all directions.
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• The electrostatic force exerted by a point charge on a test charge at a distance depends on the charge of both charges,
as well as the distance between the two.

• The electric field E is defined to be

E = F

where F is the Coulomb or electrostatic force exerted on a small positive test charge . E has units of N/C.

• The magnitude of the electric field E created by a point charge is

E = | |
2

.

where is the distance from . The electric field E is a vector and fields due to multiple charges add like vectors.

18.6 Electric Field Lines: Multiple Charges
• Drawings of electric field lines are useful visual tools. The properties of electric field lines for any charge distribution are

that:
• Field lines must begin on positive charges and terminate on negative charges, or at infinity in the hypothetical case of

isolated charges.
• The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the

charge.
• The strength of the field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of

lines per unit area perpendicular to the lines.
• The direction of the electric field is tangent to the field line at any point in space.
• Field lines can never cross.

18.7 Electric Forces in Biology
• Many molecules in living organisms, such as DNA, carry a charge.
• An uneven distribution of the positive and negative charges within a polar molecule produces a dipole.
• The effect of a Coulomb field generated by a charged object may be reduced or blocked by other nearby charged objects.
• Biological systems contain water, and because water molecules are polar, they have a strong effect on other molecules in

living systems.

18.8 Applications of Electrostatics
• Electrostatics is the study of electric fields in static equilibrium.
• In addition to research using equipment such as a Van de Graaff generator, many practical applications of electrostatics

exist, including photocopiers, laser printers, ink-jet printers and electrostatic air filters.

Conceptual Questions

18.1 Static Electricity and Charge: Conservation of Charge
1. There are very large numbers of charged particles in most objects. Why, then, don't most objects exhibit static electricity?

2. Why do most objects tend to contain nearly equal numbers of positive and negative charges?

18.2 Conductors and Insulators
3. An eccentric inventor attempts to levitate by first placing a large negative charge on himself and then putting a large positive
charge on the ceiling of his workshop. Instead, while attempting to place a large negative charge on himself, his clothes fly off.
Explain.

4. If you have charged an electroscope by contact with a positively charged object, describe how you could use it to determine
the charge of other objects. Specifically, what would the leaves of the electroscope do if other charged objects were brought near
its knob?

5. When a glass rod is rubbed with silk, it becomes positive and the silk becomes negative—yet both attract dust. Does the dust
have a third type of charge that is attracted to both positive and negative? Explain.

6. Why does a car always attract dust right after it is polished? (Note that car wax and car tires are insulators.)

7. Describe how a positively charged object can be used to give another object a negative charge. What is the name of this
process?

8. What is grounding? What effect does it have on a charged conductor? On a charged insulator?

18.3 Conductors and Electric Fields in Static Equilibrium
9. Is the object in a conductor or an insulator? Justify your answer.
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Figure 18.43

10. If the electric field lines in the figure above were perpendicular to the object, would it necessarily be a conductor? Explain.

11. The discussion of the electric field between two parallel conducting plates, in this module states that edge effects are less
important if the plates are close together. What does close mean? That is, is the actual plate separation crucial, or is the ratio of
plate separation to plate area crucial?

12. Would the self-created electric field at the end of a pointed conductor, such as a lightning rod, remove positive or negative
charge from the conductor? Would the same sign charge be removed from a neutral pointed conductor by the application of a
similar externally created electric field? (The answers to both questions have implications for charge transfer utilizing points.)

13. Why is a golfer with a metal club over her shoulder vulnerable to lightning in an open fairway? Would she be any safer under
a tree?

14. Can the belt of a Van de Graaff accelerator be a conductor? Explain.

15. Are you relatively safe from lightning inside an automobile? Give two reasons.

16. Discuss pros and cons of a lightning rod being grounded versus simply being attached to a building.

17. Using the symmetry of the arrangement, show that the net Coulomb force on the charge at the center of the square below

(Figure 18.44) is zero if the charges on the four corners are exactly equal.

Figure 18.44 Four point charges , , , and lie on the corners of a square and is located at its center.

18. (a) Using the symmetry of the arrangement, show that the electric field at the center of the square in Figure 18.44 is zero if
the charges on the four corners are exactly equal. (b) Show that this is also true for any combination of charges in which

= and =

19. (a) What is the direction of the total Coulomb force on in Figure 18.44 if is negative, = and both are negative,

and = and both are positive? (b) What is the direction of the electric field at the center of the square in this situation?

20. Considering Figure 18.44, suppose that = and = . First show that is in static equilibrium. (You may neglect

the gravitational force.) Then discuss whether the equilibrium is stable or unstable, noting that this may depend on the signs of
the charges and the direction of displacement of from the center of the square.

21. If = 0 in Figure 18.44, under what conditions will there be no net Coulomb force on ?

22. In regions of low humidity, one develops a special “grip” when opening car doors, or touching metal door knobs. This involves
placing as much of the hand on the device as possible, not just the ends of one's fingers. Discuss the induced charge and
explain why this is done.

23. Tollbooth stations on roadways and bridges usually have a piece of wire stuck in the pavement before them that will touch a
car as it approaches. Why is this done?
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24. Suppose a woman carries an excess charge. To maintain her charged status can she be standing on ground wearing just
any pair of shoes? How would you discharge her? What are the consequences if she simply walks away?

18.4 Coulomb’s Law
25. Figure 18.45 shows the charge distribution in a water molecule, which is called a polar molecule because it has an inherent
separation of charge. Given water's polar character, explain what effect humidity has on removing excess charge from objects.

Figure 18.45 Schematic representation of the outer electron cloud of a neutral water molecule. The electrons spend more time near the oxygen than
the hydrogens, giving a permanent charge separation as shown. Water is thus a polar molecule. It is more easily affected by electrostatic forces than
molecules with uniform charge distributions.

26. Using Figure 18.45, explain, in terms of Coulomb's law, why a polar molecule (such as in Figure 18.45) is attracted by both
positive and negative charges.

27. Given the polar character of water molecules, explain how ions in the air form nucleation centers for rain droplets.

18.5 Electric Field: Concept of a Field Revisited
28. Why must the test charge in the definition of the electric field be vanishingly small?

29. Are the direction and magnitude of the Coulomb force unique at a given point in space? What about the electric field?

18.6 Electric Field Lines: Multiple Charges
30. Compare and contrast the Coulomb force field and the electric field. To do this, make a list of five properties for the Coulomb
force field analogous to the five properties listed for electric field lines. Compare each item in your list of Coulomb force field
properties with those of the electric field—are they the same or different? (For example, electric field lines cannot cross. Is the
same true for Coulomb field lines?)

31. Figure 18.46 shows an electric field extending over three regions, labeled I, II, and III. Answer the following questions. (a)
Are there any isolated charges? If so, in what region and what are their signs? (b) Where is the field strongest? (c) Where is it
weakest? (d) Where is the field the most uniform?

Figure 18.46

18.7 Electric Forces in Biology
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32. A cell membrane is a thin layer enveloping a cell. The thickness of the membrane is much less than the size of the cell. In a

static situation the membrane has a charge distribution of −2.5×10−6 C/m 2 on its inner surface and +2.5×10−6 C/m2 on its
outer surface. Draw a diagram of the cell and the surrounding cell membrane. Include on this diagram the charge distribution and
the corresponding electric field. Is there any electric field inside the cell? Is there any electric field outside the cell?
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Problems & Exercises

18.1 Static Electricity and Charge:
Conservation of Charge
1. Common static electricity involves charges ranging from
nanocoulombs to microcoulombs. (a) How many electrons
are needed to form a charge of –2.00 nC (b) How many
electrons must be removed from a neutral object to leave a
net charge of 0.500 C ?

2. If 1.80×1020 electrons move through a pocket calculator
during a full day's operation, how many coulombs of charge
moved through it?

3. To start a car engine, the car battery moves 3.75×1021

electrons through the starter motor. How many coulombs of
charge were moved?

4. A certain lightning bolt moves 40.0 C of charge. How many
fundamental units of charge ∣ ∣ is this?

18.2 Conductors and Insulators
5. Suppose a speck of dust in an electrostatic precipitator has

1.0000×1012 protons in it and has a net charge of –5.00
nC (a very large charge for a small speck). How many
electrons does it have?

6. An amoeba has 1.00×1016 protons and a net charge of
0.300 pC. (a) How many fewer electrons are there than
protons? (b) If you paired them up, what fraction of the
protons would have no electrons?

7. A 50.0 g ball of copper has a net charge of 2.00 C .

What fraction of the copper's electrons has been removed?
(Each copper atom has 29 protons, and copper has an atomic
mass of 63.5.)

8. What net charge would you place on a 100 g piece of sulfur

if you put an extra electron on 1 in 1012 of its atoms? (Sulfur
has an atomic mass of 32.1.)

9. How many coulombs of positive charge are there in 4.00 kg
of plutonium, given its atomic mass is 244 and that each
plutonium atom has 94 protons?

18.3 Conductors and Electric Fields in Static
Equilibrium
10. Sketch the electric field lines in the vicinity of the
conductor in Figure 18.47 given the field was originally
uniform and parallel to the object's long axis. Is the resulting
field small near the long side of the object?

Figure 18.47

11. Sketch the electric field lines in the vicinity of the
conductor in Figure 18.48 given the field was originally
uniform and parallel to the object's long axis. Is the resulting
field small near the long side of the object?

Figure 18.48

12. Sketch the electric field between the two conducting
plates shown in Figure 18.49, given the top plate is positive
and an equal amount of negative charge is on the bottom
plate. Be certain to indicate the distribution of charge on the
plates.

Figure 18.49

13. Sketch the electric field lines in the vicinity of the charged
insulator in Figure 18.50 noting its nonuniform charge
distribution.

Figure 18.50 A charged insulating rod such as might be used in a
classroom demonstration.

14. What is the force on the charge located at = 8.00 cm

in Figure 18.51(a) given that = 1.00 μC ?

Figure 18.51 (a) Point charges located at 3.00, 8.00, and 11.0 cm along
the x-axis. (b) Point charges located at 1.00, 5.00, 8.00, and 14.0 cm
along the x-axis.

15. (a) Find the total electric field at = 1.00 cm in Figure

18.51(b) given that = 5.00 nC . (b) Find the total electric

field at = 11.00 cm in Figure 18.51(b). (c) If the charges
are allowed to move and eventually be brought to rest by
friction, what will the final charge configuration be? (That is,
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will there be a single charge, double charge, etc., and what
will its value(s) be?)

16. (a) Find the electric field at = 5.00 cm in Figure

18.51(a), given that = 1.00 μC . (b) At what position

between 3.00 and 8.00 cm is the total electric field the same
as that for –2 alone? (c) Can the electric field be zero

anywhere between 0.00 and 8.00 cm? (d) At very large
positive or negative values of x, the electric field approaches
zero in both (a) and (b). In which does it most rapidly
approach zero and why? (e) At what position to the right of
11.0 cm is the total electric field zero, other than at infinity?
(Hint: A graphing calculator can yield considerable insight in
this problem.)

17. (a) Find the total Coulomb force on a charge of 2.00 nC
located at = 4.00 cm in Figure 18.51 (b), given that

= 1.00 μC . (b) Find the x-position at which the electric

field is zero in Figure 18.51 (b).

18. Using the symmetry of the arrangement, determine the
direction of the force on in the figure below, given that

= =+7.50 μC and = = −7.50 μC . (b)

Calculate the magnitude of the force on the charge , given

that the square is 10.0 cm on a side and = 2.00 μC .

Figure 18.52

19. (a) Using the symmetry of the arrangement, determine the
direction of the electric field at the center of the square in
Figure 18.52, given that = = −1.00 μC and

= =+1.00 μC . (b) Calculate the magnitude of the

electric field at the location of , given that the square is 5.00

cm on a side.

20. Find the electric field at the location of in Figure

18.52 given that = = =+2.00 nC ,

= −1.00 nC , and the square is 20.0 cm on a side.

21. Find the total Coulomb force on the charge in Figure

18.52, given that = 1.00 μC , = 2.00 μC ,

= −3.00 μC , = −4.00 μC , and =+1.00 μC .

The square is 50.0 cm on a side.

22. (a) Find the electric field at the location of in Figure

18.53, given that b = +10.00 C and c = –5.00 C .

(b) What is the force on , given that a = +1.50 nC ?

Figure 18.53 Point charges located at the corners of an equilateral
triangle 25.0 cm on a side.

23. (a) Find the electric field at the center of the triangular
configuration of charges in Figure 18.53, given that

=+2.50 nC , = −8.00 nC , and =+1.50 nC .

(b) Is there any combination of charges, other than
= = , that will produce a zero strength electric field

at the center of the triangular configuration?

18.4 Coulomb’s Law
24. What is the repulsive force between two pith balls that are
8.00 cm apart and have equal charges of – 30.0 nC?

25. (a) How strong is the attractive force between a glass rod
with a 0.700 C charge and a silk cloth with a –0.600 C

charge, which are 12.0 cm apart, using the approximation that
they act like point charges? (b) Discuss how the answer to
this problem might be affected if the charges are distributed
over some area and do not act like point charges.

26. Two point charges exert a 5.00 N force on each other.
What will the force become if the distance between them is
increased by a factor of three?

27. Two point charges are brought closer together, increasing
the force between them by a factor of 25. By what factor was
their separation decreased?

28. How far apart must two point charges of 75.0 nC (typical
of static electricity) be to have a force of 1.00 N between
them?

29. If two equal charges each of 1 C each are separated in air
by a distance of 1 km, what is the magnitude of the force
acting between them? You will see that even at a distance as
large as 1 km, the repulsive force is substantial because 1 C
is a very significant amount of charge.

30. A test charge of +2 C is placed halfway between a

charge of +6 C and another of +4 C separated by 10

cm. (a) What is the magnitude of the force on the test
charge? (b) What is the direction of this force (away from or
toward the +6 C charge)?

31. Bare free charges do not remain stationary when close
together. To illustrate this, calculate the acceleration of two
isolated protons separated by 2.00 nm (a typical distance
between gas atoms). Explicitly show how you follow the steps
in the Problem-Solving Strategy for electrostatics.

32. (a) By what factor must you change the distance between
two point charges to change the force between them by a
factor of 10? (b) Explain how the distance can either increase
or decrease by this factor and still cause a factor of 10
change in the force.
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33. Suppose you have a total charge tot that you can split

in any manner. Once split, the separation distance is fixed.
How do you split the charge to achieve the greatest force?

34. (a) Common transparent tape becomes charged when
pulled from a dispenser. If one piece is placed above another,
the repulsive force can be great enough to support the top
piece's weight. Assuming equal point charges (only an
approximation), calculate the magnitude of the charge if
electrostatic force is great enough to support the weight of a
10.0 mg piece of tape held 1.00 cm above another. (b)
Discuss whether the magnitude of this charge is consistent
with what is typical of static electricity.

35. (a) Find the ratio of the electrostatic to gravitational force
between two electrons. (b) What is this ratio for two protons?
(c) Why is the ratio different for electrons and protons?

36. At what distance is the electrostatic force between two
protons equal to the weight of one proton?

37. A certain five cent coin contains 5.00 g of nickel. What
fraction of the nickel atoms' electrons, removed and placed
1.00 m above it, would support the weight of this coin? The
atomic mass of nickel is 58.7, and each nickel atom contains
28 electrons and 28 protons.

38. (a) Two point charges totaling 8.00 C exert a repulsive

force of 0.150 N on one another when separated by 0.500 m.
What is the charge on each? (b) What is the charge on each
if the force is attractive?

39. Point charges of 5.00 C and –3.00 C are placed

0.250 m apart. (a) Where can a third charge be placed so that
the net force on it is zero? (b) What if both charges are
positive?

40. Two point charges 1 and 2 are 3.00 m apart, and

their total charge is 20 C . (a) If the force of repulsion

between them is 0.075N, what are magnitudes of the two
charges? (b) If one charge attracts the other with a force of
0.525N, what are the magnitudes of the two charges? Note
that you may need to solve a quadratic equation to reach your
answer.

18.5 Electric Field: Concept of a Field Revisited
41. What is the magnitude and direction of an electric field

that exerts a 2.00×10-5 N upward force on a –1.75 C

charge?

42. What is the magnitude and direction of the force exerted
on a 3.50 C charge by a 250 N/C electric field that points

due east?

43. Calculate the magnitude of the electric field 2.00 m from a
point charge of 5.00 mC (such as found on the terminal of a
Van de Graaff).

44. (a) What magnitude point charge creates a 10,000 N/C
electric field at a distance of 0.250 m? (b) How large is the
field at 10.0 m?

45. Calculate the initial (from rest) acceleration of a proton in

a 5.00×106 N/C electric field (such as created by a
research Van de Graaff). Explicitly show how you follow the
steps in the Problem-Solving Strategy for electrostatics.

46. (a) Find the direction and magnitude of an electric field

that exerts a 4.80×10−17 N westward force on an electron.

(b) What magnitude and direction force does this field exert
on a proton?

18.6 Electric Field Lines: Multiple Charges
47. (a) Sketch the electric field lines near a point charge + .

(b) Do the same for a point charge –3.00 .

48. Sketch the electric field lines a long distance from the
charge distributions shown in Figure 18.34 (a) and (b)

49. Figure 18.54 shows the electric field lines near two
charges 1 and 2 . What is the ratio of their magnitudes?

(b) Sketch the electric field lines a long distance from the
charges shown in the figure.

Figure 18.54 The electric field near two charges.

50. Sketch the electric field lines in the vicinity of two opposite
charges, where the negative charge is three times greater in
magnitude than the positive. (See Figure 18.54 for a similar
situation).

18.8 Applications of Electrostatics
51. (a) What is the electric field 5.00 m from the center of the
terminal of a Van de Graaff with a 3.00 mC charge, noting that
the field is equivalent to that of a point charge at the center of
the terminal? (b) At this distance, what force does the field
exert on a 2.00 C charge on the Van de Graaff's belt?

52. (a) What is the direction and magnitude of an electric field
that supports the weight of a free electron near the surface of
Earth? (b) Discuss what the small value for this field implies
regarding the relative strength of the gravitational and
electrostatic forces.

53. A simple and common technique for accelerating
electrons is shown in Figure 18.55, where there is a uniform
electric field between two plates. Electrons are released,
usually from a hot filament, near the negative plate, and there
is a small hole in the positive plate that allows the electrons to
continue moving. (a) Calculate the acceleration of the

electron if the field strength is 2.50×104 N/C . (b) Explain
why the electron will not be pulled back to the positive plate
once it moves through the hole.
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Figure 18.55 Parallel conducting plates with opposite charges on them
create a relatively uniform electric field used to accelerate electrons to
the right. Those that go through the hole can be used to make a TV or
computer screen glow or to produce X-rays.

54. Earth has a net charge that produces an electric field of
approximately 150 N/C downward at its surface. (a) What is
the magnitude and sign of the excess charge, noting the
electric field of a conducting sphere is equivalent to a point
charge at its center? (b) What acceleration will the field
produce on a free electron near Earth's surface? (c) What
mass object with a single extra electron will have its weight
supported by this field?

55. Point charges of 25.0 C and 45.0 C are placed

0.500 m apart. (a) At what point along the line between them
is the electric field zero? (b) What is the electric field halfway
between them?

56. What can you say about two charges 1 and 2 , if the

electric field one-fourth of the way from 1 to 2 is zero?

57. Integrated Concepts

Calculate the angular velocity ω of an electron orbiting a
proton in the hydrogen atom, given the radius of the orbit is

0.530×10–10 m . You may assume that the proton is
stationary and the centripetal force is supplied by Coulomb
attraction.

58. Integrated Concepts

An electron has an initial velocity of 5.00×106 m/s in a

uniform 2.00×105 N/C strength electric field. The field
accelerates the electron in the direction opposite to its initial
velocity. (a) What is the direction of the electric field? (b) How
far does the electron travel before coming to rest? (c) How
long does it take the electron to come to rest? (d) What is the
electron's velocity when it returns to its starting point?

59. Integrated Concepts

The practical limit to an electric field in air is about

3.00×106 N/C . Above this strength, sparking takes place

because air begins to ionize and charges flow, reducing the
field. (a) Calculate the distance a free proton must travel in
this field to reach 3.00% of the speed of light, starting from
rest. (b) Is this practical in air, or must it occur in a vacuum?

60. Integrated Concepts

A 5.00 g charged insulating ball hangs on a 30.0 cm long
string in a uniform horizontal electric field as shown in Figure
18.56. Given the charge on the ball is 1.00 C , find the

strength of the field.

Figure 18.56 A horizontal electric field causes the charged ball to hang

at an angle of 8.00º .

61. Integrated Concepts

Figure 18.57 shows an electron passing between two
charged metal plates that create an 100 N/C vertical electric
field perpendicular to the electron's original horizontal velocity.
(These can be used to change the electron's direction, such
as in an oscilloscope.) The initial speed of the electron is

3.00×106 m/s , and the horizontal distance it travels in the
uniform field is 4.00 cm. (a) What is its vertical deflection? (b)
What is the vertical component of its final velocity? (c) At what
angle does it exit? Neglect any edge effects.

Figure 18.57

62. Integrated Concepts

The classic Millikan oil drop experiment was the first to obtain
an accurate measurement of the charge on an electron. In it,
oil drops were suspended against the gravitational force by a
vertical electric field. (See Figure 18.58.) Given the oil drop to

be 1.00 m in radius and have a density of 920 kg/m3 :

(a) Find the weight of the drop. (b) If the drop has a single
excess electron, find the electric field strength needed to
balance its weight.
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Figure 18.58 In the Millikan oil drop experiment, small drops can be
suspended in an electric field by the force exerted on a single excess
electron. Classically, this experiment was used to determine the electron
charge e by measuring the electric field and mass of the drop.

63. Integrated Concepts

(a) In Figure 18.59, four equal charges lie on the corners

of a square. A fifth charge is on a mass directly above

the center of the square, at a height equal to the length of
one side of the square. Determine the magnitude of in

terms of , , and , if the Coulomb force is to equal the

weight of . (b) Is this equilibrium stable or unstable?
Discuss.

Figure 18.59 Four equal charges on the corners of a horizontal square
support the weight of a fifth charge located directly above the center of
the square.

64. Unreasonable Results

(a) Calculate the electric field strength near a 10.0 cm
diameter conducting sphere that has 1.00 C of excess charge
on it. (b) What is unreasonable about this result? (c) Which
assumptions are responsible?

65. Unreasonable Results

(a) Two 0.500 g raindrops in a thunderhead are 1.00 cm apart
when they each acquire 1.00 mC charges. Find their
acceleration. (b) What is unreasonable about this result? (c)
Which premise or assumption is responsible?

66. Unreasonable Results

A wrecking yard inventor wants to pick up cars by charging a
0.400 m diameter ball and inducing an equal and opposite
charge on the car. If a car has a 1000 kg mass and the ball is
to be able to lift it from a distance of 1.00 m: (a) What
minimum charge must be used? (b) What is the electric field
near the surface of the ball? (c) Why are these results
unreasonable? (d) Which premise or assumption is
responsible?

67. Construct Your Own Problem

Consider two insulating balls with evenly distributed equal
and opposite charges on their surfaces, held with a certain
distance between the centers of the balls. Construct a
problem in which you calculate the electric field (magnitude
and direction) due to the balls at various points along a line
running through the centers of the balls and extending to
infinity on either side. Choose interesting points and comment
on the meaning of the field at those points. For example, at
what points might the field be just that due to one ball and
where does the field become negligibly small? Among the
things to be considered are the magnitudes of the charges
and the distance between the centers of the balls. Your
instructor may wish for you to consider the electric field off
axis or for a more complex array of charges, such as those in
a water molecule.

68. Construct Your Own Problem

Consider identical spherical conducting space ships in deep
space where gravitational fields from other bodies are
negligible compared to the gravitational attraction between
the ships. Construct a problem in which you place identical
excess charges on the space ships to exactly counter their
gravitational attraction. Calculate the amount of excess
charge needed. Examine whether that charge depends on the
distance between the centers of the ships, the masses of the
ships, or any other factors. Discuss whether this would be an
easy, difficult, or even impossible thing to do in practice.
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Test Prep for AP® Courses

18.1 Static Electricity and Charge:
Conservation of Charge
1. When a glass rod is rubbed against silk, which of the
following statements is true?

a. Electrons are removed from the silk.
b. Electrons are removed from the rod.
c. Protons are removed from the silk.
d. Protons are removed from the rod.

2. In an experiment, three microscopic latex spheres are
sprayed into a chamber and become charged with +3e, +5e,
and −3e, respectively. Later, all three spheres collide
simultaneously and then separate. Which of the following are
possible values for the final charges on the spheres? Select
two answers.

X Y Z

(a) +4e −4e +5e

(b) −4e +4.5e +5.5e

(c) +5e −8e +7e

(d) +6e +6e −7e

3. If objects X and Y attract each other, which of the following
will be false?

a. X has positive charge and Y has negative charge.
b. X has negative charge and Y has positive charge.
c. X and Y both have positive charge.
d. X is neutral and Y has a charge.

4. Suppose a positively charged object A is brought in contact
with an uncharged object B in a closed system. What type of
charge will be left on object B?

a. negative
b. positive
c. neutral
d. cannot be determined

5. What will be the net charge on an object which attracts
neutral pieces of paper but repels a negatively charged
balloon?

a. negative
b. positive
c. neutral
d. cannot be determined

6. When two neutral objects are rubbed against each other,
the first one gains a net charge of 3e. Which of the following
statements is true?

a. The second object gains 3e and is negatively charged.
b. The second object loses 3e and is negatively charged.
c. The second object gains 3e and is positively charged.
d. The second object loses 3e and is positively charged.

7. In an experiment, a student runs a comb through his hair
several times and brings it close to small pieces of paper.
Which of the following will he observe?

a. Pieces of paper repel the comb.
b. Pieces of paper are attracted to the comb.
c. Some pieces of paper are attracted and some repel the

comb.
d. There is no attraction or repulsion between the pieces of

paper and the comb.

8. In an experiment a negatively charged balloon (balloon X)
is repelled by another charged balloon Y. However, an object

Z is attracted to balloon Y. Which of the following can be the
charge on Z? Select two answers.

a. negative
b. positive
c. neutral
d. cannot be determined

9. Suppose an object has a charge of 1 C and gains
6.88×1018 electrons.

a. What will be the net charge of the object?
b. If the object has gained electrons from a neutral object,

what will be the charge on the neutral object?
c. Find and explain the relationship between the total

charges of the two objects before and after the transfer.
d. When a third object is brought in contact with the first

object (after it gains the electrons), the resulting charge
on the third object is 0.4 C. What was its initial charge?

10. The charges on two identical metal spheres (placed in a
closed system) are -2.4×10−17 C and -4.8×10−17 C.

a. How many electrons will be equivalent to the charge on
each sphere?

b. If the two spheres are brought in contact and then
separated, find the charge on each sphere.

c. Calculate the number of electrons that would be
equivalent to the resulting charge on each sphere.

11. In an experiment the following observations are made by
a student for four charged objects W, X, Y, and Z:

• A glass rod rubbed with silk attracts W.
• W attracts Z but repels X.
• X attracts Z but repels Y.
• Y attracts W and Z.

Estimate whether the charges on each of the four objects are
positive, negative, or neutral.

18.2 Conductors and Insulators
12. Some students experimenting with an uncharged metal
sphere want to give the sphere a net charge using a charged
aluminum pie plate. Which of the following steps would give
the sphere a net charge of the same sign as the pie plate?

a. bringing the pie plate close to, but not touching, the
metal sphere, then moving the pie plate away.

b. bringing the pie plate close to, but not touching, the
metal sphere, then momentarily touching a grounding
wire to the metal sphere.

c. bringing the pie plate close to, but not touching, the
metal sphere, then momentarily touching a grounding
wire to the pie plate.

d. touching the pie plate to the metal sphere.

13.

Figure 18.60 Balloon and sphere.

When the balloon is brought closer to the sphere, there will be
a redistribution of charges. What is this phenomenon called?

a. electrostatic repulsion
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b. conduction
c. polarization
d. none of the above

14. What will be the charge at Y (i.e., the part of the sphere
furthest from the balloon)?

a. positive
b. negative
c. zero
d. It can be positive or negative depending on the material.

15. What will be the net charge on the sphere?
a. positive
b. negative
c. zero
d. It can be positive or negative depending on the material.

16. If Y is grounded while the balloon is still close to X, which
of the following will be true?

a. Electrons will flow from the sphere to the ground.
b. Electrons will flow from the ground to the sphere.
c. Protons will flow from the sphere to the ground.
d. Protons will flow from the ground to the sphere.

17. If the balloon is moved away after grounding, what will be
the net charge on the sphere?

a. positive
b. negative
c. zero
d. It can be positive or negative depending on the material.

18. A positively charged rod is used to charge a sphere by
induction. Which of the following is true?

a. The sphere must be a conductor.
b. The sphere must be an insulator.
c. The sphere can be a conductor or insulator but must be

connected to ground.
d. The sphere can be a conductor or insulator but must be

already charged.

19.

Figure 18.61 Rod and metal balls.

As shown in the figure above, two metal balls are suspended
and a negatively charged rod is brought close to them.

a. If the two balls are in contact with each other what will
be the charges on each ball?

b. Explain how the balls get these charges.
c. What will happen to the charge on the second ball (i.e.,

the ball further away from the rod) if it is momentarily
grounded while the rod is still there?

d. If (instead of grounding) the second ball is moved away
and then the rod is removed from the first ball, will the
two balls have induced charges? If yes, what will be the
charges? If no, why not?

20. Two experiments are performed using positively charged
glass rods and neutral electroscopes. In the first experiment
the rod is brought in contact with the electroscope. In the

second experiment the rod is only brought close to the
electroscope but not in contact. However, while the rod is
close, the electroscope is momentarily grounded and then the
rod is removed. In both experiments the needles of the
electroscopes deflect, which indicates the presence of
charges.

a. What is the charging method in each of the two
experiments?

b. What is the net charge on the electroscope in the first
experiment? Explain how the electroscope obtains that
charge.

c. Is the net charge on the electroscope in the second
experiment different from that of the first experiment?
Explain why.

18.3 Conductors and Electric Fields in Static
Equilibrium
21.

Figure 18.62 A sphere conductor.

An electric field due to a positively charged spherical
conductor is shown above. Where will the electric field be
weakest?

a. Point A
b. Point B
c. Point C
d. Same at all points

22.

Figure 18.63 Electric field between two parallel metal plates.

The electric field created by two parallel metal plates is shown
above. Where will the electric field be strongest?

a. Point A
b. Point B
c. Point C
d. Same at all points

23. Suppose that the electric field experienced due to a
positively charged small spherical conductor at a certain
distance is E. What will be the percentage change in electric
field experienced at thrice the distance if the charge on the
conductor is doubled?

24.
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Figure 18.64 Millikan oil drop experiment.

The classic Millikan oil drop experiment setup is shown
above. In this experiment oil drops are suspended in a
vertical electric field against the gravitational force to measure
their charge. If the mass of a negatively charged drop
suspended in an electric field of 1.18×10−4 N/C strength is
3.85×10−21 g, find the number of excess electrons in the
drop.

18.4 Coulomb’s Law
25. For questions 25–27, suppose that the electrostatics force
between two charges is F.

What will be the force if the distance between them is halved?

a. 4F

b. 2F

c. F/4
d. F/2

26. Which of the following is false?
a. If the charge of one of the particles is doubled and that

of the second is unchanged, the force will become 2F.
b. If the charge of one of the particles is doubled and that

of the second is halved, the force will remain F.
c. If the charge of both the particles is doubled, the force

will become 4F.
d. None of the above.

27. Which of the following is true about the gravitational force
between the particles?

a. It will be 3.25×10−38 F.
b. It will be 3.25×1038 F.
c. It will be equal to F.
d. It is not possible to determine the gravitational force as

the masses of the particles are not given.

28. Two massive, positively charged particles are initially held
a fixed distance apart. When they are moved farther apart,
the magnitude of their mutual gravitational force changes by a
factor of n. Which of the following indicates the factor by
which the magnitude of their mutual electrostatic force
changes?

a. 1/n2

b. 1/n
c. n

d. n2

29.
a. What is the electrostatic force between two charges of 1

C each, separated by a distance of 0.5 m?
b. How will this force change if the distance is increased to

1 m?

30.
a. Find the ratio of the electrostatic force to the

gravitational force between two electrons.

b. Will this ratio change if the two electrons are replaced
by protons? If yes, find the new ratio.

18.5 Electric Field: Concept of a Field Revisited
31. Two particles with charges +2q and +q are separated by a
distance r. The +2q particle has an electric field E at distance
r and exerts a force F on the +q particle. Use this information
to answer questions 31–32.

What is the electric field of the +q particle at the same
distance and what force does it exert on the +2q particle?

a. E/2, F/2
b. E, F/2
c. E/2, F

d. E, F

32. When the +q particle is replaced by a +3q particle, what
will be the electric field and force from the +2q particle
experienced by the +3q particle?

a. E/3, 3F

b. E, 3F

c. E/3, F

d. E, F

33. The direction of the electric field of a negative charge is
a. inward for both positive and negative charges.
b. outward for both positive and negative charges.
c. inward for other positive charges and outward for other

negative charges.
d. outward for other positive charges and inward for other

negative charges.

34. The force responsible for holding an atom together is
a. frictional
b. electric
c. gravitational
d. magnetic

35. When a positively charged particle exerts an inward force
on another particle P, what will be the charge of P?

a. positive
b. negative
c. neutral
d. cannot be determined

36. Find the force exerted due to a particle having a charge of
3.2×10−19 C on another identical particle 5 cm away.

37. Suppose that the force exerted on an electron is
5.6×10−17 N, directed to the east.

a. Find the magnitude of the electric field that exerts the
force.

b. What will be the direction of the electric field?
c. If the electron is replaced by a proton, what will be the

magnitude of force exerted?
d. What will be the direction of force on the proton?

18.6 Electric Field Lines: Multiple Charges
38.

Figure 18.65 An electric dipole (with +2q and –2q as the two
charges) is shown in the figure above. A third charge, −q is
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placed equidistant from the dipole charges. What will be the
direction of the net force on the third charge?

a. →
b. ←
c. ↓
d. ↑

39.

Figure 18.66

Four objects, each with charge +q, are held fixed on a square
with sides of length d, as shown in the figure. Objects X and Z

are at the midpoints of the sides of the square. The
electrostatic force exerted by object W on object X is F. Use
this information to answer questions 39–40.

What is the magnitude of force exerted by object W on Z?

a. F/7
b. F/5
c. F/3
d. F/2

40. What is the magnitude of the net force exerted on object
X by objects W, Y, and Z?

a. F/4
b. F/2
c. 9F/4
d. 3F

41.

Figure 18.67 Electric field with three charged objects.

The figure above represents the electric field in the vicinity of
three small charged objects, R, S, and T. The objects have
charges −q, +2q, and −q, respectively, and are located on the
x-axis at −d, 0, and d. Field vectors of very large magnitude
are omitted for clarity.

(a) i) Briefly describe the characteristics of the field diagram
that indicate that the sign of the charges of objects R and T is

negative and that the sign of the charge of object S is
positive.

ii) Briefly describe the characteristics of the field diagram that
indicate that the magnitudes of the charges of objects R and
T are equal and that the magnitude of the charge of object S

is about twice that of objects R and T.

For the following parts, an electric field directed to the right is
defined to be positive.

(b) On the axes below, sketch a graph of the electric field E

along the x-axis as a function of position x.

Figure 18.68 An Electric field (E) axis and Position (x) axis.

(c) Write an expression for the electric field E along the x-axis
as a function of position x in the region between objects S

and T in terms of q, d, and fundamental constants, as
appropriate.

(d) Your classmate tells you there is a point between S and T

where the electric field is zero. Determine whether this
statement is true, and explain your reasoning using two of the
representations from parts (a), (b), or (c).
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20 ELECTRIC CURRENT, RESISTANCE,
AND OHM'S LAW

Figure 20.1 Electric energy in massive quantities is transmitted from this hydroelectric facility, the Srisailam power station located along the
Krishna River in India (http://en.wikipedia.org/wiki/Srisailam_Dam) , by the movement of charge—that is, by electric current. (credit: Chintohere,
Wikimedia Commons)

Chapter Outline
20.1. Current

20.2. Ohm’s Law: Resistance and Simple Circuits

20.3. Resistance and Resistivity

20.4. Electric Power and Energy

20.5. Alternating Current versus Direct Current

20.6. Electric Hazards and the Human Body

20.7. Nerve Conduction–Electrocardiograms

Connection for AP® Courses
In our daily lives, we see and experience many examples of electricity which involve electric current, the movement of charge.
These include the flicker of numbers on a handheld calculator, nerve impulses carrying signals of vision to the brain, an
ultrasound device sending a signal to a computer screen, the brain sending a message for a baby to twitch its toes, an electric
train pulling its load over a mountain pass, and a hydroelectric plant sending energy to metropolitan and rural users.

Humankind has indeed harnessed electricity, the basis of technology, to improve the quality of life. While the previous two
chapters concentrated on static electricity and the fundamental force underlying its behavior, the next few chapters will be

Chapter 20 | Electric Current, Resistance, and Ohm's Law 867



devoted to electric and magnetic phenomena involving electric current. In addition to exploring applications of electricity, we shall
gain new insights into its nature – in particular, the fact that all magnetism results from electric current.

This chapter supports learning objectives covered under Big Ideas 1, 4, and 5 of the AP Physics Curriculum Framework. Electric
charge is a property of a system (Big Idea 1) that affects its interaction with other charged systems (Enduring Understanding
1.B), whereas electric current is fundamentally the movement of charge through a conductor and is based on the fact that electric
charge is conserved within a system (Essential Knowledge 1.B.1). The conservation of charge also leads to the concept of an
electric circuit as a closed loop of electrical current. In addition, this chapter discusses examples showing that the current in a
circuit is resisted by the elements of the circuit and the strength of the resistance depends on the material of the elements. The
macroscopic properties of materials, including resistivity, depend on their molecular and atomic structure (Enduring
Understanding 1.E). In addition, resistivity depends on the temperature of the material (Essential Knowledge 1.E.2).

The chapter also describes how the interaction of systems of objects can result in changes in those systems (Big Idea 4). For
example, electric properties of a system of charged objects can change in response to the presence of, or changes in, other
charged objects or systems (Enduring Understanding 4.E). A simple circuit with a resistor and an energy source is an example of
such a system. The current through the resistor in the circuit is equal to the difference of potentials across the resistor divided by
its resistance (Essential Knowledge 4.E.4).

The unifying theme of the physics curriculum is that any changes in the systems due to interactions are governed by laws of
conservation (Big Idea 5). This chapter applies the idea of energy conservation (Enduring Understanding 5.B) to electric circuits
and connects concepts of electric energy and electric power as rates of energy use (Essential Knowledge 5.B.5). While the laws
of conservation of energy in electric circuits are fully described by Kirchoff's rules, which are introduced in the next chapter
(Essential Knowledge 5.B.9), the specific definition of power (based on Essential Knowledge 5.B.9) is that it is the rate at which
energy is transferred from a resistor as the product of the electric potential difference across the resistor and the current through
the resistor.

Big Idea 1 Objects and systems have properties such as mass and charge. Systems may have internal structure.

Enduring Understanding 1.B Electric charge is a property of an object or system that affects its interactions with other objects or
systems containing charge.

Essential Knowledge 1.B.1 Electric charge is conserved. The net charge of a system is equal to the sum of the charges of all the
objects in the system.

Enduring Understanding 1.E Materials have many macroscopic properties that result from the arrangement and interactions of
the atoms and molecules that make up the material.

Essential Knowledge 1.E.2 Matter has a property called resistivity.

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.E The electric and magnetic properties of a system can change in response to the presence of, or
changes in, other objects or systems.

Essential Knowledge 4.E.4 The resistance of a resistor, and the capacitance of a capacitor, can be understood from the basic
properties of electric fields and forces, as well as the properties of materials and their geometry.

Big Idea 5: Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.B The energy of a system is conserved.

Essential Knowledge 5.B.5 Energy can be transferred by an external force exerted on an object or system that moves the object
or system through a distance; this energy transfer is called work. Energy transfer in mechanical or electrical systems may occur
at different rates. Power is defined as the rate of energy transfer into, out of, or within a system. [A piston filled with gas getting
compressed or expanded is treated in Physics 2 as a part of thermodynamics.]

Essential Knowledge 5.B.9 Kirchhoff's loop rule describes conservation of energy in electrical circuits. [The application of
Kirchhoff's laws to circuits is introduced in Physics 1 and further developed in Physics 2 in the context of more complex circuits,
including those with capacitors.]

20.1 Current

Learning Objectives
By the end of this section, you will be able to:

• Define electric current, ampere, and drift velocity.
• Describe the direction of charge flow in conventional current.
• Use drift velocity to calculate current and vice versa.

The information presented in this section supports the following AP® learning objectives and science practices:

• 1.B.1.1 The student is able to make claims about natural phenomena based on conservation of electric charge. (S.P.
6.4)

• 1.B.1.2 The student is able to make predictions, using the conservation of electric charge, about the sign and relative
quantity of net charge of objects or systems after various charging processes, including conservation of charge in
simple circuits. (S.P. 6.4, 7.2)
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Electric Current
Electric current is defined to be the rate at which charge flows. A large current, such as that used to start a truck engine, moves a
large amount of charge in a small time, whereas a small current, such as that used to operate a hand-held calculator, moves a
small amount of charge over a long period of time. In equation form, electric current is defined to be

(20.1)
=

Δ
Δ

,

where Δ is the amount of charge passing through a given area in time Δ . (As in previous chapters, initial time is often taken

to be zero, in which case Δ = .) (See Figure 20.2.) The SI unit for current is the ampere (A), named for the French physicist

André-Marie Ampère (1775–1836). Since = Δ / Δ , we see that an ampere is one coulomb per second:

(20.2)1 A = 1 C/s

Not only are fuses and circuit breakers rated in amperes (or amps), so are many electrical appliances.

Figure 20.2 The rate of flow of charge is current. An ampere is the flow of one coulomb through an area in one second.

Example 20.1 Calculating Currents: Current in a Truck Battery and a Handheld Calculator

(a) What is the current involved when a truck battery sets in motion 720 C of charge in 4.00 s while starting an engine? (b)
How long does it take 1.00 C of charge to flow through a handheld calculator if a 0.300-mA current is flowing?

Strategy

We can use the definition of current in the equation = Δ / Δ to find the current in part (a), since charge and time are

given. In part (b), we rearrange the definition of current and use the given values of charge and current to find the time
required.

Solution for (a)

Entering the given values for charge and time into the definition of current gives

(20.3)
=

Δ
Δ

= 720 C
4.00 s

= 180 C/s

= 180 A.

Discussion for (a)

This large value for current illustrates the fact that a large charge is moved in a small amount of time. The currents in these
“starter motors” are fairly large because large frictional forces need to be overcome when setting something in motion.

Solution for (b)

Solving the relationship = Δ / Δ for time Δ , and entering the known values for charge and current gives

(20.4)
Δ =

Δ
= 1.00 C

0.300 10-3 C/s

= 3.33 103 s.

Discussion for (b)

This time is slightly less than an hour. The small current used by the hand-held calculator takes a much longer time to move
a smaller charge than the large current of the truck starter. So why can we operate our calculators only seconds after turning
them on? It's because calculators require very little energy. Such small current and energy demands allow handheld
calculators to operate from solar cells or to get many hours of use out of small batteries. Remember, calculators do not have
moving parts in the same way that a truck engine has with cylinders and pistons, so the technology requires smaller
currents.
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Figure 20.3 shows a simple circuit and the standard schematic representation of a battery, conducting path, and load (a resistor).
Schematics are very useful in visualizing the main features of a circuit. A single schematic can represent a wide variety of
situations. The schematic in Figure 20.3 (b), for example, can represent anything from a truck battery connected to a headlight
lighting the street in front of the truck to a small battery connected to a penlight lighting a keyhole in a door. Such schematics are
useful because the analysis is the same for a wide variety of situations. We need to understand a few schematics to apply the
concepts and analysis to many more situations.

Figure 20.3 (a) A simple electric circuit. A closed path for current to flow through is supplied by conducting wires connecting a load to the terminals of a
battery. (b) In this schematic, the battery is represented by the two parallel red lines, conducting wires are shown as straight lines, and the zigzag
represents the load. The schematic represents a wide variety of similar circuits.

Note that the direction of current in Figure 20.3 is from positive to negative. The direction of conventional current is the direction

that positive charge would flow. In a single loop circuit (as shown in Figure 20.3), the value for current at all points of the circuit
should be the same if there are no losses. This is because current is the flow of charge and charge is conserved, i.e., the charge
flowing out from the battery will be the same as the charge flowing into the battery. Depending on the situation, positive charges,
negative charges, or both may move. In metal wires, for example, current is carried by electrons—that is, negative charges
move. In ionic solutions, such as salt water, both positive and negative charges move. This is also true in nerve cells. A Van de
Graaff generator used for nuclear research can produce a current of pure positive charges, such as protons. Figure 20.4
illustrates the movement of charged particles that compose a current. The fact that conventional current is taken to be in the
direction that positive charge would flow can be traced back to American politician and scientist Benjamin Franklin in the 1700s.
He named the type of charge associated with electrons negative, long before they were known to carry current in so many
situations. Franklin, in fact, was totally unaware of the small-scale structure of electricity.

It is important to realize that there is an electric field in conductors responsible for producing the current, as illustrated in Figure
20.4. Unlike static electricity, where a conductor in equilibrium cannot have an electric field in it, conductors carrying a current
have an electric field and are not in static equilibrium. An electric field is needed to supply energy to move the charges.

Making Connections: Take-Home Investigation—Electric Current Illustration

Find a straw and little peas that can move freely in the straw. Place the straw flat on a table and fill the straw with peas.
When you pop one pea in at one end, a different pea should pop out the other end. This demonstration is an analogy for an
electric current. Identify what compares to the electrons and what compares to the supply of energy. What other analogies
can you find for an electric current?

Note that the flow of peas is based on the peas physically bumping into each other; electrons flow due to mutually repulsive
electrostatic forces.
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Figure 20.4 Current is the rate at which charge moves through an area , such as the cross-section of a wire. Conventional current is defined to
move in the direction of the electric field. (a) Positive charges move in the direction of the electric field and the same direction as conventional current.
(b) Negative charges move in the direction opposite to the electric field. Conventional current is in the direction opposite to the movement of negative
charge. The flow of electrons is sometimes referred to as electronic flow.

Example 20.2 Calculating the Number of Electrons that Move through a Calculator

If the 0.300-mA current through the calculator mentioned in the Example 20.1 example is carried by electrons, how many
electrons per second pass through it?

Strategy

The current calculated in the previous example was defined for the flow of positive charge. For electrons, the magnitude is

the same, but the sign is opposite, electrons = −0.300×10−3 C/s .Since each electron ( −) has a charge of

–1.60×10−19 C , we can convert the current in coulombs per second to electrons per second.

Solution

Starting with the definition of current, we have

(20.5)
electrons =

Δ electrons

Δ
= –0.300×10−3 C

s .

We divide this by the charge per electron, so that

(20.6)–

s = –0.300 10 – 3 C
s

1 –

–1.60 10−19 C

= 1.88 1015 –

s .

Discussion

There are so many charged particles moving, even in small currents, that individual charges are not noticed, just as
individual water molecules are not noticed in water flow. Even more amazing is that they do not always keep moving forward
like soldiers in a parade. Rather they are like a crowd of people with movement in different directions but a general trend to
move forward. There are lots of collisions with atoms in the metal wire and, of course, with other electrons.

Drift Velocity
Electrical signals are known to move very rapidly. Telephone conversations carried by currents in wires cover large distances
without noticeable delays. Lights come on as soon as a switch is flicked. Most electrical signals carried by currents travel at

speeds on the order of 108 m/s , a significant fraction of the speed of light. Interestingly, the individual charges that make up the

current move much more slowly on average, typically drifting at speeds on the order of 10−4 m/s . How do we reconcile these
two speeds, and what does it tell us about standard conductors?

The high speed of electrical signals results from the fact that the force between charges acts rapidly at a distance. Thus, when a
free charge is forced into a wire, as in Figure 20.5, the incoming charge pushes other charges ahead of it, which in turn push on
charges farther down the line. The density of charge in a system cannot easily be increased, and so the signal is passed on
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rapidly. The resulting electrical shock wave moves through the system at nearly the speed of light. To be precise, this rapidly
moving signal or shock wave is a rapidly propagating change in electric field.

Figure 20.5 When charged particles are forced into this volume of a conductor, an equal number are quickly forced to leave. The repulsion between
like charges makes it difficult to increase the number of charges in a volume. Thus, as one charge enters, another leaves almost immediately, carrying
the signal rapidly forward.

Good conductors have large numbers of free charges in them. In metals, the free charges are free electrons. Figure 20.6 shows
how free electrons move through an ordinary conductor. The distance that an individual electron can move between collisions
with atoms or other electrons is quite small. The electron paths thus appear nearly random, like the motion of atoms in a gas. But
there is an electric field in the conductor that causes the electrons to drift in the direction shown (opposite to the field, since they
are negative). The drift velocity d is the average velocity of the free charges. Drift velocity is quite small, since there are so

many free charges. If we have an estimate of the density of free electrons in a conductor, we can calculate the drift velocity for a
given current. The larger the density, the lower the velocity required for a given current.

Figure 20.6 Free electrons moving in a conductor make many collisions with other electrons and atoms. The path of one electron is shown. The
average velocity of the free charges is called the drift velocity, d , and it is in the direction opposite to the electric field for electrons. The collisions

normally transfer energy to the conductor, requiring a constant supply of energy to maintain a steady current.

Conduction of Electricity and Heat

Good electrical conductors are often good heat conductors, too. This is because large numbers of free electrons can carry
electrical current and can transport thermal energy.

The free-electron collisions transfer energy to the atoms of the conductor. The electric field does work in moving the electrons
through a distance, but that work does not increase the kinetic energy (nor speed, therefore) of the electrons. The work is
transferred to the conductor's atoms, possibly increasing temperature. Thus a continuous power input is required to maintain
current. An exception, of course, is found in superconductors, for reasons we shall explore in a later chapter. Superconductors
can have a steady current without a continual supply of energy—a great energy savings. In contrast, the supply of energy can be
useful, such as in a lightbulb filament. The supply of energy is necessary to increase the temperature of the tungsten filament, so
that the filament glows.

Making Connections: Take-Home Investigation—Filament Observations

Find a lightbulb with a filament. Look carefully at the filament and describe its structure. To what points is the filament
connected?

We can obtain an expression for the relationship between current and drift velocity by considering the number of free charges in
a segment of wire, as illustrated in Figure 20.7. The number of free charges per unit volume is given the symbol and depends

on the material. The shaded segment has a volume , so that the number of free charges in it is . The charge Δ in

this segment is thus , where is the amount of charge on each carrier. (Recall that for electrons, is

872 Chapter 20 | Electric Current, Resistance, and Ohm's Law

This content is available for free at http://cnx.org/content/col11844/1.13



−1.60×10−19 C .) Current is charge moved per unit time; thus, if all the original charges move out of this segment in time Δ ,
the current is

(20.7)
=

Δ
Δ

=
Δ

.

Note that / Δ is the magnitude of the drift velocity, d , since the charges move an average distance in a time Δ .

Rearranging terms gives

(20.8)= d,

where is the current through a wire of cross-sectional area made of a material with a free charge density . The carriers
of the current each have charge and move with a drift velocity of magnitude d .

Figure 20.7 All the charges in the shaded volume of this wire move out in a time , having a drift velocity of magnitude d = / . See text for

further discussion.

Note that simple drift velocity is not the entire story. The speed of an electron is much greater than its drift velocity. In addition,
not all of the electrons in a conductor can move freely, and those that do might move somewhat faster or slower than the drift
velocity. So what do we mean by free electrons? Atoms in a metallic conductor are packed in the form of a lattice structure.
Some electrons are far enough away from the atomic nuclei that they do not experience the attraction of the nuclei as much as
the inner electrons do. These are the free electrons. They are not bound to a single atom but can instead move freely among the
atoms in a “sea” of electrons. These free electrons respond by accelerating when an electric field is applied. Of course as they
move they collide with the atoms in the lattice and other electrons, generating thermal energy, and the conductor gets warmer. In
an insulator, the organization of the atoms and the structure do not allow for such free electrons.

Example 20.3 Calculating Drift Velocity in a Common Wire

Calculate the drift velocity of electrons in a 12-gauge copper wire (which has a diameter of 2.053 mm) carrying a 20.0-A
current, given that there is one free electron per copper atom. (Household wiring often contains 12-gauge copper wire, and

the maximum current allowed in such wire is usually 20 A.) The density of copper is 8.80×103 kg/m3 .

Strategy

We can calculate the drift velocity using the equation = d . The current = 20.0 A is given, and

= – 1.60×10 – 19 C is the charge of an electron. We can calculate the area of a cross-section of the wire using the

formula = 2, where is one-half the given diameter, 2.053 mm. We are given the density of copper,

8.80×103 kg/m3, and the periodic table shows that the atomic mass of copper is 63.54 g/mol. We can use these two

quantities along with Avogadro's number, 6.02×1023 atoms/mol, to determine , the number of free electrons per

cubic meter.

Solution

First, calculate the density of free electrons in copper. There is one free electron per copper atom. Therefore, is the same as

the number of copper atoms per m3 . We can now find as follows:

(20.9)
= 1 −

atom
×6.02×1023 atoms

mol
× 1 mol

63.54 g
×

1000 g

kg
×

8.80×103 kg

1 m3

= 8.342×1028 − /m3 .

The cross-sectional area of the wire is
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(20.10)= 2

= 2.053×10−3 m
2

2

= 3.310×10–6 m2 .

Rearranging = d to isolate drift velocity gives

(20.11)
d =

= 20.0 A

(8.342×1028/m3)(–1.60×10–19 C)(3.310×10–6 m2)

= –4.53×10–4 m/s.

Discussion

The minus sign indicates that the negative charges are moving in the direction opposite to conventional current. The small

value for drift velocity (on the order of 10−4 m/s ) confirms that the signal moves on the order of 1012 times faster (about

108 m/s ) than the charges that carry it.

20.2 Ohm’s Law: Resistance and Simple Circuits

Learning Objectives
By the end of this section, you will be able to:

• Explain the origin of Ohm's law.
• Calculate voltages, currents, and resistances with Ohm's law.
• Explain the difference between ohmic and non-ohmic materials.
• Describe a simple circuit.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.E.4.1 The student is able to make predictions about the properties of resistors and/or capacitors when placed in a
simple circuit based on the geometry of the circuit element and supported by scientific theories and mathematical
relationships. (S.P. 2.2, 6.4)

What drives current? We can think of various devices—such as batteries, generators, wall outlets, and so on—which are
necessary to maintain a current. All such devices create a potential difference and are loosely referred to as voltage sources.
When a voltage source is connected to a conductor, it applies a potential difference that creates an electric field. The electric
field in turn exerts force on charges, causing current.

Ohm's Law
The current that flows through most substances is directly proportional to the voltage applied to it. The German physicist
Georg Simon Ohm (1787–1854) was the first to demonstrate experimentally that the current in a metal wire is directly

proportional to the voltage applied:

(20.12)∝ .

This important relationship is known as Ohm's law. It can be viewed as a cause-and-effect relationship, with voltage the cause
and current the effect. This is an empirical law like that for friction—an experimentally observed phenomenon. Such a linear
relationship doesn't always occur.

Resistance and Simple Circuits
If voltage drives current, what impedes it? The electric property that impedes current (crudely similar to friction and air
resistance) is called resistance . Collisions of moving charges with atoms and molecules in a substance transfer energy to
the substance and limit current. Resistance is defined as inversely proportional to current, or

(20.13)
∝ 1 .

Thus, for example, current is cut in half if resistance doubles. Combining the relationships of current to voltage and current to
resistance gives
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(20.14)= .

This relationship is also called Ohm's law. Ohm's law in this form really defines resistance for certain materials. Ohm's law (like
Hooke's law) is not universally valid. The many substances for which Ohm's law holds are called ohmic. These include good
conductors like copper and aluminum, and some poor conductors under certain circumstances. Ohmic materials have a
resistance that is independent of voltage and current . An object that has simple resistance is called a resistor, even if

its resistance is small. The unit for resistance is an ohm and is given the symbol Ω (upper case Greek omega). Rearranging

= gives = , and so the units of resistance are 1 ohm = 1 volt per ampere:

(20.15)1 Ω = 1 .

Figure 20.8 shows the schematic for a simple circuit. A simple circuit has a single voltage source and a single resistor. The
wires connecting the voltage source to the resistor can be assumed to have negligible resistance, or their resistance can be
included in .

Figure 20.8 A simple electric circuit in which a closed path for current to flow is supplied by conductors (usually metal wires) connecting a load to the
terminals of a battery, represented by the red parallel lines. The zigzag symbol represents the single resistor and includes any resistance in the
connections to the voltage source.

Making Connections: Real World Connections

Ohm's law ( = ) is a fundamental relationship that could be presented by a linear function with the slope of the line
being the resistance. The resistance represents the voltage that needs to be applied to the resistor to create a current of 1 A
through the circuit. The graph (in the figure below) shows this representation for two simple circuits with resistors that have
different resistances and thus different slopes.

Figure 20.9 The figure illustrates the relationship between current and voltage for two different resistors. The slope of the graph represents the
resistance value, which is 2Ω and 4Ω for the two lines shown.
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Making Connections: Real World Connections

The materials which follow Ohm's law by having a linear relationship between voltage and current are known as ohmic
materials. On the other hand, some materials exhibit a nonlinear voltage-current relationship and hence are known as non-
ohmic materials. The figure below shows current voltage relationships for the two types of materials.

(a) (b)

Figure 20.10 The relationship between voltage and current for ohmic and non-ohmic materials are shown.

Clearly the resistance of an ohmic material (shown in (a)) remains constant and can be calculated by finding the slope of the
graph but that is not true for a non-ohmic material (shown in (b)).

Example 20.4 Calculating Resistance: An Automobile Headlight

What is the resistance of an automobile headlight through which 2.50 A flows when 12.0 V is applied to it?

Strategy

We can rearrange Ohm's law as stated by = and use it to find the resistance.

Solution

Rearranging = and substituting known values gives

(20.16)
= = 12.0 V

2.50 A
= 4.80 Ω.

Discussion

This is a relatively small resistance, but it is larger than the cold resistance of the headlight. As we shall see in Resistance
and Resistivity, resistance usually increases with temperature, and so the bulb has a lower resistance when it is first
switched on and will draw considerably more current during its brief warm-up period.

Resistances range over many orders of magnitude. Some ceramic insulators, such as those used to support power lines, have

resistances of 1012 Ω or more. A dry person may have a hand-to-foot resistance of 105 Ω , whereas the resistance of the

human heart is about 103 Ω . A meter-long piece of large-diameter copper wire may have a resistance of 10−5 Ω , and
superconductors have no resistance at all (they are non-ohmic). Resistance is related to the shape of an object and the material
of which it is composed, as will be seen in Resistance and Resistivity.

Additional insight is gained by solving = for , yielding

(20.17)=

This expression for can be interpreted as the voltage drop across a resistor produced by the current . The phrase drop

is often used for this voltage. For instance, the headlight in Example 20.4 has an drop of 12.0 V. If voltage is measured at
various points in a circuit, it will be seen to increase at the voltage source and decrease at the resistor. Voltage is similar to fluid
pressure. The voltage source is like a pump, creating a pressure difference, causing current—the flow of charge. The resistor is
like a pipe that reduces pressure and limits flow because of its resistance. Conservation of energy has important consequences
here. The voltage source supplies energy (causing an electric field and a current), and the resistor converts it to another form
(such as thermal energy). In a simple circuit (one with a single simple resistor), the voltage supplied by the source equals the
voltage drop across the resistor, since PE = Δ , and the same flows through each. Thus the energy supplied by the

voltage source and the energy converted by the resistor are equal. (See Figure 20.11.)
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Figure 20.11 The voltage drop across a resistor in a simple circuit equals the voltage output of the battery.

Making Connections: Conservation of Energy

In a simple electrical circuit, the sole resistor converts energy supplied by the source into another form. Conservation of
energy is evidenced here by the fact that all of the energy supplied by the source is converted to another form by the resistor
alone. We will find that conservation of energy has other important applications in circuits and is a powerful tool in circuit
analysis.

PhET Explorations: Ohm's Law

See how the equation form of Ohm's law relates to a simple circuit. Adjust the voltage and resistance, and see the current
change according to Ohm's law. The sizes of the symbols in the equation change to match the circuit diagram.

Figure 20.12 Ohm's Law (http://cnx.org/content/m55356/1.2/ohms-law_en.jar)

20.3 Resistance and Resistivity

Learning Objectives
By the end of this section, you will be able to:

• Explain the concept of resistivity.
• Use resistivity to calculate the resistance of specified configurations of material.
• Use the thermal coefficient of resistivity to calculate the change of resistance with temperature.

The information presented in this section supports the following AP® learning objectives and science practices:

• 1.E.2.1 The student is able to choose and justify the selection of data needed to determine resistivity for a given
material. (S.P. 4.1)

• 4.E.4.2 The student is able to design a plan for the collection of data to determine the effect of changing the geometry
and/or materials on the resistance or capacitance of a circuit element and relate results to the basic properties of
resistors and capacitors. (S.P. 4.1, 4.2)

• 4.E.4.3 The student is able to analyze data to determine the effect of changing the geometry and/or materials on the
resistance or capacitance of a circuit element and relate results to the basic properties of resistors and capacitors. (S.P.
5.1)

Material and Shape Dependence of Resistance
The resistance of an object depends on its shape and the material of which it is composed. The cylindrical resistor in Figure
20.13 is easy to analyze, and, by so doing, we can gain insight into the resistance of more complicated shapes. As you might
expect, the cylinder's electric resistance is directly proportional to its length , similar to the resistance of a pipe to fluid flow.
The longer the cylinder, the more collisions charges will make with its atoms. The greater the diameter of the cylinder, the more
current it can carry (again similar to the flow of fluid through a pipe). In fact, is inversely proportional to the cylinder's cross-

sectional area .
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Figure 20.13 A uniform cylinder of length and cross-sectional area . Its resistance to the flow of current is similar to the resistance posed by a

pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional area , the smaller its resistance.

For a given shape, the resistance depends on the material of which the object is composed. Different materials offer different
resistance to the flow of charge. We define the resistivity of a substance so that the resistance of an object is directly

proportional to . Resistivity is an intrinsic property of a material, independent of its shape or size. The resistance of a

uniform cylinder of length , of cross-sectional area , and made of a material with resistivity , is

(20.18)
= .

Table 20.1 gives representative values of . The materials listed in the table are separated into categories of conductors,

semiconductors, and insulators, based on broad groupings of resistivities. Conductors have the smallest resistivities, and
insulators have the largest; semiconductors have intermediate resistivities. Conductors have varying but large free charge
densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors are intermediate,
having far fewer free charges than conductors, but having properties that make the number of free charges depend strongly on
the type and amount of impurities in the semiconductor. These unique properties of semiconductors are put to use in modern
electronics, as will be explored in later chapters.

878 Chapter 20 | Electric Current, Resistance, and Ohm's Law

This content is available for free at http://cnx.org/content/col11844/1.13



Table 20.1 Resistivities of Various materials at 20ºC

Material Resistivity ρ ( Ω ⋅m )

Conductors

Silver 1.59×10−8

Copper 1.72×10−8

Gold 2.44×10−8

Aluminum 2.65×10−8

Tungsten 5.6×10−8

Iron 9.71×10−8

Platinum 10.6×10−8

Steel 20×10−8

Lead 22×10−8

Manganin (Cu, Mn, Ni alloy) 44×10−8

Constantan (Cu, Ni alloy) 49×10−8

Mercury 96×10−8

Nichrome (Ni, Fe, Cr alloy) 100×10−8

Semiconductors[1]

Carbon (pure) 3.5×105

Carbon (3.5 − 60)×105

Germanium (pure) 600×10−3

Germanium (1 − 600)×10−3

Silicon (pure) 2300

Silicon 0.1–2300

Insulators

Amber 5×1014

Glass 109 − 1014

Lucite >1013

Mica 1011 − 1015

Quartz (fused) 75×1016

Rubber (hard) 1013 − 1016

Sulfur 1015

Teflon >1013

Wood 108 − 1014
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Example 20.5 Calculating Resistor Diameter: A Headlight Filament

A car headlight filament is made of tungsten and has a cold resistance of 0.350 Ω . If the filament is a cylinder 4.00 cm
long (it may be coiled to save space), what is its diameter?

Strategy

We can rearrange the equation = to find the cross-sectional area of the filament from the given information. Then

its diameter can be found by assuming it has a circular cross-section.

Solution

The cross-sectional area, found by rearranging the expression for the resistance of a cylinder given in = , is

(20.19)
= .

Substituting the given values, and taking from Table 20.1, yields

(20.20)
=

(5.6 10–8 Ω ⋅ m)(4.00 10–2 m)

0.350 Ω

= 6.40 10–9 m2 .

The area of a circle is related to its diameter by

(20.21)
=

2

4
.

Solving for the diameter , and substituting the value found for , gives

(20.22)

= 2

1
2

= 2 6.40 10–9 m2

3.14

1
2

= 9.0 10–5 m.

Discussion

The diameter is just under a tenth of a millimeter. It is quoted to only two digits, because is known to only two digits.

Temperature Variation of Resistance
The resistivity of all materials depends on temperature. Some even become superconductors (zero resistivity) at very low
temperatures. (See Figure 20.14.) Conversely, the resistivity of conductors increases with increasing temperature. Since the
atoms vibrate more rapidly and over larger distances at higher temperatures, the electrons moving through a metal make more
collisions, effectively making the resistivity higher. Over relatively small temperature changes (about 100ºC or less), resistivity

varies with temperature change Δ as expressed in the following equation

(20.23)= 0(1 + Δ ),

where 0 is the original resistivity and is the temperature coefficient of resistivity. (See the values of in Table 20.2

below.) For larger temperature changes, may vary or a nonlinear equation may be needed to find . Note that is positive

for metals, meaning their resistivity increases with temperature. Some alloys have been developed specifically to have a small
temperature dependence. Manganin (which is made of copper, manganese and nickel), for example, has close to zero (to
three digits on the scale in Table 20.2), and so its resistivity varies only slightly with temperature. This is useful for making a
temperature-independent resistance standard, for example.

1. Values depend strongly on amounts and types of impurities
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Figure 20.14 The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to about 4.2 K. Above that critical
temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.

Table 20.2 Temperature Coefficients of Resistivity

Material Coefficient α (1/°C)[2]

Conductors

Silver 3.8×10−3

Copper 3.9×10−3

Gold 3.4×10−3

Aluminum 3.9×10−3

Tungsten 4.5×10−3

Iron 5.0×10−3

Platinum 3.93×10−3

Lead 4.3×10−3

Manganin (Cu, Mn, Ni alloy) 0.000×10−3

Constantan (Cu, Ni alloy) 0.002×10−3

Mercury 0.89×10−3

Nichrome (Ni, Fe, Cr alloy) 0.4×10−3

Semiconductors

Carbon (pure) −0.5×10−3

Germanium (pure) −50×10−3

Silicon (pure) −70×10−3

Note also that is negative for the semiconductors listed in Table 20.2, meaning that their resistivity decreases with increasing
temperature. They become better conductors at higher temperature, because increased thermal agitation increases the number
of free charges available to carry current. This property of decreasing with temperature is also related to the type and amount

of impurities present in the semiconductors.

2. Values at 20°C.
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The resistance of an object also depends on temperature, since 0 is directly proportional to . For a cylinder we know

= / , and so, if and do not change greatly with temperature, will have the same temperature dependence as

. (Examination of the coefficients of linear expansion shows them to be about two orders of magnitude less than typical

temperature coefficients of resistivity, and so the effect of temperature on and is about two orders of magnitude less than
on .) Thus,

(20.24)= 0(1 + Δ )

is the temperature dependence of the resistance of an object, where 0 is the original resistance and is the resistance after

a temperature change Δ . Numerous thermometers are based on the effect of temperature on resistance. (See Figure 20.15.)
One of the most common is the thermistor, a semiconductor crystal with a strong temperature dependence, the resistance of
which is measured to obtain its temperature. The device is small, so that it quickly comes into thermal equilibrium with the part of
a person it touches.

Figure 20.15 These familiar thermometers are based on the automated measurement of a thermistor's temperature-dependent resistance. (credit: Biol,
Wikimedia Commons)

Example 20.6 Calculating Resistance: Hot-Filament Resistance

Although caution must be used in applying = 0(1 + Δ ) and = 0(1 + Δ ) for temperature changes greater

than 100ºC , for tungsten the equations work reasonably well for very large temperature changes. What, then, is the

resistance of the tungsten filament in the previous example if its temperature is increased from room temperature ( 20ºC ) to

a typical operating temperature of 2850ºC ?

Strategy

This is a straightforward application of = 0(1 + Δ ) , since the original resistance of the filament was given to be

0 = 0.350 Ω , and the temperature change is Δ = 2830ºC .

Solution

The hot resistance is obtained by entering known values into the above equation:

(20.25)= 0(1 + Δ )

= (0.350 Ω)[1 + (4.5 10–3 / ºC)(2830ºC)]

= 4.8 Ω.

Discussion

This value is consistent with the headlight resistance example in Ohm's Law: Resistance and Simple Circuits.

PhET Explorations: Resistance in a Wire

Learn about the physics of resistance in a wire. Change its resistivity, length, and area to see how they affect the wire's
resistance. The sizes of the symbols in the equation change along with the diagram of a wire.

Figure 20.16 Resistance in a Wire (http://cnx.org/content/m55357/1.2/resistance-in-a-wire_en.jar)
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Applying the Science Practices: Examining Resistance

Using the PhET Simulation “Resistance in a Wire”, design an experiment to determine how different variables – resistivity,
length, and area – affect the resistance of a resistor. For each variable, you should record your results in a table and then
create a graph to determine the relationship.

20.4 Electric Power and Energy

Learning Objectives
By the end of this section, you will be able to:

• Calculate the power dissipated by a resistor and the power supplied by a power supply.
• Calculate the cost of electricity under various circumstances.

The information presented in this section supports the following AP® learning objectives and science practices:

• 5.B.9.8 The student is able to translate between graphical and symbolic representations of experimental data
describing relationships among power, current, and potential difference across a resistor. (S.P. 1.5)

Power in Electric Circuits
Power is associated by many people with electricity. Knowing that power is the rate of energy use or energy conversion, what is
the expression for electric power? Power transmission lines might come to mind. We also think of lightbulbs in terms of their
power ratings in watts. Let us compare a 25-W bulb with a 60-W bulb. (See Figure 20.17(a).) Since both operate on the same
voltage, the 60-W bulb must draw more current to have a greater power rating. Thus the 60-W bulb's resistance must be lower
than that of a 25-W bulb. If we increase voltage, we also increase power. For example, when a 25-W bulb that is designed to
operate on 120 V is connected to 240 V, it briefly glows very brightly and then burns out. Precisely how are voltage, current, and
resistance related to electric power?

Figure 20.17 (a) Which of these lightbulbs, the 25-W bulb (upper left) or the 60-W bulb (upper right), has the higher resistance? Which draws more
current? Which uses the most energy? Can you tell from the color that the 25-W filament is cooler? Is the brighter bulb a different color and if so why?
(credits: Dickbauch, Wikimedia Commons; Greg Westfall, Flickr) (b) This compact fluorescent light (CFL) puts out the same intensity of light as the
60-W bulb, but at 1/4 to 1/10 the input power. (credit: dbgg1979, Flickr)

Electric energy depends on both the voltage involved and the charge moved. This is expressed most simply as PE = ,

where is the charge moved and is the voltage (or more precisely, the potential difference the charge moves through).

Power is the rate at which energy is moved, and so electric power is

(20.26)
= = .

Recognizing that current is = / (note that Δ = here), the expression for power becomes

(20.27)=
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Electric power ( ) is simply the product of current times voltage. Power has familiar units of watts. Since the SI unit for potential

energy (PE) is the joule, power has units of joules per second, or watts. Thus, 1 A ⋅ V = 1 W . For example, cars often have
one or more auxiliary power outlets with which you can charge a cell phone or other electronic devices. These outlets may be
rated at 20 A, so that the circuit can deliver a maximum power = = (20 A)(12 V) = 240 W . In some applications,

electric power may be expressed as volt-amperes or even kilovolt-amperes ( 1 kA ⋅ V = 1 kW ).

To see the relationship of power to resistance, we combine Ohm's law with = . Substituting = gives

= ( / ) = 2 / . Similarly, substituting = gives = ( ) = 2 . Three expressions for electric power are

listed together here for convenience:

(20.28)=

(20.29)
=

2

(20.30)= 2 .

Note that the first equation is always valid, whereas the other two can be used only for resistors. In a simple circuit, with one
voltage source and a single resistor, the power supplied by the voltage source and that dissipated by the resistor are identical. (In
more complicated circuits, can be the power dissipated by a single device and not the total power in the circuit.)

Making Connections: Using Graphs to Calculate Resistance

As ∝ 2 and ∝ 2 , the graph for power versus current or voltage is quadratic. An example is shown in the figure

below.

(a) (b)

Figure 20.18 The figure shows (a) power versus current and (b) power versus voltage relationships for simple resistor circuits.

Using equations (20.29) and (20.30), we can calculate the resistance in each case. In graph (a), the power is 50 W when

current is 5 A; hence, the resistance can be calculated as = / 2 = 50 / 52 = 2 Ω . Similarly, the resistance value

can be calculated in graph (b) as = 2 / = 102 / 50 = 2 Ω

Different insights can be gained from the three different expressions for electric power. For example, = 2 / implies that
the lower the resistance connected to a given voltage source, the greater the power delivered. Furthermore, since voltage is

squared in = 2 / , the effect of applying a higher voltage is perhaps greater than expected. Thus, when the voltage is
doubled to a 25-W bulb, its power nearly quadruples to about 100 W, burning it out. If the bulb's resistance remained constant, its
power would be exactly 100 W, but at the higher temperature its resistance is higher, too.

Example 20.7 Calculating Power Dissipation and Current: Hot and Cold Power

(a) Consider the examples given in Ohm's Law: Resistance and Simple Circuits and Resistance and Resistivity. Then
find the power dissipated by the car headlight in these examples, both when it is hot and when it is cold. (b) What current
does it draw when cold?

Strategy for (a)

For the hot headlight, we know voltage and current, so we can use = to find the power. For the cold headlight, we

know the voltage and resistance, so we can use = 2 / to find the power.

Solution for (a)

Entering the known values of current and voltage for the hot headlight, we obtain
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(20.31)= = (2.50 A)(12.0 V) = 30.0 W.

The cold resistance was 0.350 Ω , and so the power it uses when first switched on is

(20.32)
=

2
=

(12.0 V)2

0.350 Ω
= 411 W.

Discussion for (a)

The 30 W dissipated by the hot headlight is typical. But the 411 W when cold is surprisingly higher. The initial power quickly
decreases as the bulb's temperature increases and its resistance increases.

Strategy and Solution for (b)

The current when the bulb is cold can be found several different ways. We rearrange one of the power equations, = 2

, and enter known values, obtaining

(20.33)
= = 411 W

0.350 Ω
= 34.3 A.

Discussion for (b)

The cold current is remarkably higher than the steady-state value of 2.50 A, but the current will quickly decline to that value
as the bulb's temperature increases. Most fuses and circuit breakers (used to limit the current in a circuit) are designed to
tolerate very high currents briefly as a device comes on. In some cases, such as with electric motors, the current remains
high for several seconds, necessitating special “slow blow” fuses.

The Cost of Electricity
The more electric appliances you use and the longer they are left on, the higher your electric bill. This familiar fact is based on
the relationship between energy and power. You pay for the energy used. Since = / , we see that

(20.34)=

is the energy used by a device using power for a time interval . For example, the more lightbulbs burning, the greater

used; the longer they are on, the greater is. The energy unit on electric bills is the kilowatt-hour ( kW ⋅ h ), consistent with the

relationship = . It is easy to estimate the cost of operating electric appliances if you have some idea of their power
consumption rate in watts or kilowatts, the time they are on in hours, and the cost per kilowatt-hour for your electric utility.
Kilowatt-hours, like all other specialized energy units such as food calories, can be converted to joules. You can prove to yourself

that 1 kW ⋅ h = 3.6 106 J .

The electrical energy ( ) used can be reduced either by reducing the time of use or by reducing the power consumption of that
appliance or fixture. This will not only reduce the cost, but it will also result in a reduced impact on the environment.
Improvements to lighting are some of the fastest ways to reduce the electrical energy used in a home or business. About 20% of
a home's use of energy goes to lighting, while the number for commercial establishments is closer to 40%. Fluorescent lights are
about four times more efficient than incandescent lights—this is true for both the long tubes and the compact fluorescent lights
(CFL). (See Figure 20.17(b).) Thus, a 60-W incandescent bulb can be replaced by a 15-W CFL, which has the same brightness
and color. CFLs have a bent tube inside a globe or a spiral-shaped tube, all connected to a standard screw-in base that fits
standard incandescent light sockets. (Original problems with color, flicker, shape, and high initial investment for CFLs have been
addressed in recent years.) The heat transfer from these CFLs is less, and they last up to 10 times longer. The significance of an
investment in such bulbs is addressed in the next example. New white LED lights (which are clusters of small LED bulbs) are
even more efficient (twice that of CFLs) and last 5 times longer than CFLs. However, their cost is still high.

Making Connections: Energy, Power, and Time

The relationship = is one that you will find useful in many different contexts. The energy your body uses in exercise is
related to the power level and duration of your activity, for example. The amount of heating by a power source is related to
the power level and time it is applied. Even the radiation dose of an X-ray image is related to the power and time of
exposure.

Example 20.8 Calculating the Cost Effectiveness of Compact Fluorescent Lights (CFL)

If the cost of electricity in your area is 12 cents per kWh, what is the total cost (capital plus operation) of using a 60-W
incandescent bulb for 1000 hours (the lifetime of that bulb) if the bulb cost 25 cents? (b) If we replace this bulb with a
compact fluorescent light that provides the same light output, but at one-quarter the wattage, and which costs $1.50 but lasts
10 times longer (10,000 hours), what will that total cost be?

Strategy
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To find the operating cost, we first find the energy used in kilowatt-hours and then multiply by the cost per kilowatt-hour.

Solution for (a)

The energy used in kilowatt-hours is found by entering the power and time into the expression for energy:

(20.35)= = (60 W)(1000 h) = 60,000 W ⋅ h.

In kilowatt-hours, this is

(20.36)= 60.0 kW ⋅ h.

Now the electricity cost is

(20.37)cost = (60.0 kW ⋅ h)($0.12/kW ⋅ h) = $7.20.

The total cost will be $7.20 for 1000 hours (about one-half year at 5 hours per day).

Solution for (b)

Since the CFL uses only 15 W and not 60 W, the electricity cost will be $7.20/4 = $1.80. The CFL will last 10 times longer
than the incandescent, so that the investment cost will be 1/10 of the bulb cost for that time period of use, or 0.1($1.50) =
$0.15. Therefore, the total cost will be $1.95 for 1000 hours.

Discussion

Therefore, it is much cheaper to use the CFLs, even though the initial investment is higher. The increased cost of labor that
a business must include for replacing the incandescent bulbs more often has not been figured in here.

Making Connections: Take-Home Experiment—Electrical Energy Use Inventory

1) Make a list of the power ratings on a range of appliances in your home or room. Explain why something like a toaster has
a higher rating than a digital clock. Estimate the energy consumed by these appliances in an average day (by estimating
their time of use). Some appliances might only state the operating current. If the household voltage is 120 V, then use

= . 2) Check out the total wattage used in the rest rooms of your school's floor or building. (You might need to assume
the long fluorescent lights in use are rated at 32 W.) Suppose that the building was closed all weekend and that these lights
were left on from 6 p.m. Friday until 8 a.m. Monday. What would this oversight cost? How about for an entire year of
weekends?

20.5 Alternating Current versus Direct Current

Learning Objectives
By the end of this section, you will be able to:

• Explain the differences and similarities between AC and DC current.
• Calculate rms voltage, current, and average power.
• Explain why AC current is used for power transmission.

Alternating Current
Most of the examples dealt with so far, and particularly those utilizing batteries, have constant voltage sources. Once the current
is established, it is thus also a constant. Direct current (DC) is the flow of electric charge in only one direction. It is the steady
state of a constant-voltage circuit. Most well-known applications, however, use a time-varying voltage source. Alternating
current (AC) is the flow of electric charge that periodically reverses direction. If the source varies periodically, particularly
sinusoidally, the circuit is known as an alternating current circuit. Examples include the commercial and residential power that
serves so many of our needs. Figure 20.19 shows graphs of voltage and current versus time for typical DC and AC power. The
AC voltages and frequencies commonly used in homes and businesses vary around the world.
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AC current:

AC voltage:

alternating current:

ampere:

bioelectricity:

direct current:

drift velocity:

electric current:

electric power:

electrocardiogram (ECG):

microshock sensitive:

nerve conduction:

ohm:

Ohm's law:

ohmic:

resistance:

Figure 20.38 This NASA scientist and NEEMO 5 aquanaut's heart rate and other vital signs are being recorded by a portable device while living in an
underwater habitat. (credit: NASA, Life Sciences Data Archive at Johnson Space Center, Houston, Texas)

PhET Explorations: Neuron

Figure 20.39 Neuron (http://cnx.org/content/m55361/1.2/neuron_en.jar)

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they
move across the neuron membrane.

Glossary
current that fluctuates sinusoidally with time, expressed as I = I0 sin 2πft, where I is the current at time t, I0 is the

peak current, and f is the frequency in hertz

voltage that fluctuates sinusoidally with time, expressed as V = V0 sin 2πft, where V is the voltage at time t, V0 is
the peak voltage, and f is the frequency in hertz

(AC) the flow of electric charge that periodically reverses direction

(amp) the SI unit for current; 1 A = 1 C/s

electrical effects in and created by biological systems

(DC) the flow of electric charge in only one direction

the average velocity at which free charges flow in response to an electric field

the rate at which charge flows, I = ΔQ/Δt

the rate at which electrical energy is supplied by a source or dissipated by a device; it is the product of current
times voltage

usually abbreviated ECG, a record of voltages created by depolarization and repolarization,
especially in the heart

a condition in which a person's skin resistance is bypassed, possibly by a medical procedure,
rendering the person vulnerable to electrical shock at currents about 1/1000 the normally required level

the transport of electrical signals by nerve cells

the unit of resistance, given by 1Ω = 1 V/A

an empirical relation stating that the current I is proportional to the potential difference V, ∝ V; it is often written as
I = V/R, where R is the resistance

a type of a material for which Ohm's law is valid

the electric property that impedes current; for ohmic materials, it is the ratio of voltage to current, R = V/I
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resistivity:

rms current:

rms voltage:

semipermeable:

shock hazard:

short circuit:

simple circuit:

temperature coefficient of resistivity:

thermal hazard:

an intrinsic property of a material, independent of its shape or size, directly proportional to the resistance, denoted
by ρ

the root mean square of the current, rms = 0 / 2 , where I0 is the peak current, in an AC system

the root mean square of the voltage, rms = 0 / 2 , where V0 is the peak voltage, in an AC system

property of a membrane that allows only certain types of ions to cross it

when electric current passes through a person

also known as a “short,” a low-resistance path between terminals of a voltage source

a circuit with a single voltage source and a single resistor

an empirical quantity, denoted by α, which describes the change in resistance or
resistivity of a material with temperature

a hazard in which electric current causes undesired thermal effects

Section Summary

20.1 Current
• Electric current is the rate at which charge flows, given by

=
Δ
Δ

,

where Δ is the amount of charge passing through an area in time Δ .

• The direction of conventional current is taken as the direction in which positive charge moves.
• The SI unit for current is the ampere (A), where 1 A = 1 C/s.

• Current is the flow of free charges, such as electrons and ions.
• Drift velocity d is the average speed at which these charges move.

• Current is proportional to drift velocity d , as expressed in the relationship = d . Here, is the current through

a wire of cross-sectional area . The wire's material has a free-charge density , and each carrier has charge and a

drift velocity d .

• Electrical signals travel at speeds about 1012 times greater than the drift velocity of free electrons.

20.2 Ohm’s Law: Resistance and Simple Circuits
• A simple circuit is one in which there is a single voltage source and a single resistance.
• One statement of Ohm's law gives the relationship between current , voltage , and resistance in a simple circuit to

be = .

• Resistance has units of ohms ( Ω ), related to volts and amperes by 1 Ω = 1 V/A .

• There is a voltage or drop across a resistor, caused by the current flowing through it, given by = .

20.3 Resistance and Resistivity

• The resistance of a cylinder of length and cross-sectional area is = , where is the resistivity of the

material.
• Values of in Table 20.1 show that materials fall into three groups—conductors, semiconductors, and insulators.

• Temperature affects resistivity; for relatively small temperature changes Δ , resistivity is = 0(1 + Δ ) , where 0

is the original resistivity and α is the temperature coefficient of resistivity.
• Table 20.2 gives values for , the temperature coefficient of resistivity.

• The resistance of an object also varies with temperature: = 0(1 + Δ ) , where 0 is the original resistance,

and is the resistance after the temperature change.

20.4 Electric Power and Energy
• Electric power is the rate (in watts) that energy is supplied by a source or dissipated by a device.
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• Three expressions for electrical power are
=

=
2
,

and

= 2 .
• The energy used by a device with a power over a time is = .

20.5 Alternating Current versus Direct Current
• Direct current (DC) is the flow of electric current in only one direction. It refers to systems where the source voltage is

constant.
• The voltage source of an alternating current (AC) system puts out = 0 sin 2 , where is the voltage at time ,

0 is the peak voltage, and is the frequency in hertz.

• In a simple circuit, = and AC current is = 0 sin 2 , where is the current at time , and 0 = 0 is the

peak current.

• The average AC power is ave = 1
2 0 0 .

• Average (rms) current rms and average (rms) voltage rms are rms = 0

2
and rms = 0

2
, where rms stands for

root mean square.
• Thus, ave = rms rms .

• Ohm's law for AC is rms = rms .

• Expressions for the average power of an AC circuit are ave = rms rms , ave = rms
2

, and ave = rms
2 ,

analogous to the expressions for DC circuits.

20.6 Electric Hazards and the Human Body
• The two types of electric hazards are thermal (excessive power) and shock (current through a person).
• Shock severity is determined by current, path, duration, and AC frequency.
• Table 20.3 lists shock hazards as a function of current.
• Figure 20.28 graphs the threshold current for two hazards as a function of frequency.

20.7 Nerve Conduction–Electrocardiograms
• Electric potentials in neurons and other cells are created by ionic concentration differences across semipermeable

membranes.
• Stimuli change the permeability and create action potentials that propagate along neurons.
• Myelin sheaths speed this process and reduce the needed energy input.
• This process in the heart can be measured with an electrocardiogram (ECG).

Conceptual Questions

20.1 Current
1. Can a wire carry a current and still be neutral—that is, have a total charge of zero? Explain.

2. Car batteries are rated in ampere-hours ( A ⋅ h ). To what physical quantity do ampere-hours correspond (voltage, charge, . .
.), and what relationship do ampere-hours have to energy content?

3. If two different wires having identical cross-sectional areas carry the same current, will the drift velocity be higher or lower in

the better conductor? Explain in terms of the equation d = , by considering how the density of charge carriers relates

to whether or not a material is a good conductor.

4. Why are two conducting paths from a voltage source to an electrical device needed to operate the device?

5. In cars, one battery terminal is connected to the metal body. How does this allow a single wire to supply current to electrical
devices rather than two wires?

6. Why isn't a bird sitting on a high-voltage power line electrocuted? Contrast this with the situation in which a large bird hits two
wires simultaneously with its wings.

20.2 Ohm’s Law: Resistance and Simple Circuits
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7. The drop across a resistor means that there is a change in potential or voltage across the resistor. Is there any change in
current as it passes through a resistor? Explain.

8. How is the drop in a resistor similar to the pressure drop in a fluid flowing through a pipe?

20.3 Resistance and Resistivity
9. In which of the three semiconducting materials listed in Table 20.1 do impurities supply free charges? (Hint: Examine the
range of resistivity for each and determine whether the pure semiconductor has the higher or lower conductivity.)

10. Does the resistance of an object depend on the path current takes through it? Consider, for example, a rectangular bar—is its
resistance the same along its length as across its width? (See Figure 20.40.)

Figure 20.40 Does current taking two different paths through the same object encounter different resistance?

11. If aluminum and copper wires of the same length have the same resistance, which has the larger diameter? Why?

12. Explain why = 0(1 + Δ ) for the temperature variation of the resistance of an object is not as accurate as

= 0(1 + Δ ) , which gives the temperature variation of resistivity .

20.4 Electric Power and Energy
13. Why do incandescent lightbulbs grow dim late in their lives, particularly just before their filaments break?

14. The power dissipated in a resistor is given by = 2 / , which means power decreases if resistance increases. Yet this

power is also given by = 2 , which means power increases if resistance increases. Explain why there is no contradiction
here.

20.5 Alternating Current versus Direct Current
15. Give an example of a use of AC power other than in the household. Similarly, give an example of a use of DC power other
than that supplied by batteries.

16. Why do voltage, current, and power go through zero 120 times per second for 60-Hz AC electricity?

17. You are riding in a train, gazing into the distance through its window. As close objects streak by, you notice that the nearby
fluorescent lights make dashed streaks. Explain.

20.6 Electric Hazards and the Human Body
18. Using an ohmmeter, a student measures the resistance between various points on his body. He finds that the resistance
between two points on the same finger is about the same as the resistance between two points on opposite hands—both are
several hundred thousand ohms. Furthermore, the resistance decreases when more skin is brought into contact with the probes
of the ohmmeter. Finally, there is a dramatic drop in resistance (to a few thousand ohms) when the skin is wet. Explain these
observations and their implications regarding skin and internal resistance of the human body.

19. What are the two major hazards of electricity?

20. Why isn't a short circuit a shock hazard?

21. What determines the severity of a shock? Can you say that a certain voltage is hazardous without further information?

22. An electrified needle is used to burn off warts, with the circuit being completed by having the patient sit on a large butt plate.
Why is this plate large?

23. Some surgery is performed with high-voltage electricity passing from a metal scalpel through the tissue being cut.
Considering the nature of electric fields at the surface of conductors, why would you expect most of the current to flow from the
sharp edge of the scalpel? Do you think high- or low-frequency AC is used?

24. Some devices often used in bathrooms, such as hairdryers, often have safety messages saying “Do not use when the
bathtub or basin is full of water.” Why is this so?

25. We are often advised to not flick electric switches with wet hands, dry your hand first. We are also advised to never throw
water on an electric fire. Why is this so?

26. Before working on a power transmission line, linemen will touch the line with the back of the hand as a final check that the
voltage is zero. Why the back of the hand?
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27. Why is the resistance of wet skin so much smaller than dry, and why do blood and other bodily fluids have low resistances?

28. Could a person on intravenous infusion (an IV) be microshock sensitive?

29. In view of the small currents that cause shock hazards and the larger currents that circuit breakers and fuses interrupt, how
do they play a role in preventing shock hazards?

20.7 Nerve Conduction–Electrocardiograms

30. Note that in Figure 20.31, both the concentration gradient and the Coulomb force tend to move Na+ ions into the cell. What
prevents this?

31. Define depolarization, repolarization, and the action potential.

32. Explain the properties of myelinated nerves in terms of the insulating properties of myelin.
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Problems & Exercises

20.1 Current
1. What is the current in milliamperes produced by the solar
cells of a pocket calculator through which 4.00 C of charge
passes in 4.00 h?

2. A total of 600 C of charge passes through a flashlight in
0.500 h. What is the average current?

3. What is the current when a typical static charge of
0.250 C moves from your finger to a metal doorknob in

1.00 s ?

4. Find the current when 2.00 nC jumps between your comb
and hair over a 0.500 - s time interval.

5. A large lightning bolt had a 20,000-A current and moved
30.0 C of charge. What was its duration?

6. The 200-A current through a spark plug moves 0.300 mC
of charge. How long does the spark last?

7. (a) A defibrillator sends a 6.00-A current through the chest
of a patient by applying a 10,000-V potential as in the figure
below. What is the resistance of the path? (b) The defibrillator
paddles make contact with the patient through a conducting
gel that greatly reduces the path resistance. Discuss the
difficulties that would ensue if a larger voltage were used to
produce the same current through the patient, but with the
path having perhaps 50 times the resistance. (Hint: The
current must be about the same, so a higher voltage would

imply greater power. Use this equation for power: = 2

.)

Figure 20.41 The capacitor in a defibrillation unit drives a current
through the heart of a patient.

8. During open-heart surgery, a defibrillator can be used to
bring a patient out of cardiac arrest. The resistance of the
path is 500 Ω and a 10.0-mA current is needed. What
voltage should be applied?

9. (a) A defibrillator passes 12.0 A of current through the torso
of a person for 0.0100 s. How much charge moves? (b) How
many electrons pass through the wires connected to the
patient? (See figure two problems earlier.)

10. A clock battery wears out after moving 10,000 C of charge
through the clock at a rate of 0.500 mA. (a) How long did the
clock run? (b) How many electrons per second flowed?

11. The batteries of a submerged non-nuclear submarine
supply 1000 A at full speed ahead. How long does it take to

move Avogadro's number ( 6.02 1023 ) of electrons at this
rate?

12. Electron guns are used in X-ray tubes. The electrons are
accelerated through a relatively large voltage and directed
onto a metal target, producing X-rays. (a) How many
electrons per second strike the target if the current is 0.500
mA? (b) What charge strikes the target in 0.750 s?

13. A large cyclotron directs a beam of He++ nuclei onto a
target with a beam current of 0.250 mA. (a) How many

He++ nuclei per second is this? (b) How long does it take
for 1.00 C to strike the target? (c) How long before 1.00 mol

of He++ nuclei strike the target?

14. Repeat the above example on Example 20.3, but for a
wire made of silver and given there is one free electron per
silver atom.

15. Using the results of the above example on Example 20.3,
find the drift velocity in a copper wire of twice the diameter
and carrying 20.0 A.

16. A 14-gauge copper wire has a diameter of 1.628 mm.
What magnitude current flows when the drift velocity is 1.00
mm/s? (See above example on Example 20.3 for useful
information.)

17. SPEAR, a storage ring about 72.0 m in diameter at the
Stanford Linear Accelerator (closed in 2009), has a 20.0-A
circulating beam of electrons that are moving at nearly the
speed of light. (See Figure 20.42.) How many electrons are
in the beam?

Figure 20.42 Electrons circulating in the storage ring called SPEAR
constitute a 20.0-A current. Because they travel close to the speed of
light, each electron completes many orbits in each second.

20.2 Ohm’s Law: Resistance and Simple
Circuits
18. What current flows through the bulb of a 3.00-V flashlight
when its hot resistance is 3.60 Ω ?

19. Calculate the effective resistance of a pocket calculator
that has a 1.35-V battery and through which 0.200 mA flows.

20. What is the effective resistance of a car's starter motor
when 150 A flows through it as the car battery applies 11.0 V
to the motor?

21. How many volts are supplied to operate an indicator light
on a DVD player that has a resistance of 140 Ω , given that
25.0 mA passes through it?

22. (a) Find the voltage drop in an extension cord having a
0.0600- Ω resistance and through which 5.00 A is flowing.
(b) A cheaper cord utilizes thinner wire and has a resistance
of 0.300 Ω . What is the voltage drop in it when 5.00 A
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flows? (c) Why is the voltage to whatever appliance is being
used reduced by this amount? What is the effect on the
appliance?

23. A power transmission line is hung from metal towers with

glass insulators having a resistance of 1.00 109 Ω . What
current flows through the insulator if the voltage is 200 kV?
(Some high-voltage lines are DC.)

20.3 Resistance and Resistivity
24. What is the resistance of a 20.0-m-long piece of 12-gauge
copper wire having a 2.053-mm diameter?

25. The diameter of 0-gauge copper wire is 8.252 mm. Find
the resistance of a 1.00-km length of such wire used for
power transmission.

26. If the 0.100-mm diameter tungsten filament in a light bulb
is to have a resistance of 0.200 Ω at 20.0ºC , how long
should it be?

27. Find the ratio of the diameter of aluminum to copper wire,
if they have the same resistance per unit length (as they
might in household wiring).

28. What current flows through a 2.54-cm-diameter rod of

pure silicon that is 20.0 cm long, when 1.00 × 103 V is
applied to it? (Such a rod may be used to make nuclear-
particle detectors, for example.)

29. (a) To what temperature must you raise a copper wire,
originally at 20.0ºC , to double its resistance, neglecting any
changes in dimensions? (b) Does this happen in household
wiring under ordinary circumstances?

30. A resistor made of Nichrome wire is used in an application
where its resistance cannot change more than 1.00% from its
value at 20.0ºC . Over what temperature range can it be
used?

31. Of what material is a resistor made if its resistance is
40.0% greater at 100ºC than at 20.0ºC ?

32. An electronic device designed to operate at any
temperature in the range from –10.0ºC to 55.0ºC contains
pure carbon resistors. By what factor does their resistance
increase over this range?

33. (a) Of what material is a wire made, if it is 25.0 m long
with a 0.100 mm diameter and has a resistance of 77.7 Ω

at 20.0ºC ? (b) What is its resistance at 150ºC ?

34. Assuming a constant temperature coefficient of resistivity,
what is the maximum percent decrease in the resistance of a
constantan wire starting at 20.0ºC ?

35. A wire is drawn through a die, stretching it to four times its
original length. By what factor does its resistance increase?

36. A copper wire has a resistance of 0.500 Ω at 20.0ºC ,

and an iron wire has a resistance of 0.525 Ω at the same
temperature. At what temperature are their resistances
equal?

37. (a) Digital medical thermometers determine temperature
by measuring the resistance of a semiconductor device called
a thermistor (which has = – 0.0600 / ºC ) when it is at
the same temperature as the patient. What is a patient's
temperature if the thermistor's resistance at that temperature
is 82.0% of its value at 37.0ºC (normal body temperature)?
(b) The negative value for may not be maintained for very

low temperatures. Discuss why and whether this is the case
here. (Hint: Resistance can't become negative.)

38. Integrated Concepts

(a) Redo Exercise 20.25 taking into account the thermal
expansion of the tungsten filament. You may assume a

thermal expansion coefficient of 12 10−6 / ºC . (b) By what
percentage does your answer differ from that in the example?

39. Unreasonable Results

(a) To what temperature must you raise a resistor made of
constantan to double its resistance, assuming a constant
temperature coefficient of resistivity? (b) To cut it in half? (c)
What is unreasonable about these results? (d) Which
assumptions are unreasonable, or which premises are
inconsistent?

20.4 Electric Power and Energy

40. What is the power of a 1.00×102 MV lightning bolt

having a current of 2.00 × 104 A ?

41. What power is supplied to the starter motor of a large
truck that draws 250 A of current from a 24.0-V battery
hookup?

42. A charge of 4.00 C of charge passes through a pocket
calculator's solar cells in 4.00 h. What is the power output,
given the calculator's voltage output is 3.00 V? (See Figure
20.43.)

Figure 20.43 The strip of solar cells just above the keys of this
calculator convert light to electricity to supply its energy needs. (credit:
Evan-Amos, Wikimedia Commons)

43. How many watts does a flashlight that has 6.00×102 C

pass through it in 0.500 h use if its voltage is 3.00 V?

44. Find the power dissipated in each of these extension
cords: (a) an extension cord having a 0.0600 - Ω

resistance and through which 5.00 A is flowing; (b) a cheaper
cord utilizing thinner wire and with a resistance of
0.300 Ω .

45. Verify that the units of a volt-ampere are watts, as implied
by the equation = .

46. Show that the units 1 V2 / Ω = 1W , as implied by the

equation = 2 / .

47. Show that the units 1 A2 ⋅ Ω = 1 W , as implied by

the equation = 2 .
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48. Verify the energy unit equivalence that

1 kW ⋅ h = 3.60 106 J .

49. Electrons in an X-ray tube are accelerated through

1.00×102 kV and directed toward a target to produce X-
rays. Calculate the power of the electron beam in this tube if it
has a current of 15.0 mA.

50. An electric water heater consumes 5.00 kW for 2.00 h per
day. What is the cost of running it for one year if electricity
costs 12.0 cents/kW ⋅ h ? See Figure 20.44.

Figure 20.44 On-demand electric hot water heater. Heat is supplied to
water only when needed. (credit: aviddavid, Flickr)

51. With a 1200-W toaster, how much electrical energy is
needed to make a slice of toast (cooking time = 1 minute)? At
9.0 cents/kW · h , how much does this cost?

52. What would be the maximum cost of a CFL such that the
total cost (investment plus operating) would be the same for
both CFL and incandescent 60-W bulbs? Assume the cost of
the incandescent bulb is 25 cents and that electricity costs
10 cents/kWh . Calculate the cost for 1000 hours, as in the
cost effectiveness of CFL example.

53. Some makes of older cars have 6.00-V electrical systems.
(a) What is the hot resistance of a 30.0-W headlight in such a
car? (b) What current flows through it?

54. Alkaline batteries have the advantage of putting out
constant voltage until very nearly the end of their life. How
long will an alkaline battery rated at 1.00 A ⋅ h and 1.58 V
keep a 1.00-W flashlight bulb burning?

55. A cauterizer, used to stop bleeding in surgery, puts out
2.00 mA at 15.0 kV. (a) What is its power output? (b) What is
the resistance of the path?

56. The average television is said to be on 6 hours per day.
Estimate the yearly cost of electricity to operate 100 million
TVs, assuming their power consumption averages 150 W and
the cost of electricity averages 12.0 cents/kW ⋅ h .

57. An old lightbulb draws only 50.0 W, rather than its original
60.0 W, due to evaporative thinning of its filament. By what
factor is its diameter reduced, assuming uniform thinning
along its length? Neglect any effects caused by temperature
differences.

58. 00-gauge copper wire has a diameter of 9.266 mm.
Calculate the power loss in a kilometer of such wire when it

carries 1.00×102 A .

59. Integrated Concepts

Cold vaporizers pass a current through water, evaporating it
with only a small increase in temperature. One such home
device is rated at 3.50 A and utilizes 120 V AC with 95.0%
efficiency. (a) What is the vaporization rate in grams per

minute? (b) How much water must you put into the vaporizer
for 8.00 h of overnight operation? (See Figure 20.45.)

Figure 20.45 This cold vaporizer passes current directly through water,
vaporizing it directly with relatively little temperature increase.

60. Integrated Concepts

(a) What energy is dissipated by a lightning bolt having a

20,000-A current, a voltage of 1.00×102 MV , and a length
of 1.00 ms? (b) What mass of tree sap could be raised from
18.0ºC to its boiling point and then evaporated by this
energy, assuming sap has the same thermal characteristics
as water?

61. Integrated Concepts

What current must be produced by a 12.0-V battery-operated
bottle warmer in order to heat 75.0 g of glass, 250 g of baby

formula, and 3.00×102 g of aluminum from 20.0ºC to

90.0ºC in 5.00 min?

62. Integrated Concepts

How much time is needed for a surgical cauterizer to raise the
temperature of 1.00 g of tissue from 37.0ºC to 100ºC and
then boil away 0.500 g of water, if it puts out 2.00 mA at 15.0
kV? Ignore heat transfer to the surroundings.

63. Integrated Concepts

Hydroelectric generators (see Figure 20.46) at Hoover Dam

produce a maximum current of 8.00×103 A at 250 kV. (a)
What is the power output? (b) The water that powers the
generators enters and leaves the system at low speed (thus
its kinetic energy does not change) but loses 160 m in
altitude. How many cubic meters per second are needed,
assuming 85.0% efficiency?
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Figure 20.46 Hydroelectric generators at the Hoover dam. (credit: Jon
Sullivan)

64. Integrated Concepts

(a) Assuming 95.0% efficiency for the conversion of electrical
power by the motor, what current must the 12.0-V batteries of
a 750-kg electric car be able to supply: (a) To accelerate from

rest to 25.0 m/s in 1.00 min? (b) To climb a 2.00×102 -m -
high hill in 2.00 min at a constant 25.0-m/s speed while

exerting 5.00×102 N of force to overcome air resistance
and friction? (c) To travel at a constant 25.0-m/s speed,

exerting a 5.00×102 N force to overcome air resistance
and friction? See Figure 20.47.

Figure 20.47 This REVAi, an electric car, gets recharged on a street in
London. (credit: Frank Hebbert)

65. Integrated Concepts

A light-rail commuter train draws 630 A of 650-V DC
electricity when accelerating. (a) What is its power
consumption rate in kilowatts? (b) How long does it take to
reach 20.0 m/s starting from rest if its loaded mass is

5.30 104 kg , assuming 95.0% efficiency and constant

power? (c) Find its average acceleration. (d) Discuss how the
acceleration you found for the light-rail train compares to what
might be typical for an automobile.

66. Integrated Concepts

(a) An aluminum power transmission line has a resistance of
0.0580 Ω / km . What is its mass per kilometer? (b) What
is the mass per kilometer of a copper line having the same
resistance? A lower resistance would shorten the heating
time. Discuss the practical limits to speeding the heating by
lowering the resistance.

67. Integrated Concepts

(a) An immersion heater utilizing 120 V can raise the

temperature of a 1.00×102 -g aluminum cup containing 350

g of water from 20.0ºC to 95.0ºC in 2.00 min. Find its
resistance, assuming it is constant during the process. (b) A
lower resistance would shorten the heating time. Discuss the
practical limits to speeding the heating by lowering the
resistance.

68. Integrated Concepts

(a) What is the cost of heating a hot tub containing 1500 kg of
water from 10.0ºC to 40.0ºC , assuming 75.0% efficiency
to account for heat transfer to the surroundings? The cost of
electricity is 9 cents/kW ⋅ h . (b) What current was used by
the 220-V AC electric heater, if this took 4.00 h?

69. Unreasonable Results

(a) What current is needed to transmit 1.00×102 MW of
power at 480 V? (b) What power is dissipated by the
transmission lines if they have a 1.00 - Ω resistance? (c)
What is unreasonable about this result? (d) Which
assumptions are unreasonable, or which premises are
inconsistent?

70. Unreasonable Results

(a) What current is needed to transmit 1.00×102 MW of
power at 10.0 kV? (b) Find the resistance of 1.00 km of wire
that would cause a 0.0100% power loss. (c) What is the
diameter of a 1.00-km-long copper wire having this
resistance? (d) What is unreasonable about these results? (e)
Which assumptions are unreasonable, or which premises are
inconsistent?

71. Construct Your Own Problem

Consider an electric immersion heater used to heat a cup of
water to make tea. Construct a problem in which you
calculate the needed resistance of the heater so that it
increases the temperature of the water and cup in a
reasonable amount of time. Also calculate the cost of the
electrical energy used in your process. Among the things to
be considered are the voltage used, the masses and heat
capacities involved, heat losses, and the time over which the
heating takes place. Your instructor may wish for you to
consider a thermal safety switch (perhaps bimetallic) that will
halt the process before damaging temperatures are reached
in the immersion unit.

20.5 Alternating Current versus Direct Current
72. (a) What is the hot resistance of a 25-W light bulb that
runs on 120-V AC? (b) If the bulb's operating temperature is
2700ºC , what is its resistance at 2600ºC ?

73. Certain heavy industrial equipment uses AC power that
has a peak voltage of 679 V. What is the rms voltage?

74. A certain circuit breaker trips when the rms current is 15.0
A. What is the corresponding peak current?

75. Military aircraft use 400-Hz AC power, because it is
possible to design lighter-weight equipment at this higher
frequency. What is the time for one complete cycle of this
power?

76. A North American tourist takes his 25.0-W, 120-V AC
razor to Europe, finds a special adapter, and plugs it into 240
V AC. Assuming constant resistance, what power does the
razor consume as it is ruined?
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77. In this problem, you will verify statements made at the end
of the power losses for Example 20.10. (a) What current is
needed to transmit 100 MW of power at a voltage of 25.0 kV?
(b) Find the power loss in a 1.00 - Ω transmission line. (c)
What percent loss does this represent?

78. A small office-building air conditioner operates on 408-V
AC and consumes 50.0 kW. (a) What is its effective
resistance? (b) What is the cost of running the air conditioner
during a hot summer month when it is on 8.00 h per day for
30 days and electricity costs 9.00 cents/kW ⋅ h ?

79. What is the peak power consumption of a 120-V AC
microwave oven that draws 10.0 A?

80. What is the peak current through a 500-W room heater
that operates on 120-V AC power?

81. Two different electrical devices have the same power
consumption, but one is meant to be operated on 120-V AC
and the other on 240-V AC. (a) What is the ratio of their
resistances? (b) What is the ratio of their currents? (c)
Assuming its resistance is unaffected, by what factor will the
power increase if a 120-V AC device is connected to 240-V
AC?

82. Nichrome wire is used in some radiative heaters. (a) Find
the resistance needed if the average power output is to be
1.00 kW utilizing 120-V AC. (b) What length of Nichrome wire,

having a cross-sectional area of 5.00mm2 , is needed if the

operating temperature is 500º C ? (c) What power will it draw
when first switched on?

83. Find the time after = 0 when the instantaneous voltage

of 60-Hz AC first reaches the following values: (a) 0 / 2 (b)

0 (c) 0.

84. (a) At what two times in the first period following = 0

does the instantaneous voltage in 60-Hz AC equal rms ? (b)

− rms ?

20.6 Electric Hazards and the Human Body
85. (a) How much power is dissipated in a short circuit of
240-V AC through a resistance of 0.250 Ω ? (b) What
current flows?

86. What voltage is involved in a 1.44-kW short circuit through
a 0.100 - Ω resistance?

87. Find the current through a person and identify the likely
effect on her if she touches a 120-V AC source: (a) if she is
standing on a rubber mat and offers a total resistance of
300 k Ω ; (b) if she is standing barefoot on wet grass and

has a resistance of only 4000 k Ω .

88. While taking a bath, a person touches the metal case of a
radio. The path through the person to the drainpipe and
ground has a resistance of 4000 Ω . What is the smallest
voltage on the case of the radio that could cause ventricular
fibrillation?

89. Foolishly trying to fish a burning piece of bread from a
toaster with a metal butter knife, a man comes into contact
with 120-V AC. He does not even feel it since, luckily, he is
wearing rubber-soled shoes. What is the minimum resistance
of the path the current follows through the person?

90. (a) During surgery, a current as small as 20.0 μA

applied directly to the heart may cause ventricular fibrillation.
If the resistance of the exposed heart is 300 Ω , what is the
smallest voltage that poses this danger? (b) Does your
answer imply that special electrical safety precautions are
needed?

91. (a) What is the resistance of a 220-V AC short circuit that
generates a peak power of 96.8 kW? (b) What would the
average power be if the voltage was 120 V AC?

92. A heart defibrillator passes 10.0 A through a patient's
torso for 5.00 ms in an attempt to restore normal beating. (a)
How much charge passed? (b) What voltage was applied if
500 J of energy was dissipated? (c) What was the path's
resistance? (d) Find the temperature increase caused in the
8.00 kg of affected tissue.

93. Integrated Concepts

A short circuit in a 120-V appliance cord has a 0.500- Ω

resistance. Calculate the temperature rise of the 2.00 g of
surrounding materials, assuming their specific heat capacity
is 0.200 cal/g⋅ºC and that it takes 0.0500 s for a circuit

breaker to interrupt the current. Is this likely to be damaging?

94. Construct Your Own Problem

Consider a person working in an environment where electric
currents might pass through her body. Construct a problem in
which you calculate the resistance of insulation needed to
protect the person from harm. Among the things to be
considered are the voltage to which the person might be
exposed, likely body resistance (dry, wet, …), and acceptable
currents (safe but sensed, safe and unfelt, …).

20.7 Nerve Conduction–Electrocardiograms
95. Integrated Concepts

Use the ECG in Figure 20.37 to determine the heart rate in
beats per minute assuming a constant time between beats.

96. Integrated Concepts

(a) Referring to Figure 20.37, find the time systolic pressure
lags behind the middle of the QRS complex. (b) Discuss the
reasons for the time lag.
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Test Prep for AP® Courses

20.1 Current
1. Which of the following can be explained on the basis of
conservation of charge in a closed circuit consisting of a
battery, resistor, and metal wires?

a. The number of electrons leaving the battery will be
equal to the number of electrons entering the battery.

b. The number of electrons leaving the battery will be less
than the number of electrons entering the battery.

c. The number of protons leaving the battery will be equal
to the number of protons entering the battery.

d. The number of protons leaving the battery will be less
than the number of protons entering the battery.

2. When a battery is connected to a bulb, there is 2.5 A of
current in the circuit. What amount of charge will flow though
the circuit in a time of 0.5 s?

a. 0.5 C
b. 1 C
c. 1.25 C
d. 1.5 C

3. If 0.625 × 1020 electrons flow through a circuit each
second, what is the current in the circuit?

4. Two students calculate the charge flowing through a circuit.
The first student concludes that 300 C of charge flows in 1
minute. The second student concludes that 3.125 × 1019

electrons flow per second. If the current measured in the
circuit is 5 A, which of the two students (if any) have
performed the calculations correctly?

20.2 Ohm’s Law: Resistance and Simple
Circuits
5. If the voltage across a fixed resistance is doubled, what
happens to the current?

a. It doubles.
b. It halves.
c. It stays the same.
d. The current cannot be determined.

6. The table below gives the voltages and currents recorded
across a resistor.

Table 20.4

Voltage (V) 2.50 5.00 7.50 10.00 12.50

Current (A) 0.69 1.38 2.09 2.76 3.49

a. Plot the graph and comment on the shape.
b. Calculate the value of the resistor.

7. What is the resistance of a bulb if the current in it is 1.25 A
when a 4 V voltage supply is connected to it? If the voltage
supply is increased to 7 V, what will be the current in the
bulb?

20.3 Resistance and Resistivity
8. Which of the following affect the resistivity of a wire?

a. length
b. area of cross section
c. material
d. all of the above

9. The lengths and diameters of four wires are given as
shown.

Figure 20.48

If the four wires are made from the same material, which of
the following is true? Select two answers.

a. Resistance of Wire 3 > Resistance of Wire 2
b. Resistance of Wire 1 > Resistance of Wire 2
c. Resistance of Wire 1 < Resistance of Wire 4
d. Resistance of Wire 4 < Resistance of Wire 3

10. Suppose the resistance of a wire is R Ω. What will be the
resistance of another wire of the same material having the
same length but double the diameter?

a. R/2
b. 2R

c. R/4
d. 4R

11. The resistances of two wires having the same lengths and
cross section areas are 3 Ω and 11 Ω. If the resistivity of the 3
Ω wire is 2.65 × 10−8 Ω·m, find the resistivity of the 1 Ω wire.

12. The lengths and diameters of three wires are given below.
If they all have the same resistance, find the ratio of their
resistivities.

Table 20.5

Wire Length Diameter

Wire 1 2 m 1 cm

Wire 2 1 m 0.5 cm

Wire 3 1 m 1 cm

13. Suppose the resistance of a wire is 2 Ω. If the wire is
stretched to three times its length, what will be its resistance?
Assume that the volume does not change.

20.4 Electric Power and Energy
14.

Figure 20.49 The circuit shown contains a resistor R connected
to a voltage supply. The graph shows the total energy E

dissipated by the resistance as a function of time. Which of
the following shows the corresponding graph for double
resistance, i.e., if R is replaced by 2R?
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a.

Figure 20.50

b.

Figure 20.51

c.

Figure 20.52

d.

Figure 20.53

15. What will be the ratio of the resistance of a 120 W, 220 V
lamp to that of a 100 W, 110 V lamp?
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21 CIRCUITS, BIOELECTRICITY, AND DC
INSTRUMENTS

Figure 21.1 Electric circuits in a computer allow large amounts of data to be quickly and accurately analyzed.. (credit: Airman 1st Class Mike Meares,
United States Air Force)

Chapter Outline
21.1. Resistors in Series and Parallel

21.2. Electromotive Force: Terminal Voltage

21.3. Kirchhoff’s Rules

21.4. DC Voltmeters and Ammeters

21.5. Null Measurements

21.6. DC Circuits Containing Resistors and Capacitors

Connection for AP® Courses
Electric circuits are commonplace in our everyday lives. Some circuits are simple, such as those in flashlights while others are
extremely complex, such as those used in supercomputers. This chapter takes the topic of electric circuits a step beyond simple
circuits by addressing both changes that result from interactions between systems (Big Idea 4) and constraints on such changes
due to laws of conservation (Big Idea 5). When the circuit is purely resistive, everything in this chapter applies to both DC and
AC. However, matters become more complex when capacitance is involved. We do consider what happens when capacitors are
connected to DC voltage sources, but the interaction of capacitors (and other nonresistive devices) with AC sources is left for a
later chapter. In addition, a number of important DC instruments, such as meters that measure voltage and current, are covered
in this chapter.

Information and examples presented in the chapter examine cause-effect relationships inherent in interactions involving electrical
systems. The electrical properties of an electric circuit can change due to other systems (Enduring Understanding 4.E). More
specifically, values of currents and potential differences in electric circuits depend on arrangements of individual circuit
components (Essential Knowledge 4.E.5). In this chapter several series and parallel combinations of resistors are discussed and
their effects on currents and potential differences are analyzed.

In electric circuits the total energy (Enduring Understanding 5.B) and the total electric charge (Enduring Understanding 5.C) are
conserved. Kirchoff’s rules describe both, energy conservation (Essential Knowledge 5.B.9) and charge conservation (Essential
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Knowledge 5.C.3). Energy conservation is discussed in terms of the loop rule which specifies that the potential around any
closed circuit path must be zero. Charge conservation is applied as conservation of current by equating the sum of all currents
entering a junction to the sum of all currents leaving the junction (also known as the junction rule). Kirchoff’s rules are used to
calculate currents and potential differences in circuits that combine resistors in series and parallel, and resistors and capacitors.

The concepts in this chapter support:

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.E The electric and magnetic properties of a system can change in response to the presence of, or
changes in, other objects or systems.

Essential Knowledge 4.E.5 The values of currents and electric potential differences in an electric circuit are determined by the
properties and arrangement of the individual circuit elements such as sources of emf, resistors, and capacitors.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.B The energy of a system is conserved.

Essential Knowledge 5.B.9 Kirchhoff’s loop rule describes conservation of energy in electrical circuits.

Enduring Understanding 5.C The electric charge of a system is conserved.

Essential Knowledge 5.C.3 Kirchhoff’s junction rule describes the conservation of electric charge in electrical circuits. Since
charge is conserved, current must be conserved at each junction in the circuit. Examples should include circuits that combine
resistors in series and parallel.

21.1 Resistors in Series and Parallel

Learning Objectives
By the end of this section, you will be able to:

• Draw a circuit with resistors in parallel and in series.
• Use Ohm’s law to calculate the voltage drop across a resistor when current passes through it.
• Contrast the way total resistance is calculated for resistors in series and in parallel.
• Explain why total resistance of a parallel circuit is less than the smallest resistance of any of the resistors in that circuit.
• Calculate total resistance of a circuit that contains a mixture of resistors connected in series and in parallel.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.E.5.1 The student is able to make and justify a quantitative prediction of the effect of a change in values or
arrangements of one or two circuit elements on the currents and potential differences in a circuit containing a small
number of sources of emf, resistors, capacitors, and switches in series and/or parallel. (S.P. 2.2, 6.4)

• 4.E.5.2 The student is able to make and justify a qualitative prediction of the effect of a change in values or
arrangements of one or two circuit elements on currents and potential differences in a circuit containing a small number
of sources of emf, resistors, capacitors, and switches in series and/or parallel. (S.P. 6.1, 6.4)

• 4.E.5.3 The student is able to plan data collection strategies and perform data analysis to examine the values of
currents and potential differences in an electric circuit that is modified by changing or rearranging circuit elements,
including sources of emf, resistors, and capacitors. (S.P. 2.2, 4.2, 5.1)

• 5.B.9.3 The student is able to apply conservation of energy (Kirchhoff’s loop rule) in calculations involving the total
electric potential difference for complete circuit loops with only a single battery and resistors in series and/or in, at most,
one parallel branch. (S.P. 2.2, 6.4, 7.2)

Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit
on charge flow is called resistance. The simplest combinations of resistors are the series and parallel connections illustrated in
Figure 21.2. The total resistance of a combination of resistors depends on both their individual values and how they are
connected.

Figure 21.2 (a) A series connection of resistors. (b) A parallel connection of resistors.
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Resistors in Series
When are resistors in series? Resistors are in series whenever the flow of charge, called the current, must flow through devices
sequentially. For example, if current flows through a person holding a screwdriver and into the Earth, then 1 in Figure 21.2(a)

could be the resistance of the screwdriver’s shaft, 2 the resistance of its handle, 3 the person’s body resistance, and 4

the resistance of her shoes.

Figure 21.3 shows resistors in series connected to a voltage source. It seems reasonable that the total resistance is the sum of
the individual resistances, considering that the current has to pass through each resistor in sequence. (This fact would be an
advantage to a person wishing to avoid an electrical shock, who could reduce the current by wearing high-resistance rubber-
soled shoes. It could be a disadvantage if one of the resistances were a faulty high-resistance cord to an appliance that would
reduce the operating current.)

Figure 21.3 Three resistors connected in series to a battery (left) and the equivalent single or series resistance (right).

To verify that resistances in series do indeed add, let us consider the loss of electrical power, called a voltage drop, in each
resistor in Figure 21.3.

According to Ohm’s law, the voltage drop, , across a resistor when a current flows through it is calculated using the equation

= , where equals the current in amps (A) and is the resistance in ohms ( Ω ) . Another way to think of this is that

is the voltage necessary to make a current flow through a resistance .

So the voltage drop across 1 is 1 = 1 , that across 2 is 2 = 2 , and that across 3 is 3 = 3 . The sum of

these voltages equals the voltage output of the source; that is,

(21.1)= 1 + 2 + 3.

This equation is based on the conservation of energy and conservation of charge. Electrical potential energy can be described by
the equation = , where is the electric charge and is the voltage. Thus the energy supplied by the source is ,

while that dissipated by the resistors is

(21.2)1 + 2 + 3.

Connections: Conservation Laws

The derivations of the expressions for series and parallel resistance are based on the laws of conservation of energy and
conservation of charge, which state that total charge and total energy are constant in any process. These two laws are
directly involved in all electrical phenomena and will be invoked repeatedly to explain both specific effects and the general
behavior of electricity.

These energies must be equal, because there is no other source and no other destination for energy in the circuit. Thus,
= 1 + 2 + 3 . The charge cancels, yielding = 1 + 2 + 3 , as stated. (Note that the same amount of

charge passes through the battery and each resistor in a given amount of time, since there is no capacitance to store charge,
there is no place for charge to leak, and charge is conserved.)

Now substituting the values for the individual voltages gives

(21.3)= 1 + 2 + 3 = ( 1 + 2 + 3).

Note that for the equivalent single series resistance s , we have

(21.4)= s.

This implies that the total or equivalent series resistance s of three resistors is s = 1 + 2 + 3 .

This logic is valid in general for any number of resistors in series; thus, the total resistance s of a series connection is

(21.5)s = 1 + 2 + 3 + ...,
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as proposed. Since all of the current must pass through each resistor, it experiences the resistance of each, and resistances in
series simply add up.

Example 21.1 Calculating Resistance, Current, Voltage Drop, and Power Dissipation: Analysis of
a Series Circuit

Suppose the voltage output of the battery in Figure 21.3 is 12.0 V , and the resistances are 1 = 1.00 Ω ,

2 = 6.00 Ω , and 3 = 13.0 Ω . (a) What is the total resistance? (b) Find the current. (c) Calculate the voltage drop

in each resistor, and show these add to equal the voltage output of the source. (d) Calculate the power dissipated by each
resistor. (e) Find the power output of the source, and show that it equals the total power dissipated by the resistors.

Strategy and Solution for (a)

The total resistance is simply the sum of the individual resistances, as given by this equation:

(21.6)s = 1 + 2 + 3

= 1.00 Ω + 6.00 Ω + 13.0 Ω

= 20.0 Ω.

Strategy and Solution for (b)

The current is found using Ohm’s law, = . Entering the value of the applied voltage and the total resistance yields the
current for the circuit:

(21.7)
=

s
= 12.0 V

20.0 Ω
= 0.600 A.

Strategy and Solution for (c)

The voltage—or drop—in a resistor is given by Ohm’s law. Entering the current and the value of the first resistance
yields

(21.8)
1 = 1 = (0.600 A)(1.0 Ω ) = 0.600 V.

Similarly,

(21.9)
2 = 2 = (0.600 A)(6.0 Ω ) = 3.60 V

and

(21.10)
3 = 3 = (0.600 A)(13.0 Ω ) = 7.80 V.

Discussion for (c)

The three drops add to 12.0 V , as predicted:

(21.11)
1 + 2 + 3 = (0.600 + 3.60 + 7.80) V = 12.0 V.

Strategy and Solution for (d)

The easiest way to calculate power in watts (W) dissipated by a resistor in a DC circuit is to use Joule’s law, = ,

where is electric power. In this case, each resistor has the same full current flowing through it. By substituting Ohm’s law

= into Joule’s law, we get the power dissipated by the first resistor as

(21.12)
1 = 2

1 = (0.600 A)2(1.00 Ω ) = 0.360 W.

Similarly,

(21.13)
2 = 2

2 = (0.600 A)2(6.00 Ω ) = 2.16 W

and

(21.14)
3 = 2

3 = (0.600 A)2(13.0 Ω ) = 4.68 W.

Discussion for (d)

Power can also be calculated using either = or =
2

, where is the voltage drop across the resistor (not the

full voltage of the source). The same values will be obtained.

Strategy and Solution for (e)
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The easiest way to calculate power output of the source is to use = , where is the source voltage. This gives

(21.15)= (0.600 A)(12.0 V) = 7.20 W.

Discussion for (e)

Note, coincidentally, that the total power dissipated by the resistors is also 7.20 W, the same as the power put out by the
source. That is,

(21.16)
1 + 2 + 3 = (0.360 + 2.16 + 4.68) W = 7.20 W.

Power is energy per unit time (watts), and so conservation of energy requires the power output of the source to be equal to
the total power dissipated by the resistors.

Major Features of Resistors in Series
1. Series resistances add: s = 1 + 2 + 3 + ....

2. The same current flows through each resistor in series.

3. Individual resistors in series do not get the total source voltage, but divide it.

Resistors in Parallel
Figure 21.4 shows resistors in parallel, wired to a voltage source. Resistors are in parallel when each resistor is connected
directly to the voltage source by connecting wires having negligible resistance. Each resistor thus has the full voltage of the
source applied to it.

Each resistor draws the same current it would if it alone were connected to the voltage source (provided the voltage source is not
overloaded). For example, an automobile’s headlights, radio, and so on, are wired in parallel, so that they utilize the full voltage
of the source and can operate completely independently. The same is true in your house, or any building. (See Figure 21.4(b).)

Chapter 21 | Circuits, Bioelectricity, and DC Instruments 917



Figure 21.4 (a) Three resistors connected in parallel to a battery and the equivalent single or parallel resistance. (b) Electrical power setup in a house.
(credit: Dmitry G, Wikimedia Commons)

To find an expression for the equivalent parallel resistance p , let us consider the currents that flow and how they are related to

resistance. Since each resistor in the circuit has the full voltage, the currents flowing through the individual resistors are

1 =
1

, 2 =
2

, and 3 =
3

. Conservation of charge implies that the total current produced by the source is the sum

of these currents:

(21.17)= 1 + 2 + 3.

Substituting the expressions for the individual currents gives

(21.18)
=

1
+

2
+

3
= 1

1
+ 1

2
+ 1

3
.

Note that Ohm’s law for the equivalent single resistance gives

(21.19)
=

p
= 1

p
.

The terms inside the parentheses in the last two equations must be equal. Generalizing to any number of resistors, the total
resistance p of a parallel connection is related to the individual resistances by

(21.20)1
p

= 1

1
+ 1

2
+ 1

.3
+ ....

This relationship results in a total resistance p that is less than the smallest of the individual resistances. (This is seen in the

next example.) When resistors are connected in parallel, more current flows from the source than would flow for any of them
individually, and so the total resistance is lower.
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Example 21.2 Calculating Resistance, Current, Power Dissipation, and Power Output: Analysis
of a Parallel Circuit

Let the voltage output of the battery and resistances in the parallel connection in Figure 21.4 be the same as the previously
considered series connection: = 12.0 V , 1 = 1.00 Ω , 2 = 6.00 Ω , and 3 = 13.0 Ω . (a) What is the total

resistance? (b) Find the total current. (c) Calculate the currents in each resistor, and show these add to equal the total
current output of the source. (d) Calculate the power dissipated by each resistor. (e) Find the power output of the source,
and show that it equals the total power dissipated by the resistors.

Strategy and Solution for (a)

The total resistance for a parallel combination of resistors is found using the equation below. Entering known values gives

(21.21)1
p

= 1

1
+ 1

2
+ 1

3
= 1

1.00 Ω
+ 1

6.00 Ω
+ 1

13.0 Ω
.

Thus,

(21.22)1
p

= 1.00
Ω

+ 0.1667
Ω

+ 0.07692
Ω

= 1.2436
Ω

.

(Note that in these calculations, each intermediate answer is shown with an extra digit.)

We must invert this to find the total resistance p . This yields

(21.23)
p = 1

1.2436
Ω = 0.8041 Ω .

The total resistance with the correct number of significant digits is p = 0.804 Ω .

Discussion for (a)

p is, as predicted, less than the smallest individual resistance.

Strategy and Solution for (b)

The total current can be found from Ohm’s law, substituting p for the total resistance. This gives

(21.24)
=

p
= 12.0 V

0.8041 Ω
= 14.92 A.

Discussion for (b)

Current for each device is much larger than for the same devices connected in series (see the previous example). A
circuit with parallel connections has a smaller total resistance than the resistors connected in series.

Strategy and Solution for (c)

The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage. Thus,

(21.25)
1 =

1
= 12.0 V

1.00 Ω
= 12.0 A.

Similarly,

(21.26)
2 =

2
= 12.0 V

6.00 Ω
= 2.00 A

and

(21.27)
3 =

3
= 12.0 V

13.0 Ω
= 0.92 A.

Discussion for (c)

The total current is the sum of the individual currents:

(21.28)
1 + 2 + 3 = 14.92 A.

This is consistent with conservation of charge.

Strategy and Solution for (d)

The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and

resistance, since all three are known. Let us use =
2

, since each resistor gets full voltage. Thus,
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(21.29)
1 =

2

1
=

(12.0 V)2

1.00 Ω
= 144 W.

Similarly,

(21.30)
2 =

2

2
=

(12.0 V)2

6.00 Ω
= 24.0 W

and

(21.31)
3 =

2

3
=

(12.0 V)2

13.0 Ω
= 11.1 W.

Discussion for (d)

The power dissipated by each resistor is considerably higher in parallel than when connected in series to the same voltage
source.

Strategy and Solution for (e)

The total power can also be calculated in several ways. Choosing = , and entering the total current, yields

(21.32)= = (14.92 A)(12.0 V) = 179 W.

Discussion for (e)

Total power dissipated by the resistors is also 179 W:

(21.33)
1 + 2 + 3 = 144 W + 24.0 W + 11.1 W = 179 W.

This is consistent with the law of conservation of energy.

Overall Discussion

Note that both the currents and powers in parallel connections are greater than for the same devices in series.

Major Features of Resistors in Parallel

1. Parallel resistance is found from 1
p

= 1

1
+ 1

2
+ 1

3
+ ... , and it is smaller than any individual resistance in the

combination.

2. Each resistor in parallel has the same full voltage of the source applied to it. (Power distribution systems most often
use parallel connections to supply the myriad devices served with the same voltage and to allow them to operate
independently.)

3. Parallel resistors do not each get the total current; they divide it.

Combinations of Series and Parallel
More complex connections of resistors are sometimes just combinations of series and parallel. These are commonly
encountered, especially when wire resistance is considered. In that case, wire resistance is in series with other resistances that
are in parallel.

Combinations of series and parallel can be reduced to a single equivalent resistance using the technique illustrated in Figure
21.5. Various parts are identified as either series or parallel, reduced to their equivalents, and further reduced until a single
resistance is left. The process is more time consuming than difficult.
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Figure 21.5 This combination of seven resistors has both series and parallel parts. Each is identified and reduced to an equivalent resistance, and
these are further reduced until a single equivalent resistance is reached.

The simplest combination of series and parallel resistance, shown in Figure 21.6, is also the most instructive, since it is found in
many applications. For example, 1 could be the resistance of wires from a car battery to its electrical devices, which are in

parallel. 2 and 3 could be the starter motor and a passenger compartment light. We have previously assumed that wire

resistance is negligible, but, when it is not, it has important effects, as the next example indicates.

Example 21.3 Calculating Resistance, IR Drop, Current, and Power Dissipation: Combining
Series and Parallel Circuits

Figure 21.6 shows the resistors from the previous two examples wired in a different way—a combination of series and
parallel. We can consider 1 to be the resistance of wires leading to 2 and 3 . (a) Find the total resistance. (b) What is

the drop in 1 ? (c) Find the current 2 through 2 . (d) What power is dissipated by 2 ?

Figure 21.6 These three resistors are connected to a voltage source so that 2 and 3 are in parallel with one another and that combination

is in series with 1 .

Strategy and Solution for (a)

To find the total resistance, we note that 2 and 3 are in parallel and their combination p is in series with 1 . Thus

the total (equivalent) resistance of this combination is

(21.34)tot = 1 + p.

First, we find p using the equation for resistors in parallel and entering known values:

(21.35)1
p

= 1

2
+ 1

3
= 1

6.00 Ω
+ 1

13.0 Ω
= 0.2436

Ω
.
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Inverting gives

(21.36)
p = 1

0.2436
Ω = 4.11 Ω .

So the total resistance is

(21.37)tot = 1 + p = 1.00 Ω + 4.11 Ω = 5.11 Ω .

Discussion for (a)

The total resistance of this combination is intermediate between the pure series and pure parallel values ( 20.0 Ω and

0.804 Ω , respectively) found for the same resistors in the two previous examples.

Strategy and Solution for (b)

To find the drop in 1 , we note that the full current flows through 1 . Thus its drop is

(21.38)1 = .

We must find before we can calculate 1 . The total current is found using Ohm’s law for the circuit. That is,

(21.39)
=

tot
= 12.0 V

5.11 Ω
= 2.35 A.

Entering this into the expression above, we get

(21.40)
1 = = (2.35 A)(1.00 Ω ) = 2.35 V.

Discussion for (b)

The voltage applied to 2 and 3 is less than the total voltage by an amount 1 . When wire resistance is large, it can

significantly affect the operation of the devices represented by 2 and 3 .

Strategy and Solution for (c)

To find the current through 2 , we must first find the voltage applied to it. We call this voltage p , because it is applied to

a parallel combination of resistors. The voltage applied to both 2 and 3 is reduced by the amount 1 , and so it is

(21.41)p = − 1 = 12.0 V − 2.35 V = 9.65 V.

Now the current 2 through resistance 2 is found using Ohm’s law:

(21.42)
2 =

p

2
= 9.65 V

6.00 Ω
= 1.61 A.

Discussion for (c)

The current is less than the 2.00 A that flowed through 2 when it was connected in parallel to the battery in the previous

parallel circuit example.

Strategy and Solution for (d)

The power dissipated by 2 is given by

(21.43)
2 = ( 2 )2

2 = (1.61 A)2(6.00 Ω ) = 15.5 W.

Discussion for (d)

The power is less than the 24.0 W this resistor dissipated when connected in parallel to the 12.0-V source.

Applying the Science Practices: Circuit Construction Kit (DC only)

Plan an experiment to analyze the effect on currents and potential differences due to rearrangement of resistors and
variations in voltage sources. Your experimental investigation should include data collection for at least five different
scenarios of rearranged resistors (i.e., several combinations of series and parallel) and three scenarios of different voltage
sources.
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Practical Implications
One implication of this last example is that resistance in wires reduces the current and power delivered to a resistor. If wire
resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be significant. If a large current is
drawn, the drop in the wires can also be significant.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims momentarily.
Similarly, you can see the passenger compartment light dim when you start the engine of your car (although this may be due to
resistance inside the battery itself).

What is happening in these high-current situations is illustrated in Figure 21.7. The device represented by 3 has a very low

resistance, and so when it is switched on, a large current flows. This increased current causes a larger drop in the wires

represented by 1 , reducing the voltage across the light bulb (which is 2 ), which then dims noticeably.

Figure 21.7 Why do lights dim when a large appliance is switched on? The answer is that the large current the appliance motor draws causes a
significant drop in the wires and reduces the voltage across the light.

Check Your Understanding

Can any arbitrary combination of resistors be broken down into series and parallel combinations? See if you can draw a
circuit diagram of resistors that cannot be broken down into combinations of series and parallel.

Solution
No, there are many ways to connect resistors that are not combinations of series and parallel, including loops and junctions.
In such cases Kirchhoff’s rules, to be introduced in Kirchhoff’s Rules, will allow you to analyze the circuit.

Problem-Solving Strategies for Series and Parallel Resistors
1. Draw a clear circuit diagram, labeling all resistors and voltage sources. This step includes a list of the knowns for the

problem, since they are labeled in your circuit diagram.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.

3. Determine whether resistors are in series, parallel, or a combination of both series and parallel. Examine the circuit
diagram to make this assessment. Resistors are in series if the same current must pass sequentially through them.

4. Use the appropriate list of major features for series or parallel connections to solve for the unknowns. There is one list
for series and another for parallel. If your problem has a combination of series and parallel, reduce it in steps by
considering individual groups of series or parallel connections, as done in this module and the examples. Special note:
When finding , the reciprocal must be taken with care.

5. Check to see whether the answers are reasonable and consistent. Units and numerical results must be reasonable.
Total series resistance should be greater, whereas total parallel resistance should be smaller, for example. Power
should be greater for the same devices in parallel compared with series, and so on.

21.2 Electromotive Force: Terminal Voltage

Learning Objectives
By the end of this section, you will be able to:
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• Compare and contrast the voltage and the electromagnetic force of an electric power source.
• Describe what happens to the terminal voltage, current, and power delivered to a load as internal resistance of the

voltage source increases.
• Explain why it is beneficial to use more than one voltage source connected in parallel.

The information presented in this section supports the following AP® learning objectives and science practices:

• 5.B.9.7 The student is able to refine and analyze a scientific question for an experiment using Kirchhoff’s loop rule for
circuits that includes determination of internal resistance of the battery and analysis of a nonohmic resistor. (S.P. 4.1,
4.2, 5.1, 5.3)

When you forget to turn off your car lights, they slowly dim as the battery runs down. Why don’t they simply blink off when the
battery’s energy is gone? Their gradual dimming implies that battery output voltage decreases as the battery is depleted.

Furthermore, if you connect an excessive number of 12-V lights in parallel to a car battery, they will be dim even when the battery
is fresh and even if the wires to the lights have very low resistance. This implies that the battery’s output voltage is reduced by
the overload.

The reason for the decrease in output voltage for depleted or overloaded batteries is that all voltage sources have two
fundamental parts—a source of electrical energy and an internal resistance. Let us examine both.

Electromotive Force
You can think of many different types of voltage sources. Batteries themselves come in many varieties. There are many types of
mechanical/electrical generators, driven by many different energy sources, ranging from nuclear to wind. Solar cells create
voltages directly from light, while thermoelectric devices create voltage from temperature differences.

A few voltage sources are shown in Figure 21.8. All such devices create a potential difference and can supply current if
connected to a resistance. On the small scale, the potential difference creates an electric field that exerts force on charges,
causing current. We thus use the name electromotive force, abbreviated emf.

Emf is not a force at all; it is a special type of potential difference. To be precise, the electromotive force (emf) is the potential
difference of a source when no current is flowing. Units of emf are volts.

Figure 21.8 A variety of voltage sources (clockwise from top left): the Brazos Wind Farm in Fluvanna, Texas (credit: Leaflet, Wikimedia Commons); the
Krasnoyarsk Dam in Russia (credit: Alex Polezhaev); a solar farm (credit: U.S. Department of Energy); and a group of nickel metal hydride batteries
(credit: Tiaa Monto). The voltage output of each depends on its construction and load, and equals emf only if there is no load.

Electromotive force is directly related to the source of potential difference, such as the particular combination of chemicals in a
battery. However, emf differs from the voltage output of the device when current flows. The voltage across the terminals of a
battery, for example, is less than the emf when the battery supplies current, and it declines further as the battery is depleted or
loaded down. However, if the device’s output voltage can be measured without drawing current, then output voltage will equal
emf (even for a very depleted battery).

Internal Resistance
As noted before, a 12-V truck battery is physically larger, contains more charge and energy, and can deliver a larger current than
a 12-V motorcycle battery. Both are lead-acid batteries with identical emf, but, because of its size, the truck battery has a smaller
internal resistance . Internal resistance is the inherent resistance to the flow of current within the source itself.

Figure 21.9 is a schematic representation of the two fundamental parts of any voltage source. The emf (represented by a script
E in the figure) and internal resistance are in series. The smaller the internal resistance for a given emf, the more current and
the more power the source can supply.
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Figure 21.9 Any voltage source (in this case, a carbon-zinc dry cell) has an emf related to its source of potential difference, and an internal resistance
related to its construction. (Note that the script E stands for emf.). Also shown are the output terminals across which the terminal voltage is

measured. Since = emf − , terminal voltage equals emf only if there is no current flowing.

The internal resistance can behave in complex ways. As noted, increases as a battery is depleted. But internal resistance
may also depend on the magnitude and direction of the current through a voltage source, its temperature, and even its history.
The internal resistance of rechargeable nickel-cadmium cells, for example, depends on how many times and how deeply they
have been depleted.

Things Great and Small: The Submicroscopic Origin of Battery Potential

Various types of batteries are available, with emfs determined by the combination of chemicals involved. We can view this as
a molecular reaction (what much of chemistry is about) that separates charge.

The lead-acid battery used in cars and other vehicles is one of the most common types. A single cell (one of six) of this
battery is seen in Figure 21.10. The cathode (positive) terminal of the cell is connected to a lead oxide plate, while the
anode (negative) terminal is connected to a lead plate. Both plates are immersed in sulfuric acid, the electrolyte for the
system.

Figure 21.10 Artist’s conception of a lead-acid cell. Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode,
which is connected to the lead plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts
the charge as well as participating in the chemical reaction.

The details of the chemical reaction are left to the reader to pursue in a chemistry text, but their results at the molecular level
help explain the potential created by the battery. Figure 21.11 shows the result of a single chemical reaction. Two electrons
are placed on the anode, making it negative, provided that the cathode supplied two electrons. This leaves the cathode
positively charged, because it has lost two electrons. In short, a separation of charge has been driven by a chemical
reaction.

Note that the reaction will not take place unless there is a complete circuit to allow two electrons to be supplied to the
cathode. Under many circumstances, these electrons come from the anode, flow through a resistance, and return to the
cathode. Note also that since the chemical reactions involve substances with resistance, it is not possible to create the emf
without an internal resistance.
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Figure 21.11 Artist’s conception of two electrons being forced onto the anode of a cell and two electrons being removed from the cathode of the
cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the cathode. It requires a closed circuit
to proceed, since the two electrons must be supplied to the cathode.

Why are the chemicals able to produce a unique potential difference? Quantum mechanical descriptions of molecules, which
take into account the types of atoms and numbers of electrons in them, are able to predict the energy states they can have and
the energies of reactions between them.

In the case of a lead-acid battery, an energy of 2 eV is given to each electron sent to the anode. Voltage is defined as the

electrical potential energy divided by charge: = E . An electron volt is the energy given to a single electron by a voltage of 1

V. So the voltage here is 2 V, since 2 eV is given to each electron. It is the energy produced in each molecular reaction that
produces the voltage. A different reaction produces a different energy and, hence, a different voltage.

Terminal Voltage
The voltage output of a device is measured across its terminals and, thus, is called its terminal voltage . Terminal voltage is
given by

(21.44)= emf − ,

where is the internal resistance and is the current flowing at the time of the measurement.

is positive if current flows away from the positive terminal, as shown in Figure 21.9. You can see that the larger the current,
the smaller the terminal voltage. And it is likewise true that the larger the internal resistance, the smaller the terminal voltage.

Suppose a load resistance load is connected to a voltage source, as in Figure 21.12. Since the resistances are in series, the

total resistance in the circuit is load + . Thus the current is given by Ohm’s law to be

(21.45)
= emf

load +
.

Figure 21.12 Schematic of a voltage source and its load load . Since the internal resistance is in series with the load, it can significantly affect

the terminal voltage and current delivered to the load. (Note that the script E stands for emf.)

We see from this expression that the smaller the internal resistance , the greater the current the voltage source supplies to its

load load . As batteries are depleted, increases. If becomes a significant fraction of the load resistance, then the current

is significantly reduced, as the following example illustrates.
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Example 21.4 Calculating Terminal Voltage, Power Dissipation, Current, and Resistance:
Terminal Voltage and Load

A certain battery has a 12.0-V emf and an internal resistance of 0.100 Ω . (a) Calculate its terminal voltage when

connected to a 10.0- Ω load. (b) What is the terminal voltage when connected to a 0.500- Ω load? (c) What power

does the 0.500- Ω load dissipate? (d) If the internal resistance grows to 0.500 Ω , find the current, terminal voltage,

and power dissipated by a 0.500- Ω load.

Strategy

The analysis above gave an expression for current when internal resistance is taken into account. Once the current is found,
the terminal voltage can be calculated using the equation = emf − . Once current is found, the power dissipated by a
resistor can also be found.

Solution for (a)

Entering the given values for the emf, load resistance, and internal resistance into the expression above yields

(21.46)
= emf

load +
= 12.0 V

10.1 Ω
= 1.188 A.

Enter the known values into the equation = emf − to get the terminal voltage:

(21.47)= emf − = 12.0 V − (1.188 A)(0.100 Ω)

= 11.9 V.

Discussion for (a)

The terminal voltage here is only slightly lower than the emf, implying that 10.0 Ω is a light load for this particular battery.

Solution for (b)

Similarly, with load = 0.500 Ω , the current is

(21.48)
= emf

load +
= 12.0 V

0.600 Ω
= 20.0 A.

The terminal voltage is now

(21.49)= emf − = 12.0 V − (20.0 A)(0.100 Ω)

= 10.0 V.

Discussion for (b)

This terminal voltage exhibits a more significant reduction compared with emf, implying 0.500 Ω is a heavy load for this
battery.

Solution for (c)

The power dissipated by the 0.500 - Ω load can be found using the formula = 2 . Entering the known values gives

(21.50)
load = 2

load = (20.0 A)2(0.500 Ω) = 2.00×102 W.

Discussion for (c)

Note that this power can also be obtained using the expressions
2

or , where is the terminal voltage (10.0 V in

this case).

Solution for (d)

Here the internal resistance has increased, perhaps due to the depletion of the battery, to the point where it is as great as
the load resistance. As before, we first find the current by entering the known values into the expression, yielding

(21.51)
= emf

load +
= 12.0 V

1.00 Ω
= 12.0 A.

Now the terminal voltage is

(21.52)= emf − = 12.0 V − (12.0 A)(0.500 Ω)

= 6.00 V,

and the power dissipated by the load is
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(21.53)
load = 2

load = (12.0 A)2(0.500 Ω ) = 72.0 W.

Discussion for (d)

We see that the increased internal resistance has significantly decreased terminal voltage, current, and power delivered to a
load.

Applying the Science Practices: Internal Resistance

The internal resistance of a battery can be estimated using a simple activity. The circuit shown in the figure below includes a
resistor R in series with a battery along with an ammeter and voltmeter to measure the current and voltage respectively.

Figure 21.13

The currents and voltages measured for several R values are shown in the table below. Using the data given in the table
and applying graphical analysis, determine the emf and internal resistance of the battery. Your response should clearly
explain the method used to obtain the result.

Table 21.1

Resistance Current (A) Voltage (V)

R1 3.53 4.24

R2 2.07 4.97

R3 1.46 5.27

R4 1.13 5.43

Answer

Plot the measured currents and voltages on a graph. The terminal voltage of a battery is equal to the emf of the battery
minus the voltage drop across the internal resistance of the battery or V = emf – Ir. Using this linear relationship and the
plotted graph, the internal resistance and emf of the battery can be found. The graph for this case is shown below. The
equation is V = -0.50I + 6.0 and hence the internal resistance will be equal to 0.5 Ω and emf will be equal to 6 V.

Figure 21.14

Battery testers, such as those in Figure 21.15, use small load resistors to intentionally draw current to determine whether the
terminal voltage drops below an acceptable level. They really test the internal resistance of the battery. If internal resistance is
high, the battery is weak, as evidenced by its low terminal voltage.
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Figure 21.15 These two battery testers measure terminal voltage under a load to determine the condition of a battery. The large device is being used
by a U.S. Navy electronics technician to test large batteries aboard the aircraft carrier USS Nimitz and has a small resistance that can dissipate large
amounts of power. (credit: U.S. Navy photo by Photographer’s Mate Airman Jason A. Johnston) The small device is used on small batteries and has a
digital display to indicate the acceptability of their terminal voltage. (credit: Keith Williamson)

Some batteries can be recharged by passing a current through them in the direction opposite to the current they supply to a
resistance. This is done routinely in cars and batteries for small electrical appliances and electronic devices, and is represented
pictorially in Figure 21.16. The voltage output of the battery charger must be greater than the emf of the battery to reverse
current through it. This will cause the terminal voltage of the battery to be greater than the emf, since = emf − , and is
now negative.

Figure 21.16 A car battery charger reverses the normal direction of current through a battery, reversing its chemical reaction and replenishing its
chemical potential.

Multiple Voltage Sources
There are two voltage sources when a battery charger is used. Voltage sources connected in series are relatively simple. When
voltage sources are in series, their internal resistances add and their emfs add algebraically. (See Figure 21.17.) Series
connections of voltage sources are common—for example, in flashlights, toys, and other appliances. Usually, the cells are in
series in order to produce a larger total emf.

But if the cells oppose one another, such as when one is put into an appliance backward, the total emf is less, since it is the
algebraic sum of the individual emfs.

A battery is a multiple connection of voltaic cells, as shown in Figure 21.18. The disadvantage of series connections of cells is
that their internal resistances add. One of the authors once owned a 1957 MGA that had two 6-V batteries in series, rather than a
single 12-V battery. This arrangement produced a large internal resistance that caused him many problems in starting the
engine.

Figure 21.17 A series connection of two voltage sources. The emfs (each labeled with a script E) and internal resistances add, giving a total emf of
emf1 + emf2 and a total internal resistance of 1 + 2 .
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Figure 21.18 Batteries are multiple connections of individual cells, as shown in this modern rendition of an old print. Single cells, such as AA or C cells,
are commonly called batteries, although this is technically incorrect.

If the series connection of two voltage sources is made into a complete circuit with the emfs in opposition, then a current of

magnitude =
emf1 – emf2

1 + 2
flows. See Figure 21.19, for example, which shows a circuit exactly analogous to the battery

charger discussed above. If two voltage sources in series with emfs in the same sense are connected to a load load , as in

Figure 21.20, then =
emf1 + emf2

1 + 2 + load
flows.

Figure 21.19 These two voltage sources are connected in series with their emfs in opposition. Current flows in the direction of the greater emf and is

limited to =
emf1 − emf2

1 + 2
by the sum of the internal resistances. (Note that each emf is represented by script E in the figure.) A battery

charger connected to a battery is an example of such a connection. The charger must have a larger emf than the battery to reverse current through it.

Figure 21.20 This schematic represents a flashlight with two cells (voltage sources) and a single bulb (load resistance) in series. The current that flows

is =
emf1 + emf2

1 + 2 + load
. (Note that each emf is represented by script E in the figure.)

Take-Home Experiment: Flashlight Batteries

Find a flashlight that uses several batteries and find new and old batteries. Based on the discussions in this module, predict
the brightness of the flashlight when different combinations of batteries are used. Do your predictions match what you
observe? Now place new batteries in the flashlight and leave the flashlight switched on for several hours. Is the flashlight still
quite bright? Do the same with the old batteries. Is the flashlight as bright when left on for the same length of time with old
and new batteries? What does this say for the case when you are limited in the number of available new batteries?

Figure 21.21 shows two voltage sources with identical emfs in parallel and connected to a load resistance. In this simple case,
the total emf is the same as the individual emfs. But the total internal resistance is reduced, since the internal resistances are in
parallel. The parallel connection thus can produce a larger current.

Here, = emf

tot + load

flows through the load, and tot is less than those of the individual batteries. For example, some

diesel-powered cars use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the larger current needed
to start a diesel engine.
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Figure 21.21 Two voltage sources with identical emfs (each labeled by script E) connected in parallel produce the same emf but have a smaller total

internal resistance than the individual sources. Parallel combinations are often used to deliver more current. Here = emf

tot + load

flows

through the load.

Animals as Electrical Detectors
A number of animals both produce and detect electrical signals. Fish, sharks, platypuses, and echidnas (spiny anteaters) all
detect electric fields generated by nerve activity in prey. Electric eels produce their own emf through biological cells (electric
organs) called electroplaques, which are arranged in both series and parallel as a set of batteries.

Electroplaques are flat, disk-like cells; those of the electric eel have a voltage of 0.15 V across each one. These cells are usually
located toward the head or tail of the animal, although in the case of the electric eel, they are found along the entire body. The
electroplaques in the South American eel are arranged in 140 rows, with each row stretching horizontally along the body and
containing 5,000 electroplaques. This can yield an emf of approximately 600 V, and a current of 1 A—deadly.

The mechanism for detection of external electric fields is similar to that for producing nerve signals in the cell through
depolarization and repolarization—the movement of ions across the cell membrane. Within the fish, weak electric fields in the
water produce a current in a gel-filled canal that runs from the skin to sensing cells, producing a nerve signal. The Australian

platypus, one of the very few mammals that lay eggs, can detect fields of 30 mV
m , while sharks have been found to be able to

sense a field in their snouts as small as 100 mV
m (Figure 21.22). Electric eels use their own electric fields produced by the

electroplaques to stun their prey or enemies.

Figure 21.22 Sand tiger sharks (Carcharias taurus), like this one at the Minnesota Zoo, use electroreceptors in their snouts to locate prey. (credit: Jim
Winstead, Flickr)

Solar Cell Arrays
Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both series and parallel
combinations to yield a desired voltage and current. Photovoltaic generation (PV), the conversion of sunlight directly into
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electricity, is based upon the photoelectric effect, in which photons hitting the surface of a solar cell create an electric current in
the cell.

Most solar cells are made from pure silicon—either as single-crystal silicon, or as a thin film of silicon deposited upon a glass or
metal backing. Most single cells have a voltage output of about 0.5 V, while the current output is a function of the amount of

sunlight upon the cell (the incident solar radiation—the insolation). Under bright noon sunlight, a current of about 100 mA/cm2

of cell surface area is produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical-energy needs. They can be wired together in series
or in parallel—connected like the batteries discussed earlier. A solar-cell array or module usually consists of between 36 and 72
cells, with a power output of 50 W to 140 W.

The output of the solar cells is direct current. For most uses in a home, AC is required, so a device called an inverter must be
used to convert the DC to AC. Any extra output can then be passed on to the outside electrical grid for sale to the utility.

Take-Home Experiment: Virtual Solar Cells

One can assemble a “virtual” solar cell array by using playing cards, or business or index cards, to represent a solar cell.
Combinations of these cards in series and/or parallel can model the required array output. Assume each card has an output
of 0.5 V and a current (under bright light) of 2 A. Using your cards, how would you arrange them to produce an output of 6 A
at 3 V (18 W)?

Suppose you were told that you needed only 18 W (but no required voltage). Would you need more cards to make this
arrangement?

21.3 Kirchhoff’s Rules

Learning Objectives
By the end of this section, you will be able to:

• Analyze a complex circuit using Kirchhoff’s rules, applying the conventions for determining the correct signs of various
terms.

The information presented in this section supports the following AP® learning objectives and science practices:

• 5.B.9.1 The student is able to construct or interpret a graph of the energy changes within an electrical circuit with only a
single battery and resistors in series and/or in, at most, one parallel branch as an application of the conservation of
energy (Kirchhoff’s loop rule). (S.P. 1.1, 1.4)

• 5.B.9.2 The student is able to apply conservation of energy concepts to the design of an experiment that will
demonstrate the validity of Kirchhoff’s loop rule in a circuit with only a battery and resistors either in series or in, at
most, one pair of parallel branches. (S.P. 4.2, 6.4, 7.2)

• 5.B.9.3 The student is able to apply conservation of energy (Kirchhoff’s loop rule) in calculations involving the total
electric potential difference for complete circuit loops with only a single battery and resistors in series and/or in, at most,
one parallel branch. (S.P. 2.2, 6.4, 7.2)

• 5.B.9.4 The student is able to analyze experimental data including an analysis of experimental uncertainty that will
demonstrate the validity of Kirchhoff’s loop rule. (S.P. 5.1)

• 5.B.9.5 The student is able to use conservation of energy principles (Kirchhoff’s loop rule) to describe and make
predictions regarding electrical potential difference, charge, and current in steady-state circuits composed of various
combinations of resistors and capacitors. (S.P. 6.4)

• 5.C.3.1 The student is able to apply conservation of electric charge (Kirchhoff’s junction rule) to the comparison of
electric current in various segments of an electrical circuit with a single battery and resistors in series and in, at most,
one parallel branch and predict how those values would change if configurations of the circuit are changed. (S.P. 6.4,
7.2)

• 5.C.3.2 The student is able to design an investigation of an electrical circuit with one or more resistors in which
evidence of conservation of electric charge can be collected and analyzed. (S.P. 4.1, 4.2, 5.1)

• 5.C.3.3 The student is able to use a description or schematic diagram of an electrical circuit to calculate unknown
values of current in various segments or branches of the circuit. (S.P. 1.4, 2.2)

• 5.C.3.4 The student is able to predict or explain current values in series and parallel arrangements of resistors and
other branching circuits using Kirchhoff’s junction rule and relate the rule to the law of charge conservation. (S.P. 6.4,
7.2)

• 5.C.3.5 The student is able to determine missing values and direction of electric current in branches of a circuit with
resistors and NO capacitors from values and directions of current in other branches of the circuit through appropriate
selection of nodes and application of the junction rule. (S.P. 1.4, 2.2)

Many complex circuits, such as the one in Figure 21.23, cannot be analyzed with the series-parallel techniques developed in
Resistors in Series and Parallel and Electromotive Force: Terminal Voltage. There are, however, two circuit analysis rules
that can be used to analyze any circuit, simple or complex. These rules are special cases of the laws of conservation of charge
and conservation of energy. The rules are known as Kirchhoff’s rules, after their inventor Gustav Kirchhoff (1824–1887).
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Figure 21.23 This circuit cannot be reduced to a combination of series and parallel connections. Kirchhoff’s rules, special applications of the laws of
conservation of charge and energy, can be used to analyze it. (Note: The script E in the figure represents electromotive force, emf.)

Kirchhoff’s Rules

• Kirchhoff’s first rule—the junction rule. The sum of all currents entering a junction must equal the sum of all currents
leaving the junction.

• Kirchhoff’s second rule—the loop rule. The algebraic sum of changes in potential around any closed circuit path (loop)
must be zero.

Explanations of the two rules will now be given, followed by problem-solving hints for applying Kirchhoff’s rules, and a worked
example that uses them.

Kirchhoff’s First Rule
Kirchhoff’s first rule (the junction rule) is an application of the conservation of charge to a junction; it is illustrated in Figure
21.24. Current is the flow of charge, and charge is conserved; thus, whatever charge flows into the junction must flow out.
Kirchhoff’s first rule requires that 1 = 2 + 3 (see figure). Equations like this can and will be used to analyze circuits and to

solve circuit problems.

Making Connections: Conservation Laws

Kirchhoff’s rules for circuit analysis are applications of conservation laws to circuits. The first rule is the application of
conservation of charge, while the second rule is the application of conservation of energy. Conservation laws, even used in a
specific application, such as circuit analysis, are so basic as to form the foundation of that application.

Figure 21.24 The junction rule. The diagram shows an example of Kirchhoff’s first rule where the sum of the currents into a junction equals the sum of
the currents out of a junction. In this case, the current going into the junction splits and comes out as two currents, so that 1 = 2 + 3 . Here 1

must be 11 A, since 2 is 7 A and 3 is 4 A.
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Kirchhoff’s Second Rule
Kirchhoff’s second rule (the loop rule) is an application of conservation of energy. The loop rule is stated in terms of potential,

, rather than potential energy, but the two are related since PEelec = . Recall that emf is the potential difference of a

source when no current is flowing. In a closed loop, whatever energy is supplied by emf must be transferred into other forms by
devices in the loop, since there are no other ways in which energy can be transferred into or out of the circuit. Figure 21.25
illustrates the changes in potential in a simple series circuit loop.

Kirchhoff’s second rule requires emf − − 1 − 2 = 0 . Rearranged, this is emf = + 1 + 2 , which means the

emf equals the sum of the (voltage) drops in the loop.

Figure 21.25 The loop rule. An example of Kirchhoff’s second rule where the sum of the changes in potential around a closed loop must be zero. (a) In
this standard schematic of a simple series circuit, the emf supplies 18 V, which is reduced to zero by the resistances, with 1 V across the internal
resistance, and 12 V and 5 V across the two load resistances, for a total of 18 V. (b) This perspective view represents the potential as something like a
roller coaster, where charge is raised in potential by the emf and lowered by the resistances. (Note that the script E stands for emf.)

Applying Kirchhoff’s Rules
By applying Kirchhoff’s rules, we generate equations that allow us to find the unknowns in circuits. The unknowns may be
currents, emfs, or resistances. Each time a rule is applied, an equation is produced. If there are as many independent equations
as unknowns, then the problem can be solved. There are two decisions you must make when applying Kirchhoff’s rules. These
decisions determine the signs of various quantities in the equations you obtain from applying the rules.

1. When applying Kirchhoff’s first rule, the junction rule, you must label the current in each branch and decide in what direction
it is going. For example, in Figure 21.23, Figure 21.24, and Figure 21.25, currents are labeled 1 , 2 , 3 , and , and

arrows indicate their directions. There is no risk here, for if you choose the wrong direction, the current will be of the correct
magnitude but negative.

2. When applying Kirchhoff’s second rule, the loop rule, you must identify a closed loop and decide in which direction to go
around it, clockwise or counterclockwise. For example, in Figure 21.25 the loop was traversed in the same direction as the
current (clockwise). Again, there is no risk; going around the circuit in the opposite direction reverses the sign of every term
in the equation, which is like multiplying both sides of the equation by –1.

Figure 21.26 and the following points will help you get the plus or minus signs right when applying the loop rule. Note that the
resistors and emfs are traversed by going from a to b. In many circuits, it will be necessary to construct more than one loop. In
traversing each loop, one needs to be consistent for the sign of the change in potential. (See Example 21.5.)
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Figure 21.26 Each of these resistors and voltage sources is traversed from a to b. The potential changes are shown beneath each element and are
explained in the text. (Note that the script E stands for emf.)

• When a resistor is traversed in the same direction as the current, the change in potential is − . (See Figure 21.26.)

• When a resistor is traversed in the direction opposite to the current, the change in potential is + . (See Figure 21.26.)

• When an emf is traversed from – to + (the same direction it moves positive charge), the change in potential is +emf. (See
Figure 21.26.)

• When an emf is traversed from + to – (opposite to the direction it moves positive charge), the change in potential is −

emf. (See Figure 21.26.)

Example 21.5 Calculating Current: Using Kirchhoff’s Rules

Find the currents flowing in the circuit in Figure 21.27.

Figure 21.27 This circuit is similar to that in Figure 21.23, but the resistances and emfs are specified. (Each emf is denoted by script E.) The
currents in each branch are labeled and assumed to move in the directions shown. This example uses Kirchhoff’s rules to find the currents.

Strategy

This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel techniques—it is
necessary to use Kirchhoff’s rules. Currents have been labeled 1 , 2 , and 3 in the figure and assumptions have been

made about their directions. Locations on the diagram have been labeled with letters a through h. In the solution we will
apply the junction and loop rules, seeking three independent equations to allow us to solve for the three unknown currents.

Solution

We begin by applying Kirchhoff’s first or junction rule at point a. This gives

(21.54)1 = 2 + 3,

since 1 flows into the junction, while 2 and 3 flow out. Applying the junction rule at e produces exactly the same

equation, so that no new information is obtained. This is a single equation with three unknowns—three independent
equations are needed, and so the loop rule must be applied.
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Now we consider the loop abcdea. Going from a to b, we traverse 2 in the same (assumed) direction of the current 2 ,

and so the change in potential is − 2 2 . Then going from b to c, we go from – to +, so that the change in potential is

+emf1 . Traversing the internal resistance 1 from c to d gives − 2 1 . Completing the loop by going from d to a again

traverses a resistor in the same direction as its current, giving a change in potential of − 1 1 .

The loop rule states that the changes in potential sum to zero. Thus,

(21.55)− 2 2 + emf1 − 2 1 − 1 1 = − 2( 2 + 1) + emf1 − 1 1 = 0.

Substituting values from the circuit diagram for the resistances and emf, and canceling the ampere unit gives

(21.56)−3 2 + 18 − 6 1 = 0.

Now applying the loop rule to aefgha (we could have chosen abcdefgha as well) similarly gives

(21.57)+ 1 1 + 3 3 + 3 2 − emf2= + 1 1 + 3 3 + 2 − emf2 = 0.

Note that the signs are reversed compared with the other loop, because elements are traversed in the opposite direction.
With values entered, this becomes

(21.58)+ 6 1 + 2 3 − 45 = 0.

These three equations are sufficient to solve for the three unknown currents. First, solve the second equation for 2 :

(21.59)
2 = 6 − 2 1.

Now solve the third equation for 3 :

(21.60)
3 = 22.5 − 3 1.

Substituting these two new equations into the first one allows us to find a value for 1 :

(21.61)
1 = 2 + 3 = (6 − 2 1) + (22.5 − 3 1) = 28.5 − 5 1.

Combining terms gives

(21.62)6 1 = 28.5, and

(21.63)
1 = 4.75 A.

Substituting this value for 1 back into the fourth equation gives

(21.64)
2 = 6 − 2 1 = 6 − 9.50

(21.65)
2 = −3.50 A.

The minus sign means 2 flows in the direction opposite to that assumed in Figure 21.27.

Finally, substituting the value for 1 into the fifth equation gives

(21.66)
3 = 22.5−3 1 = 22.5 − 14.25

(21.67)
3 = 8.25 A.

Discussion

Just as a check, we note that indeed 1 = 2 + 3 . The results could also have been checked by entering all of the values

into the equation for the abcdefgha loop.

Problem-Solving Strategies for Kirchhoff’s Rules

1. Make certain there is a clear circuit diagram on which you can label all known and unknown resistances, emfs, and
currents. If a current is unknown, you must assign it a direction. This is necessary for determining the signs of potential
changes. If you assign the direction incorrectly, the current will be found to have a negative value—no harm done.

2. Apply the junction rule to any junction in the circuit. Each time the junction rule is applied, you should get an equation
with a current that does not appear in a previous application—if not, then the equation is redundant.

3. Apply the loop rule to as many loops as needed to solve for the unknowns in the problem. (There must be as many
independent equations as unknowns.) To apply the loop rule, you must choose a direction to go around the loop. Then
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carefully and consistently determine the signs of the potential changes for each element using the four bulleted points
discussed above in conjunction with Figure 21.26.

4. Solve the simultaneous equations for the unknowns. This may involve many algebraic steps, requiring careful checking
and rechecking.

5. Check to see whether the answers are reasonable and consistent. The numbers should be of the correct order of
magnitude, neither exceedingly large nor vanishingly small. The signs should be reasonable—for example, no
resistance should be negative. Check to see that the values obtained satisfy the various equations obtained from
applying the rules. The currents should satisfy the junction rule, for example.

The material in this section is correct in theory. We should be able to verify it by making measurements of current and voltage. In
fact, some of the devices used to make such measurements are straightforward applications of the principles covered so far and
are explored in the next modules. As we shall see, a very basic, even profound, fact results—making a measurement alters the
quantity being measured.

Check Your Understanding

Can Kirchhoff’s rules be applied to simple series and parallel circuits or are they restricted for use in more complicated
circuits that are not combinations of series and parallel?

Solution
Kirchhoff's rules can be applied to any circuit since they are applications to circuits of two conservation laws. Conservation
laws are the most broadly applicable principles in physics. It is usually mathematically simpler to use the rules for series and
parallel in simpler circuits so we emphasize Kirchhoff’s rules for use in more complicated situations. But the rules for series
and parallel can be derived from Kirchhoff’s rules. Moreover, Kirchhoff’s rules can be expanded to devices other than
resistors and emfs, such as capacitors, and are one of the basic analysis devices in circuit analysis.

Making Connections: Parallel Resistors

A simple circuit shown below – with two parallel resistors and a voltage source – is implemented in a laboratory experiment
with ɛ = 6.00 ± 0.02 V and R1 = 4.8 ± 0.1 Ω and R2 = 9.6 ± 0.1 Ω. The values include an allowance for experimental
uncertainties as they cannot be measured with perfect certainty. For example if you measure the value for a resistor a few
times, you may get slightly different results. Hence values are expressed with some level of uncertainty.

Figure 21.28

In the laboratory experiment the currents measured in the two resistors are I1 = 1.27 A and I2 = 0.62 A respectively. Let us
examine these values using Kirchhoff’s laws.

For the two loops,

E - I1R1 = 0 or I1 = E/R1

E - I2R2 = 0 or I2 = E/R2

Converting the given uncertainties for voltage and resistances into percentages, we get

E = 6.00 V ± 0.33%

R1 = 4.8 Ω ± 2.08%

R2 = 9.6 Ω ± 1.04%

We now find the currents for the two loops. While the voltage is divided by the resistance to find the current, uncertainties in
voltage and resistance are directly added to find the uncertainty in the current value.

I1 = (6.00/4.8) ± (0.33%+2.08%)

= 1.25 ± 2.4%

= 1.25 ± 0.03 A

I2 = (6.00/9.6) ± (0.33%+1.04%)

= 0.63 ± 1.4%

= 0.63 ± 0.01 A

Finally you can check that the two measured values in this case are within the uncertainty ranges found for the currents.
However there can also be additional experimental uncertainty in the measurements of currents.
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21.4 DC Voltmeters and Ammeters

Learning Objectives
By the end of this section, you will be able to:

• Explain why a voltmeter must be connected in parallel with the circuit.
• Draw a diagram showing an ammeter correctly connected in a circuit.
• Describe how a galvanometer can be used as either a voltmeter or an ammeter.
• Find the resistance that must be placed in series with a galvanometer to allow it to be used as a voltmeter with a given

reading.
• Explain why measuring the voltage or current in a circuit can never be exact.

Voltmeters measure voltage, whereas ammeters measure current. Some of the meters in automobile dashboards, digital
cameras, cell phones, and tuner-amplifiers are voltmeters or ammeters. (See Figure 21.29.) The internal construction of the
simplest of these meters and how they are connected to the system they monitor give further insight into applications of series
and parallel connections.

Figure 21.29 The fuel and temperature gauges (far right and far left, respectively) in this 1996 Volkswagen are voltmeters that register the voltage
output of “sender” units, which are hopefully proportional to the amount of gasoline in the tank and the engine temperature. (credit: Christian Giersing)

Voltmeters are connected in parallel with whatever device’s voltage is to be measured. A parallel connection is used because
objects in parallel experience the same potential difference. (See Figure 21.30, where the voltmeter is represented by the
symbol V.)

Ammeters are connected in series with whatever device’s current is to be measured. A series connection is used because
objects in series have the same current passing through them. (See Figure 21.31, where the ammeter is represented by the
symbol A.)
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Figure 21.30 (a) To measure potential differences in this series circuit, the voltmeter (V) is placed in parallel with the voltage source or either of the
resistors. Note that terminal voltage is measured between points a and b. It is not possible to connect the voltmeter directly across the emf without
including its internal resistance, . (b) A digital voltmeter in use. (credit: Messtechniker, Wikimedia Commons)

Figure 21.31 An ammeter (A) is placed in series to measure current. All of the current in this circuit flows through the meter. The ammeter would have
the same reading if located between points d and e or between points f and a as it does in the position shown. (Note that the script capital E stands for
emf, and stands for the internal resistance of the source of potential difference.)

Analog Meters: Galvanometers
Analog meters have a needle that swivels to point at numbers on a scale, as opposed to digital meters, which have numerical
readouts similar to a hand-held calculator. The heart of most analog meters is a device called a galvanometer, denoted by G.
Current flow through a galvanometer, G , produces a proportional needle deflection. (This deflection is due to the force of a

magnetic field upon a current-carrying wire.)

The two crucial characteristics of a given galvanometer are its resistance and current sensitivity. Current sensitivity is the
current that gives a full-scale deflection of the galvanometer’s needle, the maximum current that the instrument can measure.
For example, a galvanometer with a current sensitivity of 50 μA has a maximum deflection of its needle when 50 μA flows

through it, reads half-scale when 25 μA flows through it, and so on.
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If such a galvanometer has a 25- Ω resistance, then a voltage of only = = 50 μA (25 Ω) = 1.25 mV produces a

full-scale reading. By connecting resistors to this galvanometer in different ways, you can use it as either a voltmeter or ammeter
that can measure a broad range of voltages or currents.

Galvanometer as Voltmeter

Figure 21.32 shows how a galvanometer can be used as a voltmeter by connecting it in series with a large resistance, . The

value of the resistance is determined by the maximum voltage to be measured. Suppose you want 10 V to produce a full-

scale deflection of a voltmeter containing a 25-Ω galvanometer with a 50-μA sensitivity. Then 10 V applied to the meter must

produce a current of 50 μA . The total resistance must be

(21.68)
tot = + = = 10 V

50 μA
= 200 kΩ, or

(21.69)= tot − = 200 kΩ − 25 Ω ≈ 200 k Ω .

( is so large that the galvanometer resistance, , is nearly negligible.) Note that 5 V applied to this voltmeter produces a half-

scale deflection by producing a 25-μA current through the meter, and so the voltmeter’s reading is proportional to voltage as

desired.

This voltmeter would not be useful for voltages less than about half a volt, because the meter deflection would be small and
difficult to read accurately. For other voltage ranges, other resistances are placed in series with the galvanometer. Many meters
have a choice of scales. That choice involves switching an appropriate resistance into series with the galvanometer.

Figure 21.32 A large resistance placed in series with a galvanometer G produces a voltmeter, the full-scale deflection of which depends on the

choice of . The larger the voltage to be measured, the larger must be. (Note that represents the internal resistance of the galvanometer.)

Galvanometer as Ammeter

The same galvanometer can also be made into an ammeter by placing it in parallel with a small resistance , often called the
shunt resistance, as shown in Figure 21.33. Since the shunt resistance is small, most of the current passes through it, allowing
an ammeter to measure currents much greater than those producing a full-scale deflection of the galvanometer.

Suppose, for example, an ammeter is needed that gives a full-scale deflection for 1.0 A, and contains the same 25- Ω

galvanometer with its 50-μA sensitivity. Since and are in parallel, the voltage across them is the same.

These drops are = G so that = G = . Solving for , and noting that G is 50 μA and is 0.999950 A, we

have

(21.70)
= G = (25 Ω )

50 μA

0.999950 A
= 1.25 10−3 Ω .

Figure 21.33 A small shunt resistance placed in parallel with a galvanometer G produces an ammeter, the full-scale deflection of which depends

on the choice of . The larger the current to be measured, the smaller must be. Most of the current ( ) flowing through the meter is shunted

through to protect the galvanometer. (Note that represents the internal resistance of the galvanometer.) Ammeters may also have multiple
scales for greater flexibility in application. The various scales are achieved by switching various shunt resistances in parallel with the
galvanometer—the greater the maximum current to be measured, the smaller the shunt resistance must be.

Taking Measurements Alters the Circuit
When you use a voltmeter or ammeter, you are connecting another resistor to an existing circuit and, thus, altering the circuit.
Ideally, voltmeters and ammeters do not appreciably affect the circuit, but it is instructive to examine the circumstances under
which they do or do not interfere.
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First, consider the voltmeter, which is always placed in parallel with the device being measured. Very little current flows through
the voltmeter if its resistance is a few orders of magnitude greater than the device, and so the circuit is not appreciably affected.
(See Figure 21.34(a).) (A large resistance in parallel with a small one has a combined resistance essentially equal to the small
one.) If, however, the voltmeter’s resistance is comparable to that of the device being measured, then the two in parallel have a
smaller resistance, appreciably affecting the circuit. (See Figure 21.34(b).) The voltage across the device is not the same as
when the voltmeter is out of the circuit.

Figure 21.34 (a) A voltmeter having a resistance much larger than the device ( Voltmeter >> ) with which it is in parallel produces a parallel

resistance essentially the same as the device and does not appreciably affect the circuit being measured. (b) Here the voltmeter has the same
resistance as the device ( Voltmeter ≅ ), so that the parallel resistance is half of what it is when the voltmeter is not connected. This is an

example of a significant alteration of the circuit and is to be avoided.

An ammeter is placed in series in the branch of the circuit being measured, so that its resistance adds to that branch. Normally,
the ammeter’s resistance is very small compared with the resistances of the devices in the circuit, and so the extra resistance is
negligible. (See Figure 21.35(a).) However, if very small load resistances are involved, or if the ammeter is not as low in
resistance as it should be, then the total series resistance is significantly greater, and the current in the branch being measured is
reduced. (See Figure 21.35(b).)

A practical problem can occur if the ammeter is connected incorrectly. If it was put in parallel with the resistor to measure the
current in it, you could possibly damage the meter; the low resistance of the ammeter would allow most of the current in the
circuit to go through the galvanometer, and this current would be larger since the effective resistance is smaller.

Figure 21.35 (a) An ammeter normally has such a small resistance that the total series resistance in the branch being measured is not appreciably
increased. The circuit is essentially unaltered compared with when the ammeter is absent. (b) Here the ammeter’s resistance is the same as that of the
branch, so that the total resistance is doubled and the current is half what it is without the ammeter. This significant alteration of the circuit is to be
avoided.

One solution to the problem of voltmeters and ammeters interfering with the circuits being measured is to use galvanometers
with greater sensitivity. This allows construction of voltmeters with greater resistance and ammeters with smaller resistance than
when less sensitive galvanometers are used.

There are practical limits to galvanometer sensitivity, but it is possible to get analog meters that make measurements accurate to
a few percent. Note that the inaccuracy comes from altering the circuit, not from a fault in the meter.

Connections: Limits to Knowledge

Making a measurement alters the system being measured in a manner that produces uncertainty in the measurement. For
macroscopic systems, such as the circuits discussed in this module, the alteration can usually be made negligibly small, but
it cannot be eliminated entirely. For submicroscopic systems, such as atoms, nuclei, and smaller particles, measurement
alters the system in a manner that cannot be made arbitrarily small. This actually limits knowledge of the system—even
limiting what nature can know about itself. We shall see profound implications of this when the Heisenberg uncertainty
principle is discussed in the modules on quantum mechanics.

There is another measurement technique based on drawing no current at all and, hence, not altering the circuit at all. These
are called null measurements and are the topic of Null Measurements. Digital meters that employ solid-state electronics

and null measurements can attain accuracies of one part in 106 .
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ammeter:

analog meter:

bridge device:

capacitance:

capacitor:

conservation laws:

current:

current sensitivity:

digital meter:

electromotive force (emf):

full-scale deflection:

galvanometer:

internal resistance:

Joule’s law:

junction rule:

Kirchhoff’s rules:

loop rule:

heart defibrillator is slightly more complex than the one in Figure 21.42, to compensate for magnetic and AC effects that will
be covered in Magnetism.

Check Your Understanding

When is the potential difference across a capacitor an emf?

Solution
Only when the current being drawn from or put into the capacitor is zero. Capacitors, like batteries, have internal resistance,
so their output voltage is not an emf unless current is zero. This is difficult to measure in practice so we refer to a capacitor’s
voltage rather than its emf. But the source of potential difference in a capacitor is fundamental and it is an emf.

PhET Explorations: Circuit Construction Kit (DC only)

An electronics kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with
the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.

Figure 21.45 Circuit Construction Kit (DC only) (http://cnx.org/content/m55370/1.3/circuit-construction-kit-dc_en.jar)

Glossary
an instrument that measures current

a measuring instrument that gives a readout in the form of a needle movement over a marked gauge

a device that forms a bridge between two branches of a circuit; some bridge devices are used to make null
measurements in circuits

the maximum amount of electric potential energy that can be stored (or separated) for a given electric potential

an electrical component used to store energy by separating electric charge on two opposing plates

require that energy and charge be conserved in a system

the flow of charge through an electric circuit past a given point of measurement

the maximum current that a galvanometer can read

a measuring instrument that gives a readout in a digital form

the potential difference of a source of electricity when no current is flowing; measured in volts

the maximum deflection of a galvanometer needle, also known as current sensitivity; a galvanometer
with a full-scale deflection of 50 μA has a maximum deflection of its needle when 50 μA flows through it

an analog measuring device, denoted by G, that measures current flow using a needle deflection caused by a
magnetic field force acting upon a current-carrying wire

the amount of resistance within the voltage source

the relationship between potential electrical power, voltage, and resistance in an electrical circuit, given by:
=

Kirchhoff’s first rule, which applies the conservation of charge to a junction; current is the flow of charge; thus,
whatever charge flows into the junction must flow out; the rule can be stated 1 = 2 + 3

a set of two rules, based on conservation of charge and energy, governing current and changes in potential
in an electric circuit

Kirchhoff’s second rule, which states that in a closed loop, whatever energy is supplied by emf must be transferred
into other forms by devices in the loop, since there are no other ways in which energy can be transferred into or out of
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null measurements:

ohmmeter:

Ohm’s law:

parallel:

potential difference:

potentiometer:

RC circuit:

resistance:

resistor:

series:

shunt resistance:

terminal voltage:

voltage:

voltage drop:

voltmeter:

Wheatstone bridge:

the circuit. Thus, the emf equals the sum of the (voltage) drops in the loop and can be stated:

emf = + 1 + 2

methods of measuring current and voltage more accurately by balancing the circuit so that no current
flows through the measurement device

an instrument that applies a voltage to a resistance, measures the current, calculates the resistance using Ohm’s
law, and provides a readout of this calculated resistance

the relationship between current, voltage, and resistance within an electrical circuit: =

the wiring of resistors or other components in an electrical circuit such that each component receives an equal
voltage from the power source; often pictured in a ladder-shaped diagram, with each component on a rung of the ladder

the difference in electric potential between two points in an electric circuit, measured in volts

a null measurement device for measuring potentials (voltages)

a circuit that contains both a resistor and a capacitor

causing a loss of electrical power in a circuit

a component that provides resistance to the current flowing through an electrical circuit

a sequence of resistors or other components wired into a circuit one after the other

a small resistance placed in parallel with a galvanometer G to produce an ammeter; the larger the

current to be measured, the smaller must be; most of the current flowing through the meter is shunted through to
protect the galvanometer

the voltage measured across the terminals of a source of potential difference

the electrical potential energy per unit charge; electric pressure created by a power source, such as a battery

the loss of electrical power as a current travels through a resistor, wire or other component

an instrument that measures voltage

a null measurement device for calculating resistance by balancing potential drops in a circuit

Section Summary

21.1 Resistors in Series and Parallel
• The total resistance of an electrical circuit with resistors wired in a series is the sum of the individual resistances:

s = 1 + 2 + 3 + ....

• Each resistor in a series circuit has the same amount of current flowing through it.
• The voltage drop, or power dissipation, across each individual resistor in a series is different, and their combined total adds

up to the power source input.
• The total resistance of an electrical circuit with resistors wired in parallel is less than the lowest resistance of any of the

components and can be determined using the formula:

1
p

= 1

1
+ 1

2
+ 1

3
+ ....

• Each resistor in a parallel circuit has the same full voltage of the source applied to it.
• The current flowing through each resistor in a parallel circuit is different, depending on the resistance.
• If a more complex connection of resistors is a combination of series and parallel, it can be reduced to a single equivalent

resistance by identifying its various parts as series or parallel, reducing each to its equivalent, and continuing until a single
resistance is eventually reached.

21.2 Electromotive Force: Terminal Voltage
• All voltage sources have two fundamental parts—a source of electrical energy that has a characteristic electromotive force

(emf), and an internal resistance .
• The emf is the potential difference of a source when no current is flowing.
• The numerical value of the emf depends on the source of potential difference.
• The internal resistance of a voltage source affects the output voltage when a current flows.

• The voltage output of a device is called its terminal voltage and is given by = emf − , where is the electric
current and is positive when flowing away from the positive terminal of the voltage source.
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• When multiple voltage sources are in series, their internal resistances add and their emfs add algebraically.
• Solar cells can be wired in series or parallel to provide increased voltage or current, respectively.

21.3 Kirchhoff’s Rules
• Kirchhoff’s rules can be used to analyze any circuit, simple or complex.
• Kirchhoff’s first rule—the junction rule: The sum of all currents entering a junction must equal the sum of all currents leaving

the junction.
• Kirchhoff’s second rule—the loop rule: The algebraic sum of changes in potential around any closed circuit path (loop) must

be zero.
• The two rules are based, respectively, on the laws of conservation of charge and energy.
• When calculating potential and current using Kirchhoff’s rules, a set of conventions must be followed for determining the

correct signs of various terms.
• The simpler series and parallel rules are special cases of Kirchhoff’s rules.

21.4 DC Voltmeters and Ammeters
• Voltmeters measure voltage, and ammeters measure current.
• A voltmeter is placed in parallel with the voltage source to receive full voltage and must have a large resistance to limit its

effect on the circuit.
• An ammeter is placed in series to get the full current flowing through a branch and must have a small resistance to limit its

effect on the circuit.
• Both can be based on the combination of a resistor and a galvanometer, a device that gives an analog reading of current.
• Standard voltmeters and ammeters alter the circuit being measured and are thus limited in accuracy.

21.5 Null Measurements
• Null measurement techniques achieve greater accuracy by balancing a circuit so that no current flows through the

measuring device.
• One such device, for determining voltage, is a potentiometer.
• Another null measurement device, for determining resistance, is the Wheatstone bridge.
• Other physical quantities can also be measured with null measurement techniques.

21.6 DC Circuits Containing Resistors and Capacitors
• An circuit is one that has both a resistor and a capacitor.

• The time constant for an circuit is = .

• When an initially uncharged ( 0 = 0 at = 0 ) capacitor in series with a resistor is charged by a DC voltage source, the

voltage rises, asymptotically approaching the emf of the voltage source; as a function of time,

= emf(1 − − / )(charging).
• Within the span of each time constant , the voltage rises by 0.632 of the remaining value, approaching the final voltage

asymptotically.
• If a capacitor with an initial voltage 0 is discharged through a resistor starting at = 0 , then its voltage decreases

exponentially as given by

= 0
− / (discharging).

• In each time constant , the voltage falls by 0.368 of its remaining initial value, approaching zero asymptotically.

Conceptual Questions

21.1 Resistors in Series and Parallel
1. A switch has a variable resistance that is nearly zero when closed and extremely large when open, and it is placed in series
with the device it controls. Explain the effect the switch in Figure 21.46 has on current when open and when closed.
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Figure 21.46 A switch is ordinarily in series with a resistance and voltage source. Ideally, the switch has nearly zero resistance when closed but has an
extremely large resistance when open. (Note that in this diagram, the script E represents the voltage (or electromotive force) of the battery.)

2. What is the voltage across the open switch in Figure 21.46?

3. There is a voltage across an open switch, such as in Figure 21.46. Why, then, is the power dissipated by the open switch
small?

4. Why is the power dissipated by a closed switch, such as in Figure 21.46, small?

5. A student in a physics lab mistakenly wired a light bulb, battery, and switch as shown in Figure 21.47. Explain why the bulb is
on when the switch is open, and off when the switch is closed. (Do not try this—it is hard on the battery!)

Figure 21.47 A wiring mistake put this switch in parallel with the device represented by . (Note that in this diagram, the script E represents the

voltage (or electromotive force) of the battery.)

6. Knowing that the severity of a shock depends on the magnitude of the current through your body, would you prefer to be in
series or parallel with a resistance, such as the heating element of a toaster, if shocked by it? Explain.

7. Would your headlights dim when you start your car’s engine if the wires in your automobile were superconductors? (Do not
neglect the battery’s internal resistance.) Explain.

8. Some strings of holiday lights are wired in series to save wiring costs. An old version utilized bulbs that break the electrical
connection, like an open switch, when they burn out. If one such bulb burns out, what happens to the others? If such a string
operates on 120 V and has 40 identical bulbs, what is the normal operating voltage of each? Newer versions use bulbs that short
circuit, like a closed switch, when they burn out. If one such bulb burns out, what happens to the others? If such a string operates
on 120 V and has 39 remaining identical bulbs, what is then the operating voltage of each?

9. If two household lightbulbs rated 60 W and 100 W are connected in series to household power, which will be brighter?
Explain.

10. Suppose you are doing a physics lab that asks you to put a resistor into a circuit, but all the resistors supplied have a larger
resistance than the requested value. How would you connect the available resistances to attempt to get the smaller value asked
for?

11. Before World War II, some radios got power through a “resistance cord” that had a significant resistance. Such a resistance
cord reduces the voltage to a desired level for the radio’s tubes and the like, and it saves the expense of a transformer. Explain
why resistance cords become warm and waste energy when the radio is on.

12. Some light bulbs have three power settings (not including zero), obtained from multiple filaments that are individually
switched and wired in parallel. What is the minimum number of filaments needed for three power settings?

21.2 Electromotive Force: Terminal Voltage
13. Is every emf a potential difference? Is every potential difference an emf? Explain.

14. Explain which battery is doing the charging and which is being charged in Figure 21.48.
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Figure 21.48

15. Given a battery, an assortment of resistors, and a variety of voltage and current measuring devices, describe how you would
determine the internal resistance of the battery.

16. Two different 12-V automobile batteries on a store shelf are rated at 600 and 850 “cold cranking amps.” Which has the
smallest internal resistance?

17. What are the advantages and disadvantages of connecting batteries in series? In parallel?

18. Semitractor trucks use four large 12-V batteries. The starter system requires 24 V, while normal operation of the truck’s other
electrical components utilizes 12 V. How could the four batteries be connected to produce 24 V? To produce 12 V? Why is 24 V
better than 12 V for starting the truck’s engine (a very heavy load)?

21.3 Kirchhoff’s Rules
19. Can all of the currents going into the junction in Figure 21.49 be positive? Explain.

Figure 21.49

20. Apply the junction rule to junction b in Figure 21.50. Is any new information gained by applying the junction rule at e? (In the
figure, each emf is represented by script E.)

Figure 21.50

21. (a) What is the potential difference going from point a to point b in Figure 21.50? (b) What is the potential difference going
from c to b? (c) From e to g? (d) From e to d?

22. Apply the loop rule to loop afedcba in Figure 21.50.

23. Apply the loop rule to loops abgefa and cbgedc in Figure 21.50.

21.4 DC Voltmeters and Ammeters

954 Chapter 21 | Circuits, Bioelectricity, and DC Instruments

This content is available for free at http://cnx.org/content/col11844/1.13



24. Why should you not connect an ammeter directly across a voltage source as shown in Figure 21.51? (Note that script E in
the figure stands for emf.)

Figure 21.51

25. Suppose you are using a multimeter (one designed to measure a range of voltages, currents, and resistances) to measure
current in a circuit and you inadvertently leave it in a voltmeter mode. What effect will the meter have on the circuit? What would
happen if you were measuring voltage but accidentally put the meter in the ammeter mode?

26. Specify the points to which you could connect a voltmeter to measure the following potential differences in Figure 21.52: (a)
the potential difference of the voltage source; (b) the potential difference across 1 ; (c) across 2 ; (d) across 3 ; (e) across

2 and 3 . Note that there may be more than one answer to each part.

Figure 21.52

27. To measure currents in Figure 21.52, you would replace a wire between two points with an ammeter. Specify the points
between which you would place an ammeter to measure the following: (a) the total current; (b) the current flowing through 1 ;

(c) through 2 ; (d) through 3 . Note that there may be more than one answer to each part.

21.5 Null Measurements
28. Why can a null measurement be more accurate than one using standard voltmeters and ammeters? What factors limit the
accuracy of null measurements?

29. If a potentiometer is used to measure cell emfs on the order of a few volts, why is it most accurate for the standard emfs to

be the same order of magnitude and the resistances to be in the range of a few ohms?

21.6 DC Circuits Containing Resistors and Capacitors

30. Regarding the units involved in the relationship = , verify that the units of resistance times capacitance are time, that

is, Ω ⋅ F = s .

31. The time constant in heart defibrillation is crucial to limiting the time the current flows. If the capacitance in the

defibrillation unit is fixed, how would you manipulate resistance in the circuit to adjust the constant ? Would an adjustment
of the applied voltage also be needed to ensure that the current delivered has an appropriate value?

32. When making an ECG measurement, it is important to measure voltage variations over small time intervals. The time is
limited by the constant of the circuit—it is not possible to measure time variations shorter than . How would you

manipulate and in the circuit to allow the necessary measurements?

33. Draw two graphs of charge versus time on a capacitor. Draw one for charging an initially uncharged capacitor in series with a
resistor, as in the circuit in Figure 21.41, starting from t = 0 . Draw the other for discharging a capacitor through a resistor, as in

the circuit in Figure 21.42, starting at t = 0 , with an initial charge 0 . Show at least two intervals of .

34. When charging a capacitor, as discussed in conjunction with Figure 21.41, how long does it take for the voltage on the
capacitor to reach emf? Is this a problem?
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35. When discharging a capacitor, as discussed in conjunction with Figure 21.42, how long does it take for the voltage on the
capacitor to reach zero? Is this a problem?

36. Referring to Figure 21.41, draw a graph of potential difference across the resistor versus time, showing at least two intervals
of . Also draw a graph of current versus time for this situation.

37. A long, inexpensive extension cord is connected from inside the house to a refrigerator outside. The refrigerator doesn’t run
as it should. What might be the problem?

38. In Figure 21.44, does the graph indicate the time constant is shorter for discharging than for charging? Would you expect
ionized gas to have low resistance? How would you adjust to get a longer time between flashes? Would adjusting affect
the discharge time?

39. An electronic apparatus may have large capacitors at high voltage in the power supply section, presenting a shock hazard
even when the apparatus is switched off. A “bleeder resistor” is therefore placed across such a capacitor, as shown
schematically in Figure 21.53, to bleed the charge from it after the apparatus is off. Why must the bleeder resistance be much
greater than the effective resistance of the rest of the circuit? How does this affect the time constant for discharging the
capacitor?

Figure 21.53 A bleeder resistor bl discharges the capacitor in this electronic device once it is switched off.
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Problems & Exercises

21.1 Resistors in Series and Parallel
Note: Data taken from figures can be assumed to be
accurate to three significant digits.

1. (a) What is the resistance of ten 275-Ω resistors
connected in series? (b) In parallel?

2. (a) What is the resistance of a 1.00×102 -Ω , a 2.50-kΩ

, and a 4.00-k Ω resistor connected in series? (b) In
parallel?

3. What are the largest and smallest resistances you can
obtain by connecting a 36.0-Ω , a 50.0-Ω , and a 700-Ω

resistor together?

4. An 1800-W toaster, a 1400-W electric frying pan, and a
75-W lamp are plugged into the same outlet in a 15-A, 120-V
circuit. (The three devices are in parallel when plugged into
the same socket.). (a) What current is drawn by each device?
(b) Will this combination blow the 15-A fuse?

5. Your car’s 30.0-W headlight and 2.40-kW starter are
ordinarily connected in parallel in a 12.0-V system. What
power would one headlight and the starter consume if
connected in series to a 12.0-V battery? (Neglect any other
resistance in the circuit and any change in resistance in the
two devices.)

6. (a) Given a 48.0-V battery and 24.0-Ω and 96.0-Ω

resistors, find the current and power for each when connected
in series. (b) Repeat when the resistances are in parallel.

7. Referring to the example combining series and parallel
circuits and Figure 21.6, calculate 3 in the following two

different ways: (a) from the known values of and 2 ; (b)

using Ohm’s law for 3 . In both parts explicitly show how

you follow the steps in the Problem-Solving Strategies for
Series and Parallel Resistors.

8. Referring to Figure 21.6: (a) Calculate 3 and note how it

compares with 3 found in the first two example problems in

this module. (b) Find the total power supplied by the source
and compare it with the sum of the powers dissipated by the
resistors.

9. Refer to Figure 21.7 and the discussion of lights dimming
when a heavy appliance comes on. (a) Given the voltage
source is 120 V, the wire resistance is 0.400 Ω , and the
bulb is nominally 75.0 W, what power will the bulb dissipate if
a total of 15.0 A passes through the wires when the motor
comes on? Assume negligible change in bulb resistance. (b)
What power is consumed by the motor?

10. A 240-kV power transmission line carrying 5.00×102 A

is hung from grounded metal towers by ceramic insulators,

each having a 1.00 109 -Ω resistance. Figure 21.54. (a)
What is the resistance to ground of 100 of these insulators?
(b) Calculate the power dissipated by 100 of them. (c) What
fraction of the power carried by the line is this? Explicitly show
how you follow the steps in the Problem-Solving Strategies
for Series and Parallel Resistors.

Figure 21.54 High-voltage (240-kV) transmission line carrying

5.00×102 A is hung from a grounded metal transmission tower.

The row of ceramic insulators provide 1.00×109 Ω of resistance

each.

11. Show that if two resistors 1 and 2 are combined and

one is much greater than the other ( 1 >> 2 ): (a) Their

series resistance is very nearly equal to the greater
resistance 1 . (b) Their parallel resistance is very nearly

equal to smaller resistance 2 .

12. Unreasonable Results

Two resistors, one having a resistance of 145 Ω , are
connected in parallel to produce a total resistance of
150 Ω . (a) What is the value of the second resistance? (b)
What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

13. Unreasonable Results

Two resistors, one having a resistance of 900 kΩ , are
connected in series to produce a total resistance of
0.500 MΩ . (a) What is the value of the second resistance?
(b) What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

21.2 Electromotive Force: Terminal Voltage
14. Standard automobile batteries have six lead-acid cells in
series, creating a total emf of 12.0 V. What is the emf of an
individual lead-acid cell?

15. Carbon-zinc dry cells (sometimes referred to as non-
alkaline cells) have an emf of 1.54 V, and they are produced
as single cells or in various combinations to form other
voltages. (a) How many 1.54-V cells are needed to make the
common 9-V battery used in many small electronic devices?
(b) What is the actual emf of the approximately 9-V battery?
(c) Discuss how internal resistance in the series connection of
cells will affect the terminal voltage of this approximately 9-V
battery.

16. What is the output voltage of a 3.0000-V lithium cell in a
digital wristwatch that draws 0.300 mA, if the cell’s internal
resistance is 2.00 Ω ?

17. (a) What is the terminal voltage of a large 1.54-V carbon-
zinc dry cell used in a physics lab to supply 2.00 A to a circuit,
if the cell’s internal resistance is 0.100 Ω ? (b) How much
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electrical power does the cell produce? (c) What power goes
to its load?

18. What is the internal resistance of an automobile battery
that has an emf of 12.0 V and a terminal voltage of 15.0 V
while a current of 8.00 A is charging it?

19. (a) Find the terminal voltage of a 12.0-V motorcycle
battery having a 0.600-Ω internal resistance, if it is being
charged by a current of 10.0 A. (b) What is the output voltage
of the battery charger?

20. A car battery with a 12-V emf and an internal resistance of
0.050 Ω is being charged with a current of 60 A. Note that
in this process the battery is being charged. (a) What is the
potential difference across its terminals? (b) At what rate is
thermal energy being dissipated in the battery? (c) At what
rate is electric energy being converted to chemical energy?
(d) What are the answers to (a) and (b) when the battery is
used to supply 60 A to the starter motor?

21. The hot resistance of a flashlight bulb is 2.30 Ω , and it

is run by a 1.58-V alkaline cell having a 0.100-Ω internal
resistance. (a) What current flows? (b) Calculate the power

supplied to the bulb using 2
bulb . (c) Is this power the

same as calculated using
2

bulb
?

22. The label on a portable radio recommends the use of
rechargeable nickel-cadmium cells (nicads), although they
have a 1.25-V emf while alkaline cells have a 1.58-V emf. The
radio has a 3.20-Ω resistance. (a) Draw a circuit diagram of
the radio and its batteries. Now, calculate the power delivered
to the radio. (b) When using Nicad cells each having an
internal resistance of 0.0400 Ω . (c) When using alkaline

cells each having an internal resistance of 0.200 Ω . (d)
Does this difference seem significant, considering that the
radio’s effective resistance is lowered when its volume is
turned up?

23. An automobile starter motor has an equivalent resistance
of 0.0500 Ω and is supplied by a 12.0-V battery with a

0.0100-Ω internal resistance. (a) What is the current to the
motor? (b) What voltage is applied to it? (c) What power is
supplied to the motor? (d) Repeat these calculations for when
the battery connections are corroded and add 0.0900 Ω to
the circuit. (Significant problems are caused by even small
amounts of unwanted resistance in low-voltage, high-current
applications.)

24. A child’s electronic toy is supplied by three 1.58-V alkaline
cells having internal resistances of 0.0200 Ω in series with

a 1.53-V carbon-zinc dry cell having a 0.100-Ω internal

resistance. The load resistance is 10.0 Ω . (a) Draw a
circuit diagram of the toy and its batteries. (b) What current
flows? (c) How much power is supplied to the load? (d) What
is the internal resistance of the dry cell if it goes bad, resulting
in only 0.500 W being supplied to the load?

25. (a) What is the internal resistance of a voltage source if its
terminal voltage drops by 2.00 V when the current supplied
increases by 5.00 A? (b) Can the emf of the voltage source
be found with the information supplied?

26. A person with body resistance between his hands of
10.0 k Ω accidentally grasps the terminals of a 20.0-kV
power supply. (Do NOT do this!) (a) Draw a circuit diagram to

represent the situation. (b) If the internal resistance of the
power supply is 2000 Ω , what is the current through his
body? (c) What is the power dissipated in his body? (d) If the
power supply is to be made safe by increasing its internal
resistance, what should the internal resistance be for the
maximum current in this situation to be 1.00 mA or less? (e)
Will this modification compromise the effectiveness of the
power supply for driving low-resistance devices? Explain your
reasoning.

27. Electric fish generate current with biological cells called
electroplaques, which are physiological emf devices. The
electroplaques in the South American eel are arranged in 140
rows, each row stretching horizontally along the body and
each containing 5000 electroplaques. Each electroplaque has
an emf of 0.15 V and internal resistance of 0.25 Ω . If the

water surrounding the fish has resistance of 800 Ω , how
much current can the eel produce in water from near its head
to near its tail?

28. Integrated Concepts

A 12.0-V emf automobile battery has a terminal voltage of
16.0 V when being charged by a current of 10.0 A. (a) What is
the battery’s internal resistance? (b) What power is dissipated
inside the battery? (c) At what rate (in ºC/min ) will its
temperature increase if its mass is 20.0 kg and it has a
specific heat of 0.300 kcal/kg ⋅ ºC , assuming no heat

escapes?

29. Unreasonable Results

A 1.58-V alkaline cell with a 0.200-Ω internal resistance is
supplying 8.50 A to a load. (a) What is its terminal voltage?
(b) What is the value of the load resistance? (c) What is
unreasonable about these results? (d) Which assumptions
are unreasonable or inconsistent?

30. Unreasonable Results

(a) What is the internal resistance of a 1.54-V dry cell that
supplies 1.00 W of power to a 15.0-Ω bulb? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

21.3 Kirchhoff’s Rules
31. Apply the loop rule to loop abcdefgha in Figure 21.27.

32. Apply the loop rule to loop aedcba in Figure 21.27.

33. Verify the second equation in Example 21.5 by
substituting the values found for the currents 1 and 2 .

34. Verify the third equation in Example 21.5 by substituting
the values found for the currents 1 and 3 .

35. Apply the junction rule at point a in Figure 21.55.
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Figure 21.55

36. Apply the loop rule to loop abcdefghija in Figure 21.55.

37. Apply the loop rule to loop akledcba in Figure 21.55.

38. Find the currents flowing in the circuit in Figure 21.55.
Explicitly show how you follow the steps in the Problem-
Solving Strategies for Series and Parallel Resistors.

39. Solve Example 21.5, but use loop abcdefgha instead of
loop akledcba. Explicitly show how you follow the steps in the
Problem-Solving Strategies for Series and Parallel
Resistors.

40. Find the currents flowing in the circuit in Figure 21.50.

41. Unreasonable Results

Consider the circuit in Figure 21.56, and suppose that the
emfs are unknown and the currents are given to be

1 = 5.00 A , 2 = 3.0 A , and 3 = –2.00 A . (a) Could

you find the emfs? (b) What is wrong with the assumptions?

Figure 21.56

21.4 DC Voltmeters and Ammeters
42. What is the sensitivity of the galvanometer (that is, what
current gives a full-scale deflection) inside a voltmeter that
has a 1.00-M Ω resistance on its 30.0-V scale?

43. What is the sensitivity of the galvanometer (that is, what
current gives a full-scale deflection) inside a voltmeter that
has a 25.0-k Ω resistance on its 100-V scale?

44. Find the resistance that must be placed in series with a
25.0-Ω galvanometer having a 50.0-μA sensitivity (the

same as the one discussed in the text) to allow it to be used
as a voltmeter with a 0.100-V full-scale reading.

45. Find the resistance that must be placed in series with a
25.0-Ω galvanometer having a 50.0-μA sensitivity (the

same as the one discussed in the text) to allow it to be used
as a voltmeter with a 3000-V full-scale reading. Include a
circuit diagram with your solution.

46. Find the resistance that must be placed in parallel with a
25.0-Ω galvanometer having a 50.0-μA sensitivity (the

same as the one discussed in the text) to allow it to be used
as an ammeter with a 10.0-A full-scale reading. Include a
circuit diagram with your solution.

47. Find the resistance that must be placed in parallel with a
25.0-Ω galvanometer having a 50.0-μA sensitivity (the

same as the one discussed in the text) to allow it to be used
as an ammeter with a 300-mA full-scale reading.

48. Find the resistance that must be placed in series with a
10.0-Ω galvanometer having a 100-μA sensitivity to allow

it to be used as a voltmeter with: (a) a 300-V full-scale
reading, and (b) a 0.300-V full-scale reading.

49. Find the resistance that must be placed in parallel with a
10.0-Ω galvanometer having a 100-μA sensitivity to allow

it to be used as an ammeter with: (a) a 20.0-A full-scale
reading, and (b) a 100-mA full-scale reading.

50. Suppose you measure the terminal voltage of a 1.585-V
alkaline cell having an internal resistance of 0.100 Ω by

placing a 1.00-k Ω voltmeter across its terminals. (See
Figure 21.57.) (a) What current flows? (b) Find the terminal
voltage. (c) To see how close the measured terminal voltage
is to the emf, calculate their ratio.

Figure 21.57

51. Suppose you measure the terminal voltage of a 3.200-V
lithium cell having an internal resistance of 5.00 Ω by

placing a 1.00-k Ω voltmeter across its terminals. (a) What
current flows? (b) Find the terminal voltage. (c) To see how
close the measured terminal voltage is to the emf, calculate
their ratio.

52. A certain ammeter has a resistance of 5.00 10−5 Ω

on its 3.00-A scale and contains a 10.0-Ω galvanometer.
What is the sensitivity of the galvanometer?

53. A 1.00-MΩ voltmeter is placed in parallel with a

75.0-k Ω resistor in a circuit. (a) Draw a circuit diagram of
the connection. (b) What is the resistance of the combination?
(c) If the voltage across the combination is kept the same as it
was across the 75.0-k Ω resistor alone, what is the percent
increase in current? (d) If the current through the combination
is kept the same as it was through the 75.0-k Ω resistor
alone, what is the percentage decrease in voltage? (e) Are
the changes found in parts (c) and (d) significant? Discuss.
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54. A 0.0200-Ω ammeter is placed in series with a

10.00-Ω resistor in a circuit. (a) Draw a circuit diagram of
the connection. (b) Calculate the resistance of the
combination. (c) If the voltage is kept the same across the
combination as it was through the 10.00-Ω resistor alone,
what is the percent decrease in current? (d) If the current is
kept the same through the combination as it was through the
10.00-Ω resistor alone, what is the percent increase in
voltage? (e) Are the changes found in parts (c) and (d)
significant? Discuss.

55. Unreasonable Results

Suppose you have a 40.0-Ω galvanometer with a 25.0-μA

sensitivity. (a) What resistance would you put in series with it
to allow it to be used as a voltmeter that has a full-scale
deflection for 0.500 mV? (b) What is unreasonable about this
result? (c) Which assumptions are responsible?

56. Unreasonable Results

(a) What resistance would you put in parallel with a 40.0-Ω

galvanometer having a 25.0-μA sensitivity to allow it to be

used as an ammeter that has a full-scale deflection for
10.0-μA ? (b) What is unreasonable about this result? (c)

Which assumptions are responsible?

21.5 Null Measurements

57. What is the emfx of a cell being measured in a

potentiometer, if the standard cell’s emf is 12.0 V and the
potentiometer balances for x = 5.000 Ω and

s = 2.500 Ω ?

58. Calculate the emfx of a dry cell for which a

potentiometer is balanced when x = 1.200 Ω , while an

alkaline standard cell with an emf of 1.600 V requires

s = 1.247 Ω to balance the potentiometer.

59. When an unknown resistance x is placed in a

Wheatstone bridge, it is possible to balance the bridge by

adjusting 3 to be 2500 Ω . What is x if 2

1
= 0.625

?

60. To what value must you adjust 3 to balance a

Wheatstone bridge, if the unknown resistance x is

100 Ω , 1 is 50.0 Ω , and 2 is 175 Ω ?

61. (a) What is the unknown emfx in a potentiometer that

balances when x is 10.0 Ω , and balances when s is

15.0 Ω for a standard 3.000-V emf? (b) The same emfx

is placed in the same potentiometer, which now balances
when s is 15.0 Ω for a standard emf of 3.100 V. At what

resistance x will the potentiometer balance?

62. Suppose you want to measure resistances in the range
from 10.0 Ω to 10.0 kΩ using a Wheatstone bridge that

has 2

1
= 2.000 . Over what range should 3 be

adjustable?

21.6 DC Circuits Containing Resistors and
Capacitors
63. The timing device in an automobile’s intermittent wiper
system is based on an time constant and utilizes a

0.500-μF capacitor and a variable resistor. Over what range

must be made to vary to achieve time constants from 2.00
to 15.0 s?

64. A heart pacemaker fires 72 times a minute, each time a
25.0-nF capacitor is charged (by a battery in series with a
resistor) to 0.632 of its full voltage. What is the value of the
resistance?

65. The duration of a photographic flash is related to an

time constant, which is 0.100 μs for a certain camera. (a) If

the resistance of the flash lamp is 0.0400 Ω during
discharge, what is the size of the capacitor supplying its
energy? (b) What is the time constant for charging the
capacitor, if the charging resistance is 800 kΩ ?

66. A 2.00- and a 7.50-μF capacitor can be connected in

series or parallel, as can a 25.0- and a 100-kΩ resistor.

Calculate the four time constants possible from
connecting the resulting capacitance and resistance in series.

67. After two time constants, what percentage of the final
voltage, emf, is on an initially uncharged capacitor ,

charged through a resistance ?

68. A 500-Ω resistor, an uncharged 1.50-μF capacitor,

and a 6.16-V emf are connected in series. (a) What is the
initial current? (b) What is the time constant? (c) What is
the current after one time constant? (d) What is the voltage
on the capacitor after one time constant?

69. A heart defibrillator being used on a patient has an
time constant of 10.0 ms due to the resistance of the patient
and the capacitance of the defibrillator. (a) If the defibrillator
has an 8.00-μF capacitance, what is the resistance of the

path through the patient? (You may neglect the capacitance
of the patient and the resistance of the defibrillator.) (b) If the
initial voltage is 12.0 kV, how long does it take to decline to

6.00×102 V ?

70. An ECG monitor must have an time constant less

than 1.00×102 μs to be able to measure variations in

voltage over small time intervals. (a) If the resistance of the
circuit (due mostly to that of the patient’s chest) is 1.00 kΩ ,
what is the maximum capacitance of the circuit? (b) Would it
be difficult in practice to limit the capacitance to less than the
value found in (a)?

71. Figure 21.58 shows how a bleeder resistor is used to
discharge a capacitor after an electronic device is shut off,
allowing a person to work on the electronics with less risk of
shock. (a) What is the time constant? (b) How long will it take
to reduce the voltage on the capacitor to 0.250% (5% of 5%)
of its full value once discharge begins? (c) If the capacitor is
charged to a voltage 0 through a 100-Ω resistance,

calculate the time it takes to rise to 0.865 0 (This is about

two time constants.)
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Figure 21.58

72. Using the exact exponential treatment, find how much
time is required to discharge a 250-μF capacitor through a

500-Ω resistor down to 1.00% of its original voltage.

73. Using the exact exponential treatment, find how much
time is required to charge an initially uncharged 100-pF
capacitor through a 75.0-M Ω resistor to 90.0% of its final
voltage.

74. Integrated Concepts

If you wish to take a picture of a bullet traveling at 500 m/s,
then a very brief flash of light produced by an discharge
through a flash tube can limit blurring. Assuming 1.00 mm of
motion during one constant is acceptable, and given that

the flash is driven by a 600-μF capacitor, what is the

resistance in the flash tube?

75. Integrated Concepts

A flashing lamp in a Christmas earring is based on an
discharge of a capacitor through its resistance. The effective
duration of the flash is 0.250 s, during which it produces an
average 0.500 W from an average 3.00 V. (a) What energy
does it dissipate? (b) How much charge moves through the
lamp? (c) Find the capacitance. (d) What is the resistance of
the lamp?

76. Integrated Concepts

A 160-μF capacitor charged to 450 V is discharged through

a 31.2-k Ω resistor. (a) Find the time constant. (b)
Calculate the temperature increase of the resistor, given that

its mass is 2.50 g and its specific heat is 1.67 kJ
kg ⋅ ºC

,

noting that most of the thermal energy is retained in the short
time of the discharge. (c) Calculate the new resistance,
assuming it is pure carbon. (d) Does this change in resistance
seem significant?

77. Unreasonable Results

(a) Calculate the capacitance needed to get an time

constant of 1.00×103 s with a 0.100-Ω resistor. (b) What
is unreasonable about this result? (c) Which assumptions are
responsible?

78. Construct Your Own Problem

Consider a camera’s flash unit. Construct a problem in which
you calculate the size of the capacitor that stores energy for
the flash lamp. Among the things to be considered are the
voltage applied to the capacitor, the energy needed in the
flash and the associated charge needed on the capacitor, the
resistance of the flash lamp during discharge, and the desired

time constant.

79. Construct Your Own Problem

Consider a rechargeable lithium cell that is to be used to
power a camcorder. Construct a problem in which you
calculate the internal resistance of the cell during normal
operation. Also, calculate the minimum voltage output of a
battery charger to be used to recharge your lithium cell.
Among the things to be considered are the emf and useful
terminal voltage of a lithium cell and the current it should be
able to supply to a camcorder.
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Test Prep for AP® Courses

21.1 Resistors in Series and Parallel
1.

Figure 21.59 The figure above shows a circuit containing two
batteries and three identical resistors with resistance R.
Which of the following changes to the circuit will result in an
increase in the current at point P? Select two answers.

a. Reversing the connections to the 14 V battery.
b. Removing the 2 V battery and connecting the wires to

close the left loop.
c. Rearranging the resistors so all three are in series.
d. Removing the branch containing resistor Z.

2. In a circuit, a parallel combination of six 1.6-kΩ resistors is
connected in series with a parallel combination of four 2.4-kΩ
resistors. If the source voltage is 24 V, what will be the
percentage of total current in one of the 2.4-kΩ resistors?

a. 10%
b. 12%
c. 20%
d. 25%

3. If the circuit in the previous question is modified by
removing some of the 1.6 kΩ resistors, the total current in the
circuit is 24 mA. How many resistors were removed?

a. 1
b. 2
c. 3
d. 4

4.

Figure 21.60 Two resistors, with resistances R and 2R are
connected to a voltage source as shown in this figure. If the
power dissipated in R is 10 W, what is the power dissipated in
2R?

a. 1 W
b. 2.5 W
c. 5 W
d. 10 W

5. In a circuit, a parallel combination of two 20-Ω and one
10-Ω resistors is connected in series with a 4-Ω resistor. The
source voltage is 36 V.

a. Find the resistor(s) with the maximum current.
b. Find the resistor(s) with the maximum voltage drop.
c. Find the power dissipated in each resistor and hence

the total power dissipated in all the resistors. Also find
the power output of the source. Are they equal or not?
Justify your answer.

d. Will the answers for questions (a) and (b) differ if a 3 Ω
resistor is added in series to the 4 Ω resistor? If yes,
repeat the question(s) for the new resistor combination.

e. If the values of all the resistors and the source voltage
are doubled, what will be the effect on the current?

21.2 Electromotive Force: Terminal Voltage
6. Suppose there are two voltage sources – Sources A and B
– with the same emfs but different internal resistances, i.e.,
the internal resistance of Source A is lower than Source B. If
they both supply the same current in their circuits, which of
the following statements is true?

a. External resistance in Source A’s circuit is more than
Source B’s circuit.

b. External resistance in Source A’s circuit is less than
Source B’s circuit.

c. External resistance in Source A’s circuit is the same as
Source B’s circuit.

d. The relationship between external resistances in the two
circuits can’t be determined.

7. Calculate the internal resistance of a voltage source if the
terminal voltage of the source increases by 1 V when the
current supplied decreases by 4 A? Suppose this source is
connected in series (in the same direction) to another source
with a different voltage but same internal resistance. What will
be the total internal resistance? How will the total internal
resistance change if the sources are connected in the
opposite direction?

21.3 Kirchhoff’s Rules
8. An experiment was set up with the circuit diagram shown.
Assume R1 = 10 Ω, R2 = R3 = 5 Ω, r = 0 Ω and E = 6 V.

Figure 21.61
a. One of the steps to examine the set-up is to test points

with the same potential. Which of the following points
can be tested?

a. Points b, c and d.
b. Points d, e and f.
c. Points f, h and j.
d. Points a, h and i.

b. At which three points should the currents be measured
so that Kirchhoff’s junction rule can be directly
confirmed?

a. Points b, c and d.
b. Points d, e and f.
c. Points f, h and j.
d. Points a, h and i.

c. If the current in the branch with the voltage source is
upward and currents in the other two branches are
downward, i.e. Ia = Ii + Ic, identify which of the following
can be true? Select two answers.

a. Ii = Ij - If

b. Ie = Ih - Ii

c. Ic = Ij - Ia

d. Id = Ih - Ij
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d. The measurements reveal that the current through R1 is
0.5 A and R3 is 0.6 A. Based on your knowledge of
Kirchoff’s laws, confirm which of the following
statements are true.

a. The measured current for R1 is correct but for R3
is incorrect.

b. The measured current for R3 is correct but for R1
is incorrect.

c. Both the measured currents are correct.
d. Both the measured currents are incorrect.

e. The graph shown in the following figure is the energy
dissipated at R1 as a function of time.

Figure 21.62
Which of the following shows the graph for energy
dissipated at R2 as a function of time?

a.

Figure 21.63

b.

Figure 21.64

c.

Figure 21.65

d.

Figure 21.66

9. For this question, consider the circuit shown in the
following figure.

Figure 21.67
a. Assuming that none of the three currents (I1, I2, and I3)

are equal to zero, which of the following statements is
false?

a. I3 = I1 + I2 at point a.
b. I2 = I3 - I1 at point e.
c. The current through R3 is equal to the current

through R5.

d. The current through R1 is equal to the current
through R5.

b. Which of the following statements is true?
a. E1 + E2 + I1R1 - I2R2 + I1r1 - I2r2 + I1R5 = 0
b. - E1 + E2 + I1R1 - I2R2 + I1r1 - I2r2 - I1R5 = 0
c. E1 - E2 - I1R1 + I2R2 - I1r1 + I2r2 - I1R5 = 0
d. E1 + E2 - I1R1 + I2R2 - I1r1 + I2r2 + I1R5 = 0

c. If I1 = 5 A and I3 = -2 A, which of the following
statements is false?

a. The current through R1 will flow from a to b and
will be equal to 5 A.

b. The current through R3 will flow from a to j and will
be equal to 2 A.

c. The current through R5 will flow from d to e and
will be equal to 5 A.

d. None of the above.
d. If I1 = 5 A and I3 = -2 A, I2 will be equal to

a. 3 A
b. -3 A
c. 7 A
d. -7 A

10.
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Figure 21.68 In an experiment this circuit is set up. Three
ammeters are used to record the currents in the three vertical
branches (with R1, R2, and E). The readings of the ammeters
in the resistor branches (i.e. currents in R1 and R2) are 2 A
and 3 A respectively.

a. Find the equation obtained by applying Kirchhoff’s loop
rule in the loop involving R1 and R2.

b. What will be the reading of the third ammeter (i.e. the
branch with E)? If E were replaced by 3E, how would
this reading change?

c. If the original circuit is modified by adding another
voltage source (as shown in the following circuit), find
the readings of the three ammeters.

Figure 21.69

11.

Figure 21.70 In this circuit, assume the currents through R1, R2
and R3 are I1, I2 and I3 respectively and all are flowing in the
clockwise direction.

a. Find the equation obtained by applying Kirchhoff’s
junction rule at point A.

b. Find the equations obtained by applying Kirchhoff’s loop
rule in the upper and lower loops.

c. Assume R1 = R2 = 6 Ω, R3 = 12 Ω, r1 = r2 = 0 Ω, E1 = 6
V and E2 = 4 V. Calculate I1, I2 and I3.

d. For the situation in which E2 is replaced by a closed
switch, repeat parts (a) and (b). Using the values for R1,
R2, R3, r1 and E1 from part (c) calculate the currents
through the three resistors.

e. For the circuit in part (d) calculate the output power of
the voltage source and across all the resistors. Examine
if energy is conserved in the circuit.

f. A student implemented the circuit of part (d) in the lab
and measured the current though one of the resistors as

0.19 A. According to the results calculated in part (d)
identify the resistor(s). Justify any difference in
measured and calculated value.

21.6 DC Circuits Containing Resistors and
Capacitors
12. A battery is connected to a resistor and an uncharged
capacitor. The switch for the circuit is closed at t = 0 s.

a. While the capacitor is being charged, which of the
following is true?

a. Current through and voltage across the resistor
increase.

b. Current through and voltage across the resistor
decrease.

c. Current through and voltage across the resistor
first increase and then decrease.

d. Current through and voltage across the resistor
first decrease and then increase.

b. When the capacitor is fully charged, which of the
following is NOT zero?

a. Current in the resistor.
b. Voltage across the resistor.
c. Current in the capacitor.
d. None of the above.

13. An uncharged capacitor C is connected in series (with a
switch) to a resistor R1 and a voltage source E. Assume E =
24 V, R1 = 1.2 kΩ and C = 1 mF.

a. What will be the current through the circuit as the switch
is closed? Draw a circuit diagram and show the direction
of current after the switch is closed. How long will it take
for the capacitor to be 99% charged?

b. After full charging, this capacitor is connected in series
to another resistor, R2 = 1 kΩ. What will be the current
in the circuit as soon as it’s connected? Draw a circuit
diagram and show the direction of current. How long will
it take for the capacitor voltage to reach 3.24 V?

964 Chapter 21 | Circuits, Bioelectricity, and DC Instruments

This content is available for free at http://cnx.org/content/col11844/1.13



A ATOMIC MASSES
Table A1 Atomic Masses

Atomic
Number, Z Name Atomic Mass

Number, A Symbol Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

0 neutron 1 1.008 665
−

10.37 min

1 Hydrogen 1 1H 1.007 825 99.985%

Deuterium 2 2H or D 2.014 102 0.015%

Tritium 3 3H or T 3.016 050
−

12.33 y

2 Helium 3 3He 3.016 030 1.38×10−4%

4 4He 4.002 603 ≈100%

3 Lithium 6 6Li 6.015 121 7.5%

7 7Li 7.016 003 92.5%

4 Beryllium 7 7Be 7.016 928 EC 53.29 d

9 9Be 9.012 182 100%

5 Boron 10 10B 10.012 937 19.9%

11 11B 11.009 305 80.1%

6 Carbon 11 11C 11.011 432 EC, +

12 12C 12.000 000 98.90%

13 13C 13.003 355 1.10%

14 14C 14.003 241
−

5730 y

7 Nitrogen 13 13N 13.005 738 + 9.96 min

14 14N 14.003 074 99.63%

15 15N 15.000 108 0.37%

8 Oxygen 15 15O 15.003 065 EC, + 122 s

16 16O 15.994 915 99.76%

18 18O 17.999 160 0.200%

9 Fluorine 18 18F 18.000 937 EC, + 1.83 h

19 19F 18.998 403 100%

10 Neon 20 20Ne 19.992 435 90.51%

22 22Ne 21.991 383 9.22%

11 Sodium 22 22Na 21.994 434 + 2.602 y
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Atomic
Number, Z Name Atomic Mass

Number, A Symbol Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

23 23Na 22.989 767 100%

24 24Na 23.990 961
−

14.96 h

12 Magnesium 24 24Mg 23.985 042 78.99%

13 Aluminum 27 27Al 26.981 539 100%

14 Silicon 28 28Si 27.976 927 92.23% 2.62h

31 31Si 30.975 362
−

15 Phosphorus 31 31P 30.973 762 100%

32 32P 31.973 907
−

14.28 d

16 Sulfur 32 32S 31.972 070 95.02%

35 35S 34.969 031
−

87.4 d

17 Chlorine 35 35Cl 34.968 852 75.77%

37 37Cl 36.965 903 24.23%

18 Argon 40 40Ar 39.962 384 99.60%

19 Potassium 39 39K 38.963 707 93.26%

40 40K 39.963 999 0.0117%, EC, −
1.28×109 y

20 Calcium 40 40Ca 39.962 591 96.94%

21 Scandium 45 45Sc 44.955 910 100%

22 Titanium 48 48Ti 47.947 947 73.8%

23 Vanadium 51 51V 50.943 962 99.75%

24 Chromium 52 52Cr 51.940 509 83.79%

25 Manganese 55 55Mn 54.938 047 100%

26 Iron 56 56Fe 55.934 939 91.72%

27 Cobalt 59 59Co 58.933 198 100%

60 60Co 59.933 819
−

5.271 y

28 Nickel 58 58Ni 57.935 346 68.27%

60 60Ni 59.930 788 26.10%

29 Copper 63 63Cu 62.939 598 69.17%

65 65Cu 64.927 793 30.83%

30 Zinc 64 64Zn 63.929 145 48.6%

66 66Zn 65.926 034 27.9%

31 Gallium 69 69Ga 68.925 580 60.1%
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Atomic
Number, Z Name Atomic Mass

Number, A Symbol Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

32 Germanium 72 72Ge 71.922 079 27.4%

74 74Ge 73.921 177 36.5%

33 Arsenic 75 75As 74.921 594 100%

34 Selenium 80 80Se 79.916 520 49.7%

35 Bromine 79 79Br 78.918 336 50.69%

36 Krypton 84 84Kr 83.911 507 57.0%

37 Rubidium 85 85Rb 84.911 794 72.17%

38 Strontium 86 86Sr 85.909 267 9.86%

88 88Sr 87.905 619 82.58%

90 90Sr 89.907 738
−

28.8 y

39 Yttrium 89 89Y 88.905 849 100%

90 90Y 89.907 152
−

64.1 h

40 Zirconium 90 90Zr 89.904 703 51.45%

41 Niobium 93 93Nb 92.906 377 100%

42 Molybdenum 98 98Mo 97.905 406 24.13%

43 Technetium 98 98Tc 97.907 215
−

4.2×106y

44 Ruthenium 102 102Ru 101.904 348 31.6%

45 Rhodium 103 103Rh 102.905 500 100%

46 Palladium 106 106Pd 105.903 478 27.33%

47 Silver 107 107Ag 106.905 092 51.84%

109 109Ag 108.904 757 48.16%

48 Cadmium 114 114Cd 113.903 357 28.73%

49 Indium 115 115In 114.903 880 95.7%, −
4.4×1014y

50 Tin 120 120Sn 119.902 200 32.59%

51 Antimony 121 121Sb 120.903 821 57.3%

52 Tellurium 130 130Te 129.906 229 33.8%, −
2.5×1021y

53 Iodine 127 127I 126.904 473 100%

131 131I 130.906 114
−

8.040 d

54 Xenon 132 132Xe 131.904 144 26.9%

136 136Xe 135.907 214 8.9%
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Atomic
Number, Z Name Atomic Mass

Number, A Symbol Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

55 Cesium 133 133Cs 132.905 429 100%

134 134Cs 133.906 696 EC, −
2.06 y

56 Barium 137 137Ba 136.905 812 11.23%

138 138Ba 137.905 232 71.70%

57 Lanthanum 139 139La 138.906 346 99.91%

58 Cerium 140 140Ce 139.905 433 88.48%

59 Praseodymium 141 141Pr 140.907 647 100%

60 Neodymium 142 142Nd 141.907 719 27.13%

61 Promethium 145 145Pm 144.912 743 EC, 17.7 y

62 Samarium 152 152Sm 151.919 729 26.7%

63 Europium 153 153Eu 152.921 225 52.2%

64 Gadolinium 158 158Gd 157.924 099 24.84%

65 Terbium 159 159Tb 158.925 342 100%

66 Dysprosium 164 164Dy 163.929 171 28.2%

67 Holmium 165 165Ho 164.930 319 100%

68 Erbium 166 166Er 165.930 290 33.6%

69 Thulium 169 169Tm 168.934 212 100%

70 Ytterbium 174 174Yb 173.938 859 31.8%

71 Lutecium 175 175Lu 174.940 770 97.41%

72 Hafnium 180 180Hf 179.946 545 35.10%

73 Tantalum 181 181Ta 180.947 992 99.98%

74 Tungsten 184 184W 183.950 928 30.67%

75 Rhenium 187 187Re 186.955 744 62.6%, −
4.6×1010y

76 Osmium 191 191Os 190.960 920
−

15.4 d

192 192Os 191.961 467 41.0%

77 Iridium 191 191Ir 190.960 584 37.3%

193 193Ir 192.962 917 62.7%

78 Platinum 195 195Pt 194.964 766 33.8%

79 Gold 197 197Au 196.966 543 100%

198 198Au 197.968 217
−

2.696 d

80 Mercury 199 199Hg 198.968 253 16.87%
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Atomic
Number, Z Name Atomic Mass

Number, A Symbol Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

202 202Hg 201.970 617 29.86%

81 Thallium 205 205Tl 204.974 401 70.48%

82 Lead 206 206Pb 205.974 440 24.1%

207 207Pb 206.975 872 22.1%

208 208Pb 207.976 627 52.4%

210 210Pb 209.984 163 − 22.3 y

211 211Pb 210.988 735
−

36.1 min

212 212Pb 211.991 871
−

10.64 h

83 Bismuth 209 209Bi 208.980 374 100%

211 211Bi 210.987 255 − 2.14 min

84 Polonium 210 210Po 209.982 848 138.38 d

85 Astatine 218 218At 218.008 684 − 1.6 s

86 Radon 222 222Rn 222.017 570 3.82 d

87 Francium 223 223Fr 223.019 733 − 21.8 min

88 Radium 226 226Ra 226.025 402 1.60×103y

89 Actinium 227 227Ac 227.027 750 − 21.8 y

90 Thorium 228 228Th 228.028 715 1.91 y

232 232Th 232.038 054 100%, 1.41×1010y

91 Protactinium 231 231Pa 231.035 880 3.28×104y

92 Uranium 233 233U 233.039 628 1.59×103y

235 235U 235.043 924 0.720%, 7.04×108y

236 236U 236.045 562 2.34×107y

238 238U 238.050 784 99.2745%, 4.47×109y

239 239U 239.054 289
−

23.5 min

93 Neptunium 239 239Np 239.052 933
−

2.355 d

94 Plutonium 239 239Pu 239.052 157 2.41×104y

95 Americium 243 243Am 243.061 375 fission 7.37×103y

96 Curium 245 245Cm 245.065 483 8.50×103y

97 Berkelium 247 247Bk 247.070 300 1.38×103y
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Atomic
Number, Z Name Atomic Mass

Number, A Symbol Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

98 Californium 249 249Cf 249.074 844 351 y

99 Einsteinium 254 254Es 254.088 019 − 276 d

100 Fermium 253 253Fm 253.085 173 EC, 3.00 d

101 Mendelevium 255 255Md 255.091 081 EC, 27 min

102 Nobelium 255 255No 255.093 260 EC, 3.1 min

103 Lawrencium 257 257Lr 257.099 480 EC, 0.646 s

104 Rutherfordium 261 261Rf 261.108 690 1.08 min

105 Dubnium 262 262Db 262.113 760 fission 34 s

106 Seaborgium 263 263Sg 263.11 86 fission 0.8 s

107 Bohrium 262 262Bh 262.123 1 0.102 s

108 Hassium 264 264Hs 264.128 5 0.08 ms

109 Meitnerium 266 266Mt 266.137 8 3.4 ms
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B SELECTED RADIOACTIVE ISOTOPES
Decay modes are , − , + , electron capture (EC) and isomeric transition (IT). EC results in the same daughter nucleus as

would + decay. IT is a transition from a metastable excited state. Energies for ± decays are the maxima; average energies

are roughly one-half the maxima.

Table B1 Selected Radioactive Isotopes

Isotope t 1/2 DecayMode(s) Energy(MeV) Percent γ -Ray Energy(MeV) Percent

3H 12.33 y
−

0.0186 100%

14C 5730 y
−

0.156 100%

13N 9.96 min + 1.20 100%

22Na 2.602 y + 0.55 90% 1.27 100%

32P 14.28 d
−

1.71 100%

35S 87.4 d
−

0.167 100%

36Cl 3.00×105y
−

0.710 100%

40K 1.28×109y
−

1.31 89%

43K 22.3 h
−

0.827 87% s 0.373 87%

0.618 87%

45Ca 165 d
−

0.257 100%

51Cr 27.70 d EC 0.320 10%

52Mn 5.59d + 3.69 28% s 1.33 28%

1.43 28%

52Fe 8.27 h + 1.80 43% 0.169 43%

0.378 43%

59Fe 44.6 d
− s 0.273 45% s 1.10 57%

0.466 55% 1.29 43%

60Co 5.271 y
−

0.318 100% s 1.17 100%

1.33 100%

65Zn 244.1 d EC 1.12 51%

67Ga 78.3 h EC s 0.0933 70%

0.185 35%

0.300 19%

others

75Se 118.5 d EC s 0.121 20%

0.136 65%

0.265 68%
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Isotope t 1/2 DecayMode(s) Energy(MeV) Percent γ -Ray Energy(MeV) Percent

0.280 20%

others

86Rb 18.8 d
− s 0.69 9% 1.08 9%

1.77 91%

85Sr 64.8 d EC 0.514 100%

90Sr 28.8 y
−

0.546 100%

90Y 64.1 h
−

2.28 100%

99mTc 6.02 h IT 0.142 100%

113mIn 99.5 min IT 0.392 100%

123I 13.0 h EC 0.159 ≈100%

131I 8.040 d
− s 0.248 7% s 0.364 85%

0.607 93% others

others

129Cs 32.3 h EC s 0.0400 35%

0.372 32%

0.411 25%

others

137Cs 30.17 y
− s 0.511 95% 0.662 95%

1.17 5%

140Ba 12.79 d
−

1.035 ≈100% s 0.030 25%

0.044 65%

0.537 24%

others

198Au 2.696 d
−

1.161 ≈100% 0.412 ≈100%

197Hg 64.1 h EC 0.0733 100%

210Po 138.38 d 5.41 100%

226Ra 1.60×103y s 4.68 5% 0.186 100%

4.87 95%

235U 7.038×108y 4.68 ≈100% s numerous <0.400%

238U 4.468×109y s 4.22 23% 0.050 23%

4.27 77%

237Np 2.14×106y s numerous s numerous <0.250%

4.96 (max.)

239Pu 2.41×104y s 5.19 11% s 7.5×10−5 73%

5.23 15% 0.013 15%

5.24 73% 0.052 10%
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Isotope t 1/2 DecayMode(s) Energy(MeV) Percent γ -Ray Energy(MeV) Percent

others

243Am 7.37×103y s Max. 5.44 s 0.075

5.37 88% others

5.32 11%

others
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C USEFUL INFORMATION
This appendix is broken into several tables.

• Table C1, Important Constants
• Table C2, Submicroscopic Masses
• Table C3, Solar System Data
• Table C4, Metric Prefixes for Powers of Ten and Their Symbols
• Table C5, The Greek Alphabet
• Table C6, SI units
• Table C7, Selected British Units
• Table C8, Other Units
• Table C9, Useful Formulae

Table C1 Important Constants
[1]

Symbol Meaning Best Value Approximate Value

Speed of
light in
vacuum

2.99792458 × 108 m / s 3.00 × 108 m / s

Gravitational
constant

6.67384(80) × 10−11 N ⋅ m2 / kg2 6.67 × 10−11 N ⋅ m2 / kg2

Avogadro’s
number 6.02214129(27) × 1023

6.02 × 1023

Boltzmann’s
constant 1.3806488(13) × 10−23 J / K 1.38 × 10−23 J / K

Gas
constant

8.3144621(75) J / mol ⋅ K 8.31 J / mol ⋅ K = 1.99 cal / mol ⋅ K = 0.0821atm ⋅ L / mol ⋅ K

σ
Stefan-
Boltzmann
constant

5.670373(21) × 10−8 W / m2 ⋅ K 5.67 × 10−8 W / m2 ⋅ K

Coulomb
force
constant

8.987551788... × 109 N ⋅ m2 / C2 8.99 × 109 N ⋅ m2 / C2

Charge on
electron −1.602176565(35) × 10−19 C −1.60 × 10−19 C

ε0

Permittivity
of free
space

8.854187817... × 10−12 C2 / N ⋅ m2 8.85 × 10−12 C2 / N ⋅ m2

μ0

Permeability
of free
space

4π × 10−7 T ⋅ m / A 1.26 × 10−6 T ⋅ m / A

Planck’s
constant 6.62606957(29) × 10−34 J ⋅ s 6.63 × 10−34 J ⋅ s

Table C2 Submicroscopic Masses
[2]

Symbol Meaning Best Value Approximate Value

Electron mass 9.10938291(40)×10−31kg 9.11×10−31kg

Proton mass 1.672621777(74)×10−27kg 1.6726×10−27kg

1. Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty,
www.physics.nist.gov/cuu (http://www.physics.nist.gov/cuu) (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits.
Numbers without uncertainties are exact as defined.
2. Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty,
www.physics.nist.gov/cuu (http://www.physics.nist.gov/cuu) (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits.
Numbers without uncertainties are exact as defined.
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Symbol Meaning Best Value Approximate Value

Neutron mass 1.674927351(74)×10−27kg 1.6749×10−27kg

u Atomic mass unit 1.660538921(73)×10−27kg 1.6605×10−27kg

Table C3 Solar System Data

Sun mass 1.99×1030kg

average radius 6.96×108m

Earth-sun distance (average) 1.496×1011m

Earth mass 5.9736×1024kg

average radius 6.376×106m

orbital period 3.16×107s

Moon mass 7.35×1022kg

average radius 1.74×106m

orbital period (average) 2.36×106s

Earth-moon distance (average) 3.84×108m

Table C4 Metric Prefixes for Powers of Ten and Their Symbols

Prefix Symbol Value Prefix Symbol Value

tera T 1012 deci d 10−1

giga G 109 centi c 10−2

mega M 106 milli m 10−3

kilo k 103 micro 10−6

hecto h 102 nano n 10−9

deka da 101 pico p 10−12

— — 100( = 1) femto f 10−15

Table C5 The Greek Alphabet

Alpha Α Eta Η Nu Ν Tau Τ

Beta Β Theta Θ Xi Ξ Upsilon Υ

Gamma Γ Iota Ι Omicron Ο Phi Φ

Delta Δ Kappa Κ Pi Π Chi Χ

Epsilon Ε Lambda Λ Rho Ρ Psi Ψ

Zeta Ζ Mu Μ Sigma Σ Omega Ω
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Table C6 SI Units

Entity Abbreviation Name

Fundamental units Length m meter

Mass kg kilogram

Time s second

Current A ampere

Supplementary unit Angle rad radian

Derived units Force N = kg ⋅ m / s2 newton

Energy J = kg ⋅ m2 / s2 joule

Power W = J / s watt

Pressure Pa = N / m2 pascal

Frequency Hz = 1 / s hertz

Electronic potential V = J / C volt

Capacitance F = C / V farad

Charge C = s ⋅ A coulomb

Resistance Ω = V / A ohm

Magnetic field T = N / (A ⋅ m) tesla

Nuclear decay rate Bq = 1 / s becquerel

Table C7 Selected British Units

Length 1 inch (in.) = 2.54 cm (exactly)

1 foot (ft) = 0.3048 m

1 mile (mi) = 1.609 km

Force 1 pound (lb) = 4.448 N

Energy 1 British thermal unit (Btu) = 1.055×103 J

Power 1 horsepower (hp) = 746 W

Pressure 1 lb / in2 = 6.895×103 Pa

Table C8 Other Units

Length 1 light year (ly) = 9.46×1015 m

1 astronomical unit (au) = 1.50×1011 m

1 nautical mile = 1.852 km

1 angstrom(Å) = 10−10 m

Area 1 acre (ac) = 4.05×103 m2

1 square foot (ft2) = 9.29×10−2 m2

1 barn ( ) = 10−28 m2

Volume 1 liter ( ) = 10−3 m3

Appendix C 1543



1 U.S. gallon (gal) = 3.785×10−3 m3

Mass 1 solar mass = 1.99×1030 kg

1 metric ton = 103 kg

1 atomic mass unit ( ) = 1.6605×10−27 kg

Time 1 year ( ) = 3.16×107 s

1 day ( ) = 86 400 s

Speed 1 mile per hour (mph) = 1.609 km / h

1 nautical mile per hour (naut) = 1.852 km / h

Angle 1 degree ( ) = 1.745×10−2 rad

1 minute of arc (') = 1 / 60 degree

1 second of arc ('') = 1 / 60 minute of arc

1 grad = 1.571×10−2 rad

Energy 1 kiloton TNT (kT) = 4.2×1012 J

1 kilowatt hour (kW ⋅ ) = 3.60×106 J

1 food calorie (kcal) = 4186 J

1 calorie (cal) = 4.186 J

1 electron volt (eV) = 1.60×10−19 J

Pressure 1 atmosphere (atm) = 1.013×105 Pa

1 millimeter of mercury (mm Hg) = 133.3 Pa

1 torricelli (torr) = 1 mm Hg = 133.3 Pa

Nuclear decay rate 1 curie (Ci) = 3.70×1010 Bq

Table C9 Useful Formulae

Circumference of a circle with radius or diameter = 2 =

Area of a circle with radius or diameter = 2 = 2 / 4

Area of a sphere with radius = 4 2

Volume of a sphere with radius = (4 / 3) 3
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D GLOSSARY OF KEY SYMBOLS AND
NOTATION

In this glossary, key symbols and notation are briefly defined.

Table D1

Symbol Definition

any symbol average (indicated by a bar over a symbol—e.g., ¯ is average velocity)

C Celsius degree

F Fahrenheit degree

// parallel

⊥ perpendicular

∝ proportional to

± plus or minus

0 zero as a subscript denotes an initial value

alpha rays

angular acceleration

temperature coefficient(s) of resistivity

beta rays

sound level

volume coefficient of expansion

−
electron emitted in nuclear beta decay

+ positron decay

gamma rays

surface tension

= 1 / 1 − 2 / 2 a constant used in relativity

Δ change in whatever quantity follows

uncertainty in whatever quantity follows

change in energy between the initial and final orbits of an electron in an atom

uncertainty in energy

difference in mass between initial and final products

number of decays that occur

change in momentum

uncertainty in momentum

PEg change in gravitational potential energy
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Symbol Definition

rotation angle

distance traveled along a circular path

uncertainty in time

0 proper time as measured by an observer at rest relative to the process

potential difference

uncertainty in position

0 permittivity of free space

viscosity

angle between the force vector and the displacement vector

angle between two lines

contact angle

direction of the resultant

Brewster's angle

critical angle

dielectric constant

decay constant of a nuclide

wavelength

wavelength in a medium

0 permeability of free space

k coefficient of kinetic friction

s coefficient of static friction

electron neutrino

+ positive pion

− negative pion

0 neutral pion

density

c critical density, the density needed to just halt universal expansion

fl fluid density

¯
obj average density of an object

/ w specific gravity

characteristic time constant for a resistance and inductance ( ) or resistance and capacitance ( )

circuit

characteristic time for a resistor and capacitor ( ) circuit

torque

Υ upsilon meson
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Symbol Definition

Φ magnetic flux

phase angle

Ω ohm (unit)

angular velocity

A ampere (current unit)

area

cross-sectional area

total number of nucleons

acceleration

B Bohr radius

c centripetal acceleration

t tangential acceleration

AC alternating current

AM amplitude modulation

atm atmosphere

baryon number

blue quark color

¯ antiblue (yellow) antiquark color

quark flavor bottom or beauty

bulk modulus

magnetic field strength

Bint electron’s intrinsic magnetic field

Borb orbital magnetic field

BE binding energy of a nucleus—it is the energy required to completely disassemble it into separate protons
and neutrons

BE / binding energy per nucleon

Bq becquerel—one decay per second

capacitance (amount of charge stored per volt)

coulomb (a fundamental SI unit of charge)

p total capacitance in parallel

s total capacitance in series

CG center of gravity

CM center of mass

quark flavor charm

specific heat

speed of light
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Symbol Definition

Cal kilocalorie

cal calorie

hp heat pump’s coefficient of performance

ref coefficient of performance for refrigerators and air conditioners

cos cosine

cot cotangent

csc cosecant

diffusion constant

displacement

quark flavor down

dB decibel

i distance of an image from the center of a lens

o distance of an object from the center of a lens

DC direct current

electric field strength

emf (voltage) or Hall electromotive force

emf electromotive force

energy of a single photon

nuclear reaction energy

relativistic total energy

total energy

0 ground state energy for hydrogen

0 rest energy

EC electron capture

cap energy stored in a capacitor

efficiency—the useful work output divided by the energy input

Carnot efficiency

in energy consumed (food digested in humans)

ind energy stored in an inductor

out energy output

emissivity of an object

+ antielectron or positron

eV electron volt

F farad (unit of capacitance, a coulomb per volt)

F focal point of a lens
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Symbol Definition

F force

magnitude of a force

restoring force

B buoyant force

c centripetal force

i force input

Fnet net force

o force output

FM frequency modulation

focal length

frequency

0 resonant frequency of a resistance, inductance, and capacitance ( ) series circuit

0 threshold frequency for a particular material (photoelectric effect)

1 fundamental

2 first overtone

3 second overtone

B beat frequency

k magnitude of kinetic friction

s magnitude of static friction

gravitational constant

green quark color

¯ antigreen (magenta) antiquark color

acceleration due to gravity

gluons (carrier particles for strong nuclear force)

change in vertical position

height above some reference point

maximum height of a projectile

Planck's constant

photon energy

i height of the image

o height of the object

electric current

intensity

intensity of a transmitted wave
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Symbol Definition

moment of inertia (also called rotational inertia)

0 intensity of a polarized wave before passing through a filter

ave average intensity for a continuous sinusoidal electromagnetic wave

rms average current

J joule

/ Ψ Joules/psi meson

K kelvin

Boltzmann constant

force constant of a spring

x rays created when an electron falls into an = 1 shell vacancy from the = 3 shell

x rays created when an electron falls into an = 2 shell vacancy from the = 3 shell

kcal kilocalorie

KE translational kinetic energy

KE + PE mechanical energy

KE kinetic energy of an ejected electron

KErel relativistic kinetic energy

KErot rotational kinetic energy

KE thermal energy

kg kilogram (a fundamental SI unit of mass)

angular momentum

L liter

magnitude of angular momentum

self-inductance

angular momentum quantum number

x rays created when an electron falls into an = 2 shell from the = 3 shell

electron total family number

muon family total number

tau family total number

f heat of fusion

f and v latent heat coefficients

Lorb orbital angular momentum

s heat of sublimation

v heat of vaporization

z - component of the angular momentum

1550 Appendix D

This content is available for free at http://cnx.org/content/col11844/1.13



Symbol Definition

angular magnification

mutual inductance

m indicates metastable state

magnification

mass

mass of an object as measured by a person at rest relative to the object

m meter (a fundamental SI unit of length)

order of interference

overall magnification (product of the individual magnifications)

X atomic mass of a nuclide

MA mechanical advantage

e magnification of the eyepiece

mass of the electron

angular momentum projection quantum number

mass of a neutron

o magnification of the objective lens

mol mole

mass of a proton

s spin projection quantum number

magnitude of the normal force

N newton

N normal force

number of neutrons

index of refraction

number of free charges per unit volume

A Avogadro's number

r Reynolds number

N ⋅ m newton-meter (work-energy unit)

N ⋅ m newtons times meters (SI unit of torque)

OE other energy

power

power of a lens

pressure

p momentum

momentum magnitude

relativistic momentum
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Symbol Definition

ptot total momentum

ptot total momentum some time later

abs absolute pressure

atm atmospheric pressure

atm standard atmospheric pressure

PE potential energy

PEel elastic potential energy

PEelec electric potential energy

PEs potential energy of a spring

g gauge pressure

in power consumption or input

out useful power output going into useful work or a desired, form of energy

latent heat

net heat transferred into a system

flow rate—volume per unit time flowing past a point

+ positive charge

− negative charge

electron charge

charge of a proton

test charge

QF quality factor

activity, the rate of decay

radius of curvature of a spherical mirror

red quark color

¯ antired (cyan) quark color

resistance

R resultant or total displacement

Rydberg constant

universal gas constant

distance from pivot point to the point where a force is applied

internal resistance

⊥ perpendicular lever arm

radius of a nucleus

radius of curvature

1552 Appendix D

This content is available for free at http://cnx.org/content/col11844/1.13



Symbol Definition

resistivity

r or rad radiation dose unit

rem roentgen equivalent man

rad radian

RBE relative biological effectiveness

resistor and capacitor circuit

rms root mean square

radius of the nth H-atom orbit

p total resistance of a parallel connection

s total resistance of a series connection

s Schwarzschild radius

entropy

S intrinsic spin (intrinsic angular momentum)

magnitude of the intrinsic (internal) spin angular momentum

shear modulus

strangeness quantum number

quark flavor strange

s second (fundamental SI unit of time)

spin quantum number

s total displacement

sec secant

sin sine

z-component of spin angular momentum

period—time to complete one oscillation

temperature

c critical temperature—temperature below which a material becomes a superconductor

tension

T tesla (magnetic field strength B)

quark flavor top or truth

time

1 / 2 half-life—the time in which half of the original nuclei decay

tan tangent

internal energy

quark flavor up

u unified atomic mass unit

u velocity of an object relative to an observer
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Symbol Definition

u
' velocity relative to another observer

electric potential

terminal voltage

V volt (unit)

volume

v relative velocity between two observers

speed of light in a material

v velocity

v
¯ average fluid velocity

B − A change in potential

vd drift velocity

p transformer input voltage

rms rms voltage

s transformer output voltage

vtot total velocity

w propagation speed of sound or other wave

vw wave velocity

work

net work done by a system

W watt

weight

fl weight of the fluid displaced by an object

c total work done by all conservative forces

nc total work done by all nonconservative forces

out useful work output

amplitude

X symbol for an element

notation for a particular nuclide

deformation or displacement from equilibrium

displacement of a spring from its undeformed position

horizontal axis

C capacitive reactance

L inductive reactance

rms root mean square diffusion distance

vertical axis
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Symbol Definition

elastic modulus or Young's modulus

atomic number (number of protons in a nucleus)

impedance
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ANSWER KEY

Chapter 1
Problems & Exercises

1
a. 27.8 m/s

b. 62.1 mph

3

1.0 m
s = 1.0 m

s ×3600 s
1 hr

× 1 km
1000 m

= 3.6 km/h .

5

length: 377 ft ; 4.53×103 in. width: 280 ft ; 3.3×103 in .
7
8.847 km

9

(a) 1.3×10−9 m

(b) 40 km/My

11
2 kg
13
a. 85.5 to 94.5 km/h

b. 53.1 to 58.7 mi/h

15

(a) 7.6×107 beats

(b) 7.57×107 beats

(c) 7.57×107 beats

17
a. 3

b. 3

c. 3

19

a) 2.2%

(b) 59 to 61 km/h

21
80 ± 3 beats/min

23
2.8 h

25

11 ± 1 cm3

27

12.06 ± 0.04 m2
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29

Sample answer: 2×109 heartbeats
31

Sample answer: 2×1031 if an average human lifetime is taken to be about 70 years.
33
Sample answer: 50 atoms
35

Sample answers:

(a) 1012 cells/hummingbird

(b) 1016 cells/human

Chapter 2
Problems & Exercises

1

(a) 7 m

(b) 7 m

(c) +7 m

3

(a) 13 m

(b) 9 m

(c) +9 m

5

(a) 3.0×104 m/s

(b) 0 m/s

7

2×107 years

9
34.689 m/s = 124.88 km/h

11

(a) 40.0 km/h

(b) 34.3 km/h, 25º S of E.

(c) average speed = 3.20 km/h, - = 0.

13
384,000 km
15

(a) 6.61×1015 rev/s

(b) 0 m/s

16

4.29 m/s2

18

(a) 1.43 s

(b) −2.50 m/s2

20

(a) 10.8 m/s
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(b)

Figure 2.48.

21
38.9 m/s (about 87 miles per hour)
23

(a) 16.5 s

(b) 13.5 s

(c) −2.68 m/s2

25

(a) 20.0 m

(b) −1.00 m/s

(c) This result does not really make sense. If the runner starts at 9.00 m/s and decelerates at 2.00 m/s2 , then she
will have stopped after 4.50 s. If she continues to decelerate, she will be running backwards.

27
0.799 m

29

(a) 28.0 m/s

(b) 50.9 s

(c) 7.68 km to accelerate and 713 m to decelerate

31

(a) 51.4 m

(b) 17.1 s

33

(a) −80.4 m/s2

(b) 9.33×10−2 s

35

(a) 7.7 m/s

(b) −15×102 m/s2 . This is about 3 times the deceleration of the pilots, who were falling from thousands of meters
high!

37

(a) 32.6 m/s2

(b) 162 m/s

(c) > max , because the assumption of constant acceleration is not valid for a dragster. A dragster changes gears,

and would have a greater acceleration in first gear than second gear than third gear, etc. The acceleration would be
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greatest at the beginning, so it would not be accelerating at 32.6 m/s2 during the last few meters, but substantially
less, and the final velocity would be less than 162 m/s.

39
104 s
40

(a) = 12.2 m/s ; = 4.07 m/s2

(b) = 11.2 m/s

41

(a) 1 = 6.28 m ; 1 = 10.1 m/s

(b) 2 = 10.1 m ; 2 = 5.20 m/s

(c) 3 = 11.5 m ; 3 = 0.300 m/s

(d) 4 = 10.4 m ; 4 = −4.60 m/s

43

0 = 4.95 m/s

45

(a) = −9.80 m/s2 ; 0 = 13.0 m/s ; 0 = 0 m

(b) = 0m/s . Unknown is distance to top of trajectory, where velocity is zero. Use equation 2 = 0
2 + 2 ( − 0)

because it contains all known values except for , so we can solve for . Solving for gives

(2.100)2 − 0
2 = 2 ( − 0)

2 − 0
2

2
= − 0

= 0 +
2 − 0

2

2
= 0 m +

(0 m/s)2 − (13.0 m/s)2

2 −9.80 m/s2
= 8.62 m

Dolphins measure about 2 meters long and can jump several times their length out of the water, so this is a
reasonable result.

(c) 2.65 s

47

Figure 2.57.

(a) 8.26 m

(b) 0.717 s

49
1.91 s
51

(a) 94.0 m

(b) 3.13 s
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53

(a) -70.0 m/s (downward)

(b) 6.10 s

55

(a) 19.6 m

(b) 18.5 m

57

(a) 305 m

(b) 262 m, -29.2 m/s

(c) 8.91 s

59

(a) 115 m/s

(b) 5.0 m/s2

61
(2.114)

=
(11.7 − 6.95)×103 m

(40.0 – 20.0) s
= 238 m/s

63

Figure 2.63.

65

(a) 6 m/s

(b) 12 m/s

(c) 3 m/s2

(d) 10 s

Test Prep for AP® Courses

1
(a)
3
a. Use tape to mark off two distances on the track — one for cart A before the collision and one for the combined

carts after the collision. Push cart A to give it an initial speed. Use a stopwatch to measure the time it takes for
the cart(s) to cross the marked distances. The speeds are the distances divided by the times.

b. If the measurement errors are of the same magnitude, they will have a greater effect after the collision. The
speed of the combined carts will be less than the initial speed of cart A. As a result, these errors will be a greater
percentage of the actual velocity value after the collision occurs. (Note: Other arguments could properly be
made for ‘more error before the collision' and error that ‘equally affects both sets of measurement.')

5
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The position vs. time graph should be represented with a positively sloped line whose slope steadily decreases to
zero. The y-intercept of the graph may be any value. The line on the velocity vs. time graph should have a positive y-
intercept and a negative slope. Because the final velocity of the book is zero, the line should finish on the x-axis.

The position vs. time graph should be represented with a negatively sloped line whose slope steadily decreases to
zero. The y-intercept of the graph may be any value. The line on the velocity vs. time graph should have a negative y-
intercept and a positive slope. Because the final velocity of the book is zero, the line should finish on the x-axis.]

7
(c)

Chapter 3
Problems & Exercises

1

(a) 480 m

(b) 379 m , 18.4° east of north

3
north component 3.21 km, east component 3.83 km
5
19.5 m , 4.65° south of west
7

(a) 26.6 m , 65.1° north of east

(b) 26.6 m , 65.1° south of west

9
52.9 m , 90.1° with respect to the x-axis.
11

x-component 4.41 m/s

y-component 5.07 m/s

13

(a) 1.56 km

(b) 120 m east

15
North-component 87.0 km, east-component 87.0 km
17
30.8 m, 35.8 west of north
19

(a) 30.8 m , 54.2º south of west

(b) 30.8 m , 54.2º north of east

21
18.4 km south, then 26.2 km west(b) 31.5 km at 45.0º south of west, then 5.56 km at 45.0º west of north
23
7.34 km , 63.5º south of east
25

= 1.30 m×102

= 30.9 m.

27

(a) 3.50 s

(b) 28.6 m/s (c) 34.3 m/s

(d) 44.7 m/s, 50.2° below horizontal

29
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(a) 18.4°

(b) The arrow will go over the branch.

31

= 0

sin2θ0

For = 45°, = 0

= 91.8 m for 0 = 30 m/s ; = 163 m for 0 = 40 m/s ; = 255 m for 0 = 50 m/s .

33

(a) 560 m/s

(b) 8.00×103 m

(c) 80.0 m. This error is not significant because it is only 1% of the answer in part (b).

35
1.50 m, assuming launch angle of 45°

37

= 6.1°

yes, the ball lands at 5.3 m from the net

39

(a) −0.486 m

(b) The larger the muzzle velocity, the smaller the deviation in the vertical direction, because the time of flight would
be smaller. Air resistance would have the effect of decreasing the time of flight, therefore increasing the vertical
deviation.

41
4.23 m. No, the owl is not lucky; he misses the nest.
43
No, the maximum range (neglecting air resistance) is about 92 m.
45
15.0 m/s
47

(a) 24.2 m/s

(b) The ball travels a total of 57.4 m with the brief gust of wind.

49

− 0 = 0 = 0 − 1
2

2 = ( 0 sin ) − 1
2

2 ,

so that =
2( 0 sin )

− 0 = 0 = ( 0 cos ) = and substituting for gives:

= 0 cos
2 0 sin

=
2 0

2 sin cos

since 2 sin cos = sin 2θ the range is:

= 0
2 sin 2θ

.

52

(a) 35.8 km , 45º south of east

(b) 5.53 m/s , 45º south of east
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(c) 56.1 km , 45º south of east

54

(a) 0.70 m/s faster

(b) Second runner wins

(c) 4.17 m

56
17.0 m/s , 22.1º

58

(a) 230 m/s , 8.0º south of west

(b) The wind should make the plane travel slower and more to the south, which is what was calculated.

60

(a) 63.5 m/s

(b) 29.6 m/s

62
6.68 m/s , 53.3º south of west
64

(a) average = 14.9km/s
Mly

(b) 20.2 billion years

66
1.72 m/s , 42.3º north of east

Test Prep for AP® Courses

1
(d)
3
We would need to know the horizontal and vertical positions of each ball at several times. From that data, we could
deduce the velocities over several time intervals and also the accelerations (both horizontal and vertical) for each ball
over several time intervals.
5

The graph of the ball's vertical velocity over time should begin at 4.90 m/s during the time interval 0 - 0.1 sec (there
should be a data point at t = 0.05 sec, v = 4.90 m/s). It should then have a slope of -9.8 m/s2, crossing through v = 0
at t = 0.55 sec and ending at v = -0.98 m/s at t = 0.65 sec.

The graph of the ball's horizontal velocity would be a constant positive value, a flat horizontal line at some positive
velocity from t = 0 until t = 0.7 sec.

Chapter 4
Problems & Exercises

1
265 N
3

13.3 m/s2

7

(a) 12 m/s2 .

(b) The acceleration is not one-fourth of what it was with all rockets burning because the frictional force is still as large
as it was with all rockets burning.

9

(a) The system is the child in the wagon plus the wagon.

(b

1564 Answer Key

This content is available for free at http://cnx.org/content/col11844/1.13



Figure 4.10.

(c) = 0.130 m/s2 in the direction of the second child’s push.

(d) = 0.00 m/s2

11

(a) 3.68×103 N . This force is 5.00 times greater than his weight.

(b) 3750 N; 11.3º above horizontal

13

1.5×103 N, 150 kg, 150 kg

15

Force on shell: 2.64×107 N

Force exerted on ship = −2.64×107 N , by Newton’s third law

17

a. 0.11 m/s2

b. 1.2×104 N

19

(a) 7.84×10-4 N

(b) 1.89×10–3 N . This is 2.41 times the tension in the vertical strand.

21

Newton’s second law applied in vertical direction gives

()= − 2 sin = 0

()= 2 sin

()=
2 sin

.

23
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Figure 4.26.

Using the free-body diagram:

net = − − = ,

so that

=
− −

=
1.250×107 N − 4.50×106 − (5.00×105 kg)(9.80 m/s2)

5.00×105 kg
= 6.20 m/s2 .

25
1. Use Newton’s laws of motion.

Figure 4.26.

2. Given : = 4.00 = (4.00)(9.80 m/s2 ) = 39.2 m/s2 ; = 70.0 kg ,

Find: .

3. ∑ =+ − = , so that = + = + = ( + ) .

= (70.0 kg)[(39.2 m/s2 ) + (9.80 m/s2)]
=

3.43×103N . The force exerted by the high-jumper is actually

down on the ground, but is up from the ground and makes him jump.

4. This result is reasonable, since it is quite possible for a person to exert a force of the magnitude of 103 N .
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27

(a) 4.41×105 N

(b) 1.50×105 N

29

(a) 910 N

(b) 1.11×103 N

31
= 0.139 m/s , = 12.4º north of east

33
1. Use Newton’s laws since we are looking for forces.

2. Draw a free-body diagram:

Figure 4.29.

3. The tension is given as = 25.0 N. Find app . Using Newton’s laws gives: = 0, so that applied force is

due to the y-components of the two tensions: = 2 sin = 2(25.0 N)sin 15º = 12.9 N

The x-components of the tension cancel. ∑ = 0 .

4. This seems reasonable, since the applied tensions should be greater than the force applied to the tooth.

40

10.2 m/s2 , 4.67º from vertical

42
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Figure 4.35.

1 = 736 N

2 = 194 N

44

(a) 7.43 m/s

(b) 2.97 m

46

(a) 4.20 m/s

(b) 29.4 m/s2

(c) 4.31×103 N

48

(a) 47.1 m/s

(b) 2.47×103 m/s2

(c) 6.18×103 N . The average force is 252 times the shell’s weight.

52

(a) 1×10−13

(b) 1×10−11

54

102

Test Prep for AP® Courses

1
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Figure 4.4. Car X is shown on the left, and Car Y is shown on the right.

i.

Car X takes longer to accelerate and does not spend any time traveling at top speed. Car Y accelerates over a
shorter time and spends time going at top speed. So Car Y must cover the straightaways in a shorter time. Curves
take the same time, so Car Y must overall take a shorter time.

ii.

The only difference in the calculations for the time of one segment of linear acceleration is the difference in distances.

That shows that Car X takes longer to accelerate. The equation
4

= corresponds to Car Y traveling for a time at

top speed.

Substituting =
1

into the displacement equation in part (b) ii gives = 3
2 1 . This shows that a car takes less

time to reach its maximum speed when it accelerates over a shorter distance. Therefore, Car Y reaches its maximum
speed more quickly, and spends more time at its maximum speed than Car X does, as argued in part (b) i.

3
A body cannot exert a force on itself. The hawk may accelerate as a result of several forces. The hawk may
accelerate toward Earth as a result of the force due to gravity. The hawk may accelerate as a result of the additional
force exerted on it by wind. The hawk may accelerate as a result of orienting its body to create less air resistance,
thus increasing the net force forward.
5

(a) A soccer player, gravity, air, and friction commonly exert forces on a soccer ball being kicked.

(b) Gravity and the surrounding water commonly exert forces on a dolphin jumping. (The dolphin moves its muscles
to exert a force on the water. The water exerts an equal force on the dolphin, resulting in the dolphin’s motion.)

(c) Gravity and air exert forces on a parachutist drifting to Earth.

7
(c)
9

Figure 4.14.

The diagram consists of a black dot in the center and two small red arrows pointing up (Fb) and down (Fg) and two
long red arrows pointing right (Fc = 9.0 N) and left (Fw=13.0 N).

In the diagram, Fg represents the force due to gravity on the balloon, and Fb represents the buoyant force. These two
forces are equal in magnitude and opposite in direction. Fc represents the force of the current. Fw represents the
force of the wind. The net force on the balloon will be − = 4.0 N and the balloon will accelerate in the

direction the wind is blowing.

11
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Since = / , the parachutist has a mass of 539 N/9.8 km/s2 = 55 kg .

For the first 2 s, the parachutist accelerates at 9.8 m/s2.

=

= 9.8m

s2
• 2s

= 17.6m
s

Her speed after 2 s is 19.6 m/s.

From 2 s to 10 s, the net force on the parachutist is 539 N – 615 N, or 76 N upward.

=

= −76 N
55 kg

= −1.4 m
s2

Since = 0 + , = 17.6 m/s2 + ( − 1.4 m/s2)(8s)  = 6.5 m/s2 .

At 10 s, the parachutist is falling to Earth at 8.4 m/s.

13
The system includes the gardener and the wheelbarrow with its contents. The following forces are important to
include: the weight of the wheelbarrow, the weight of the gardener, the normal force for the wheelbarrow and the
gardener, the force of the gardener pushing against the ground and the equal force of the ground pushing back
against the gardener, and any friction in the wheelbarrow’s wheels.
15

The system undergoing acceleration is the two figure skaters together.

Net force = 120 N – 5.0 N = 115 N .

Total mass = 40 kg + 50 kg = 90 kg .

Using Newton’s second law, we have that

=

= 115 N
90 kg

= 1.28 m
s2

The pair accelerates forward at 1.28 m/s2.

17

The force of tension must equal the force of gravity plus the force necessary to accelerate the mass. = can be

used to calculate the first, and = can be used to calculate the second.

For gravity:

=
= (120.0 kg)(9.8 m/s2)

= 1205.4 N

For acceleration:

=
= (120.0 kg)(1.3 m/s2)

= 159.9 N

The total force of tension in the cable is 1176 N + 156 N = 1332 N.

19
(b)
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21

Figure 4.24.

The diagram has a black dot and three solid red arrows pointing away from the dot. Arrow Ft is long and pointing to
the left and slightly down. Arrow Fw is also long and is a bit below a diagonal line halfway between pointing up and
pointing to the right. A short arrow Fg is pointing down.

Fg is the force on the kite due to gravity.

Fw is the force exerted on the kite by the wind.

Ft is the force of tension in the string holding the kite. It must balance the vector sum of the other two forces for the
kite to float stationary in the air.

23
(b)
25
(d)
27

A free-body diagram would show a northward force of 64 N and a westward force of 38 N. The net force is equal to
the sum of the two applied forces. It can be found using the Pythagorean theorem:

net = 2 +

= (38 N)2 + (64 N)2

= 74.4 N

Since = ,

= 74.4 N
825 kg

= 0.09 m/s2

The boulder will accelerate at 0.09 m/s2.

29
(b)
31
(b)
33
(d)

Chapter 5
Problems & Exercises

1
5.00 N

4

(a) 588 N

(b) 1.96 m/s2

Answer Key 1571



6

(a) 3.29 m/s2

(b) 3.52 m/s2

(c) 980 N; 945 N

10

1.83 m/s2

14

(a) 4.20 m/s2

(b) 2.74 m/s2

(c) –0.195 m/s2

16

(a) 1.03×106 N

(b) 3.48×105 N

18

(a) 51.0 N

(b) 0.720 m/s2

20
115 m/s; 414 km/hr

22
25 m/s; 9.9 m/s

24
2.9

26
(5.30)

[ ] = s

[ ][ ]
=

kg ⋅ m/s2

m ⋅ m/s
=

kg
m ⋅ s

28
0.76 kg/m ⋅ s

29
(5.58)1.90×10−3 cm

31
(a)1 mm
(b) This does seem reasonable, since the lead does seem to shrink a little when you push on it.
33
(a)9 cm
(b)This seems reasonable for nylon climbing rope, since it is not supposed to stretch that much.
35
8.59 mm
37

(5.59)1.49×10−7 m

39

(a) 3.99×10−7 m

(b) 9.67×10−8 m

41

4×106 N/m2 . This is about 36 atm, greater than a typical jar can withstand.
43
1.4 cm
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Test Prep for AP® Courses

1
(b)
3
(c)

Chapter 6
Problems & Exercises

1
723 km
3

5×107 rotations

5
117 rad/s
7

76.2 rad/s

728 rpm

8

(a) 33.3 rad/s

(b) 500 N

(c) 40.8 m

10
12.9 rev/min
12

4×1021 m

14

a) 3.47×104 m / s2 , 3.55×103

b) 51.1 m / s

16

a) 31.4 rad/s

b) 118 m/s

c) 384 m/s

d)The centripetal acceleration felt by Olympic skaters is 12 times larger than the acceleration due to gravity. That's
quite a lot of acceleration in itself. The centripetal acceleration felt by Button's nose was 39.2 times larger than the
acceleration due to gravity. It is no wonder that he ruptured small blood vessels in his spins.

18

a) 0.524 km/s

b) 29.7 km/s

20

(a) 1.35×103 rpm

(b) 8.47×103 m/s2

(c) 8.47×10–12 N

(d) 865

21

(a) 16.6 m/s

Answer Key 1573



(b) 19.6 m / s2

(c)

Figure 6.10.

(d) 1.76×103 N or 3.00 , that is, the normal force (upward) is three times her weight.

(e) This answer seems reasonable, since she feels like she's being forced into the chair MUCH stronger than just by
gravity.

22

a) 40.5 m / s2

b) 905 N

c) The force in part (b) is very large. The acceleration in part (a) is too much, about 4 g.

d) The speed of the swing is too large. At the given velocity at the bottom of the swing, there is enough kinetic energy
to send the child all the way over the top, ignoring friction.

23

a) 483 N

b) 17.4 N

c) 2.24 times her weight, 0.0807 times her weight

25
4.14º

27

a) 24.6 m

b) 36.6 m / s2

c) c = 3.73 This does not seem too large, but it is clear that bobsledders feel a lot of force on them going through

sharply banked turns.

29

a) 2.56 rad/s

b) 5.71º

30

a) 16.2 m/s

b) 0.234

32

a) 1.84

b) A coefficient of friction this much greater than 1 is unreasonable .

c) The assumed speed is too great for the tight curve.

33

a) 5.979×1024 kg

b) This is identical to the best value to three significant figures.
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35

a) 1.62 m / s2

b) 3.75 m / s2

37

a) 3.42×10–5 m / s2

b) 3.34×10–5 m / s2

The values are nearly identical. One would expect the gravitational force to be the same as the centripetal force at
the core of the system.

39

a) 7.01×10–7 N

b) 1.35×10–6 N , 0.521

41

a) 1.66×10–10 m / s2

b) 2.17×105 m/s

42

a) 2.94×1017 kg

b) 4.92×10–8

of the Earth's mass.

c) The mass of the mountain and its fraction of the Earth's mass are too great.

d) The gravitational force assumed to be exerted by the mountain is too great.

44

1.98×1030 kg

46

= 316

48

a) 7.4×103 m/s

b) 1.05×103 m/s

c) 2.86×10−7 s

d) 1.84×107 N

e) 2.76×104 J

49

a) 5.08×103 km

b) This radius is unreasonable because it is less than the radius of earth.

c) The premise of a one-hour orbit is inconsistent with the known radius of the earth.

Test Prep for AP® Courses

1
(a)
3
(b)
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5
(b)

Chapter 7
Problems & Exercises

1
(7.8)3.00 J = 7.17×10−4 kcal

3

(a) 5.92×105 J

(b) −5.88×105 J

(c) The net force is zero.

5
(7.9)3.14×103 J

7

(a) −700 J

(b) 0

(c) 700 J

(d) 38.6 N

(e) 0

9
1 / 250

11

1.1×1010 J

13

2.8×10
3

N

15
102 N
16

(a) 1.96 1016 J

(b) The ratio of gravitational potential energy in the lake to the energy stored in the bomb is 0.52. That is, the energy
stored in the lake is approximately half that in a 9-megaton fusion bomb.

18

(a) 1.8 J

(b) 8.6 J

20
(7.45)

= 2 + 0
2 = 2(9.80 m/s2)( − 0.180 m) + (2.00 m/s)2 = 0.687 m/s

22
(7.60)7.81 105 N/m

24
9.46 m/s
26

4 104  molecules

27

Equating ΔPEg and ΔKE , we obtain = 2 + 0
2 = 2(9.80 m/s2)(20.0 m) + (15.0 m/s)2 = 24.8 m/s

29

(a) 25×106 years
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(b) This is much, much longer than human time scales.

30
(7.81)2 10−10

32

(a) 40

(b) 8 million

34
$149
36

(a) 208 W

(b) 141 s

38

(a) 3.20 s

(b) 4.04 s

40

(a) 9.46 107 J

(b) 2.54 y

42

Identify knowns: = 950 kg , slope angle = 2.00º , = 3.00 m/s , = 600 N

Identify unknowns: power of the car, force that car applies to road

Solve for unknown:

= = = =

where is parallel to the incline and must oppose the resistive forces and the force of gravity:

= + = 600 N + sin

Insert this into the expression for power and solve:

= + sin

= 600 N + 950 kg 9.80 m/s2 sin 2º (30.0 m/s)

= 2.77×104 W

About 28 kW (or about 37 hp) is reasonable for a car to climb a gentle incline.

44

(a) 9.5 min

(b) 69 flights of stairs

46
641 W, 0.860 hp
48
31 g
50
14.3%
52

(a) 3.21 104  N

(b) 2.35 103  N

(c) Ratio of net force to weight of person is 41.0 in part (a); 3.00 in part (b)

54
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(a) 108 kJ

(b) 599 W

56

(a) 144 J

(b) 288 W

58

(a) 2.50 1012  J

(b) 2.52%

(c) 1.4 104 kg (14 metric tons)

60

(a) 294 N

(b) 118 J

(c) 49.0 W

62

(a) 0.500 m/s2

(b) 62.5 N

(c) Assuming the acceleration of the swimmer decreases linearly with time over the 5.00 s interval, the frictional force
must therefore be increasing linearly with time, since = − . If the acceleration decreases linearly with time,

the velocity will contain a term dependent on time squared ( 2 ). Therefore, the water resistance will not depend
linearly on the velocity.

64

(a) 16.1×103 N

(b) 3.22×105 J

(c) 5.66 m/s

(d) 4.00 kJ

66

(a) 4.65×103 kcal

(b) 38.8 kcal/min

(c) This power output is higher than the highest value on Table 7.5, which is about 35 kcal/min (corresponding to
2415 watts) for sprinting.

(d) It would be impossible to maintain this power output for 2 hours (imagine sprinting for 2 hours!).

69

(a) 4.32 m/s

(b) 3.47×103 N

(c) 8.93 kW

Test Prep for AP® Courses

1
(b)
3
(d)
5
(a)
7
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The kinetic energy should change in the form of –cos, with an initial value of 0 or slightly above, and ending at the
same level.
9
Any force acting perpendicular will have no effect on kinetic energy. Obvious examples are gravity and the normal
force, but others include wind directly from the side and rain or other precipitation falling straight down.
11
Note that the wind is pushing from behind and one side, so your KE will increase. The net force has components of
1400 N in the direction of travel and 212 N perpendicular to the direction of travel. So the net force is 1420 N at 8.5
degrees from the direction of travel.
13
Gravity has a component perpendicular to the cannon (and to displacement, so it is irrelevant) and has a component
parallel to the cannon. The latter is equal to 9.8 N. Thus the net force in the direction of the displacement is 50 N −
9.8 N, and the kinetic energy is 60 J.
15
The potato cannon (and many other projectile launchers) above is an option, with a force launching the projectile,
friction, potentially gravity depending on the direction it is pointed, etc. A drag (or other) car accelerating is another
possibility.
17
The kinetic energy of the rear wagon increases. The front wagon does not, until the rear wagon collides with it. The
total system may be treated by its center of mass, halfway between the wagons, and its energy increases by the
same amount as the sum of the two individual wagons.
19
(d)
21
0.049 J; 0.041 m, 0.25 m
23
20 m high, 20 m/s.
25
(a)
27
(d)
29
(c)
31
(b)
33
(c)
35
(c)
37
(c), (d)
39
(a)
41
(b)

Chapter 8
Problems & Exercises

1

(a) 1.50×104 kg ⋅ m/s

(b) 625 to 1

(c) 6.66×102 kg ⋅ m/s

3

(a) 8.00×104 m/s

(b) 1.20×106 kg · m/s

Answer Key 1579



(c) Because the momentum of the airplane is 3 orders of magnitude smaller than of the ship, the ship will not recoil
very much. The recoil would be −0.0100 m/s , which is probably not noticeable.

5
54 s
7

9.00×103 N

9

a) 2.40×103 N toward the leg

b) The force on each hand would have the same magnitude as that found in part (a) (but in opposite directions by
Newton’s third law) because the change in momentum and the time interval are the same.

11

a) 800 kg ⋅ m/s away from the wall

b) 1.20 m/s away from the wall

13

(a) 1.50×106 N away from the dashboard

(b) 1.00×105 N away from the dashboard

15

4.69×105 N in the boat’s original direction of motion
17

2.10×103 N away from the wall
19

(8.35)
p = v ⇒ 2 = 2 2 ⇒

2

= 2

⇒
2

2
= 1

2
2 =

=
2

2

21
60.0 g
23
0.122 m/s
25
In a collision with an identical car, momentum is conserved. Afterwards f = 0 for both cars. The change in

momentum will be the same as in the crash with the tree. However, the force on the body is not determined since the
time is not known. A padded stop will reduce injurious force on body.
27
22.4 m/s in the same direction as the original motion
29
0.250 m/s
31

(a) 86.4 N perpendicularly away from the bumper

(b) 0.389 J

(c) 64.0%

33

(a) 8.06 m/s

(b) -56.0 J

(c)(i) 7.88 m/s; (ii) -223 J

35

(a) 0.163 m/s in the direction of motion of the more massive satellite
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(b) 81.6 J

(c) 8.70×10−2 m/s in the direction of motion of the less massive satellite, 81.5 J. Because there are no external
forces, the velocity of the center of mass of the two-satellite system is unchanged by the collision. The two velocities
calculated above are the velocity of the center of mass in each of the two different individual reference frames. The
loss in KE is the same in both reference frames because the KE lost to internal forces (heat, friction, etc.) is the same
regardless of the coordinate system chosen.

37

0.704 m/s

–2.25 m/s

38

(a) 4.58 m/s away from the bullet

(b) 31.5 J

(c) –0.491 m/s

(d) 3.38 J

40

(a) 1.02×10−6 m/s

(b) 5.63×10
20

J (almost all KE lost)

(c) Recoil speed is 6.79×10−17 m/s , energy lost is 6.25×109 J . The plume will not affect the momentum result
because the plume is still part of the Moon system. The plume may affect the kinetic energy result because a
significant part of the initial kinetic energy may be transferred to the kinetic energy of the plume particles.

42
24.8 m/s
44

(a) 4.00 kg

(b) 210 J

(c) The clown does work to throw the barbell, so the kinetic energy comes from the muscles of the clown. The
muscles convert the chemical potential energy of ATP into kinetic energy.

45

(a) 3.00 m/s, 60º below -axis

(b) Find speed of first puck after collision: 0 = ′1 sin 30º− ′2 sin 60º ⇒ ′1 = 2
sin 60º
sin 30º

= 5.196 m/s

Verify that ratio of initial to final KE equals one:
KE = 1

2 1
2 = 18 J

KE = 1
2

′1
2 + 1

2
′2

2 = 18 J

KE
KE′

= 1.00

47

(a) −2.26 m/s

(b) 7.63×103 J

(c) The ground will exert a normal force to oppose recoil of the cannon in the vertical direction. The momentum in the
vertical direction is transferred to the earth. The energy is transferred into the ground, making a dent where the
cannon is. After long barrages, cannon have erratic aim because the ground is full of divots.

49

(a) 5.36×105 m/s at −29.5º

(b) 7.52×10−13 J

51
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We are given that 1 = 2 ≡ . The given equations then become:

(8.107)1 = 1 cos 1 + 2 cos 2

and

(8.108)0 = ′1 sin 1 + ′2 sin 2.

Square each equation to get

(8.109)
1

2 = ′1
2 cos2

1 + ′2
2 cos2

2 + 2 ′1 ′2 cos 1 cos 2

0 = ′1
2 sin2

1 + ′2
2 sin2

2 + 2 ′1 ′2 sin 1 sin 2 .

Add these two equations and simplify:

(8.110)
1

2 = ′1
2 + ′2

2 + 2 ′1 ′2 cos 1 cos 2 + sin 1 sin 2

= ′1
2 + ′2

2 + 2 ′1 ′2
1
2

cos 1 − 2 + 1
2

cos 1 + 2 + 1
2

cos 1 − 2 − 1
2

cos 1 + 2

= ′1
2 + ′2

2 + 2 ′1 ′2 cos 1 − 2 .

Multiply the entire equation by 1
2

to recover the kinetic energy:

(8.111)1
2 1

2 = 1
2

′1
2 + 1

2
′2

2 + ′1 ′2 cos 1 − 2

53

39.2 m/s2

55

4.16×103 m/s

57
The force needed to give a small mass Δ an acceleration Δ is = Δ Δ . To accelerate this mass in the

small time interval Δ at a speed e requires e = Δ Δ , so = e
Δ
Δ

. By Newton’s third law, this force is equal

in magnitude to the thrust force acting on the rocket, so thrust = e
Δ
Δ

, where all quantities are positive. Applying

Newton’s second law to the rocket gives thrust − = ⇒ = e Δ
Δ

− , where is the mass of the rocket

and unburnt fuel.
60

2.63×103 kg

61

(a) 0.421 m/s away from the ejected fluid.

(b) 0.237 J .

Test Prep for AP® Courses

1
(b)
3
(b)
5
(a)
7

(c) (based on calculation of = Δ
Δ

)

9
(c)
11
(d)
13
(b)
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15
(d)
17
(b)
19
(c)
21
(b)
23
(c)
25
(b)
27
(a)
29
(c)
31
(b)
33
(a)
35
(b)
37
(a)
39
(a)
41
(d)
43
(c). Because of conservation of momentum, the final velocity of the combined mass must be 4.286 m/s. The initial

kinetic energy is (0.5)(2.0)(15)2 = 225 J . The final kinetic energy is (0.5)(7.0)(4.286)2 = 64 J , so the difference is

−161 J.
45
(a)
47
(d)
49
(c)
51
(b)

Chapter 9
Problems & Exercises

1

a) 46.8 N·m

b) It does not matter at what height you push. The torque depends on only the magnitude of the force applied and the
perpendicular distance of the force's application from the hinges. (Children don't have a tougher time opening a door
because they push lower than adults, they have a tougher time because they don't push far enough from the hinges.)

3
23.3 N
5

Given:

(9.26)1 = 26.0 kg, 2 = 32.0 kg, s = 12.0 kg,

1 = 1.60 m, s = 0.160 m, find (a) 2, (b) p

a) Since children are balancing:

Answer Key 1583



(9.27)net cw = – net ccw

⇒ 1 1 + s s = 2 2

So, solving for 2 gives:

(9.28)
2 = 1 1 + s s

2
= 1 1 + s s

2
= 1 1 + s s

2

=
(26.0 kg)(1.60 m) + (12.0 kg)(0.160 m)

32.0 kg

= 1.36 m

b) Since the children are not moving:

(9.29)net = 0 = p – 1 – 2 – s

⇒ p = 1 + 2 + s

So that

(9.30)
p = (26.0 kg + 32.0 kg + 12.0 kg)(9.80 m / s2)

= 686 N

6

wall = 1.43×103 N

8

a) 2.55×103 N, 16.3º to the left of vertical (i.e., toward the wall)

b) 0.292

10

B = 2.12×104 N

12

a) 0.167, or about one-sixth of the weight is supported by the opposite shore.

b) = 2.0×104 N , straight up.

14

a) 21.6 N

b) 21.6 N

16
350 N directly upwards
19

25

50 N

21

a) MA = 18.5

b) i = 29.1 N

c) 510 N downward

23

1.3×103 N

25

a) = 299 N

b) 897 N upward

26
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B = 470 N; 1 = 4.00 cm; a = 2.50 kg; 2 = 16.0 cm; b = 4.00 kg; 3 = 38.0 cm

E = a
2

1
− 1 + b

3

1
− 1

= 2.50 kg 9.80 m / s2 16.0 cm
4.0 cm

– 1

+ 4.00 kg 9.80 m / s2 38.0 cm
4.00 cm

– 1

= 407 N

28

1.1×103 N

= 190º ccw from positive axis

30

V = 97 N, = 59º

32

(a) 25 N downward

(b) 75 N upward

33

(a) A = 2.21×103 N upward

(b) B = 2.94×103 N downward

35

(a) teeth on bullet = 1.2×102 N upward

(b) J = 84 N downward

37

(a) 147 N downward

(b) 1680 N, 3.4 times her weight

(c) 118 J

(d) 49.0 W

39

a) -
2 = 2.33 m

b) The seesaw is 3.0 m long, and hence, there is only 1.50 m of board on the other side of the pivot. The second child
is off the board.

c) The position of the first child must be shortened, i.e. brought closer to the pivot.

Test Prep for AP® Courses

1
(a)
3
Both objects are in equilibrium. However, they will respond differently if a force is applied to their sides. If the cone
placed on its base is displaced to the side, its center of gravity will remain over its base and it will return to its original
position. When the traffic cone placed on its tip is displaced to the side, its center of gravity will drift from its base,
causing a torque that will accelerate it to the ground.
5
(d)
7
a. FL = 7350 N, FR = 2450 N

b. As the car moves to the right side of the bridge, FL will decrease and FR will increase. (At exactly halfway across
the bridge, FL and FR will both be 4900 N.)

9
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The student should mention that the guiding principle behind simple machines is the second condition of equilibrium.
Though the torque leaving a machine must be equivalent to torque entering a machine, the same requirement does
not exist for forces. As a result, by decreasing the lever arm to the existing force, the size of the existing force will be
increased. The mechanical advantage will be equivalent to the ratio of the forces exiting and entering the machine.
11
a. The force placed on your bicep muscle will be greater than the force placed on the dumbbell. The bicep muscle

is closer to your elbow than the downward force placed on your hand from the dumbbell. Because the elbow is
the pivot point of the system, this results in a decreased lever arm for the bicep. As a result, the force on the
bicep must be greater than that placed on the dumbbell. (How much greater? The ratio between the bicep and
dumbbell forces is equal to the inverted ratio of their distances from the elbow. If the dumbbell is ten times
further from the elbow than the bicep, the force on the bicep will be 200 pounds!)

b. The force placed on your bicep muscle will decrease. As the forearm lifts the dumbbell, it will get closer to the
elbow. As a result, the torque placed on the arm from the weight will decrease and the countering torque created
by the bicep muscle will do so as well.

Chapter 10
Problems & Exercises

1
= 0.737 rev/s

3

(a) −0.26 rad/s2

(b) 27 rev

5

(a) 80 rad/s2

(b) 1.0 rev

7

(a) 45.7 s

(b) 116 rev

9

a) 600 rad/s2

b) 450 rad/s

c) 21.0 m/s

10

(a) 0.338 s

(b) 0.0403 rev

(c) 0.313 s

12

0.50 kg ⋅ m2

14

(a) 50.4 N ⋅ m

(b) 17.1 rad/s2

(c) 17.0 rad/s2

16

3.96×1018 s

or 1.26×1011 y
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18

= +
2

2

Thus, = − 1
4

2 = 1
3

2 − 1
4

2 = 1
12

2

19

(a) 2.0 ms

(b) The time interval is too short.

(c) The moment of inertia is much too small, by one to two orders of magnitude. A torque of 500 N ⋅ m is
reasonable.

20

(a) 17,500 rpm

(b) This angular velocity is very high for a disk of this size and mass. The radial acceleration at the edge of the disk is
> 50,000 gs.

(c) Flywheel mass and radius should both be much greater, allowing for a lower spin rate (angular velocity).

21

(a) 185 J

(b) 0.0785 rev

(c) = 9.81 N

23

(a) 2.57×1029 J

(b) KErot = 2.65×1033 J

25
(10.104)KErot = 434 J

27

(a) 128 rad/s

(b) 19.9 m

29

(a) 10.4 rad/s2

(b) net = 6.11 J

34

(a) 1.49 kJ

(b) 2.52×104 N

36

(a) 2.66×1040 kg ⋅ m2/s

(b) 7.07×1033 kg ⋅ m2/s

The angular momentum of the Earth in its orbit around the Sun is 3.77×106 times larger than the angular
momentum of the Earth around its axis.

38

22.5 kg ⋅ m2/s

40
25.3 rpm
43
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(a) 0.156 rad/s

(b) 1.17×10−2 J

(c) 0.188 kg ⋅ m/s

45

(a) 3.13 rad/s

(b) Initial KE = 438 J, final KE = 438 J

47

(a) 1.70 rad/s

(b) Initial KE = 22.5 J, final KE = 2.04 J

(c) 1.50 kg ⋅ m/s

48

(a) 5.64×1033 kg ⋅ m2 /s

(b) 1.39×1022 N ⋅ m

(c) 2.17×1015 N

Test Prep for AP® Courses

1
(b)
3
(d)
5

(d)

You are given a thin rod of length 1.0 m and mass 2.0 kg, a small lead weight of 0.50 kg, and a not-so-small lead
weight of 1.0 kg. The rod has three holes, one in each end and one through the middle, which may either hold a pivot
point or one of the small lead weights.

7
(a)
9
(c)
11
(a)
13
(a)
15
(b)
17
(c)
19
(b)
21
(b)
23
(c)
25
(d)
27
A door on hinges is a rotational system. When you push or pull on the door handle, the angular momentum of the
system changes. If a weight is hung on the door handle, then pushing on the door with the same force will cause a
different increase in angular momentum. If you push or pull near the hinges with the same force, the resulting angular
momentum of the system will also be different.
29

Since the globe is stationary to start with,
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  =  Δ
Δ

⋅ Δ   =  Δ
By substituting,

120 N•m • 1.2 s = 144 N•m•s.

The angular momentum of the globe after 1.2 s is 144 N•m•s.

Chapter 11
Problems & Exercises

1

1.610 cm3

3

(a) 2.58 g

(b) The volume of your body increases by the volume of air you inhale. The average density of your body decreases
when you take a deep breath, because the density of air is substantially smaller than the average density of the body
before you took the deep breath.

4

2.70 g/cm3

6

(a) 0.163 m

(b) Equivalent to 19.4 gallons, which is reasonable

8

7.9×102 kg/m3

9

15.6 g/cm3

10

(a) 1018 kg/m3

(b) 2×104 m

11

3.59×106 Pa ; or 521 lb/in2

13

2.36×103 N

14
0.760 m
16

(11.30)
units = (m) kg/m3 m/s2 = kg ⋅ m2 / m3 ⋅ s2

= kg ⋅ m/s2 1/m2

= N/m2

18

(a) 20.5 mm Hg

(b) The range of pressures in the eye is 12–24 mm Hg, so the result in part (a) is within that range

20

1.09×103 N/m2

22
24.0 N
24
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2.55×107 Pa ; or 251 atm
26

5.76×103 N extra force
28

(a) = i i = o o ⇒ o = i
i

o
.

Now, using equation:

(11.32)1

1
= 2

2
⇒ o = i

o

i
.

Finally,

(11.33)
o = o o = i o

i

i i

o
= i i = i.

In other words, the work output equals the work input.

(b) If the system is not moving, friction would not play a role. With friction, we know there are losses, so that
out = in − f ; therefore, the work output is less than the work input. In other words, with friction, you need to

push harder on the input piston than was calculated for the nonfriction case.

29

Balloon:

g = 5.00 cm H2 O,

abs = 1.035×103 cm H2 O.

Jar:

g = −50.0 mm Hg,

abs = 710 mm Hg.

31
4.08 m
33

Δ = 38.7 mm Hg,

Leg blood pressure = 159
119

.

35

22.4 cm2

36
91.7%

38

815 kg/m3

40

(a) 41.4 g

(b) 41.4 cm3

(c) 1.09 g/cm3

42

(a) 39.5 g

(b) 50 cm3

(c) 0.79 g/cm3

It is ethyl alcohol.
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44
8.21 N
46

(a) 960 kg/m3

(b) 6.34%

She indeed floats more in seawater.

48

(a) 0.24

(b) 0.68

(c) Yes, the cork will float because obj < ethyl alcohol(0.678 g/cm3 < 0.79 g/cm3)

50
The difference is 0.006%.

52

net = 2 − 1 = 2 − 1 = 2 − 1

=
2 fl − 1 fl

=
2 − 1 fl

where fl = density of fluid. Therefore,

net = ( 2 − 1) fl = fl fl = fl = fl

where is fl the weight of the fluid displaced.

54

592 N/m2

56

2.23×10−2 mm Hg

58

(a) 1.65×10−3 m

(b) 3.71×10–4 m

60

6.32×10−2 N/m

Based on the values in table, the fluid is probably glycerin.

62

w = 14.6 N/m2

a = 4.46 N/m2

sw = 7.40 N/m2 .

Alcohol forms the most stable bubble, since the absolute pressure inside is closest to atmospheric pressure.

64

5.1º

This is near the value of = 0º for most organic liquids.

66

−2.78

The ratio is negative because water is raised whereas mercury is lowered.
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68
479 N
70
1.96 N
71
−63.0 cm H2 O

73

(a) 3.81×103 N/m2

(b) 28.7 mm Hg , which is sufficient to trigger micturition reflex

75

(a) 13.6 m water

(b) 76.5 cm water

77

(a) 3.98×106 Pa

(b) 2.1×10−3 cm

79

(a) 2.97 cm

(b) 3.39×10−6 J

(c) Work is done by the surface tension force through an effective distance / 2 to raise the column of water.

81

(a) 2.01×104 N

(b) 1.17×10−3 m

(c) 2.56×1010 N/m2

83

(a) 1.38×104 N

(b) 2.81×107 N/m2

(c) 283 N

85

(a) 867 N

(b) This is too much force to exert with a hand pump.

(c) The assumed radius of the pump is too large; it would be nearly two inches in diameter—too large for a pump or
even a master cylinder. The pressure is reasonable for bicycle tires.

Test Prep for AP® Courses

1
(e)
3
(a) 100 kg/m3 (b) 60% (c) yes; yes (76% will be submerged) (d) answers vary
5
(d)

Chapter 12
Problems & Exercises

1
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2.78 cm3 /s

3
27 cm/s
5

(a) 0.75 m/s

(b) 0.13 m/s

7

(a) 40.0 cm2

(b) 5.09×107

9

(a) 22 h

(b) 0.016 s

11

(a) 12.6 m/s

(b) 0.0800 m3 /s

(c) No, independent of density.

13

(a) 0.402 L/s

(b) 0.584 cm

15

(a) 127 cm3 /s

(b) 0.890 cm

17

= Force
Area

( )
units

= N/m2 = N ⋅ m/m3 = J/m3

= energy/volume

19
184 mm Hg
21

2.54×105 N

23

(a) 1.58×106 N/m2

(b) 163 m

25

(a) 9.56×108 W

(b) 1.4

27
1.26 W
29

(a) 3.02×10−3 N

(b) 1.03×10−3

31

1.60 cm3 /min
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33

8.7×10−11 m3 /s

35
0.316
37

(a) 1.52

(b) Turbulence will decrease the flow rate of the blood, which would require an even larger increase in the pressure
difference, leading to higher blood pressure.

39
(12.98)225 mPa ⋅ s

41
(12.99)0.138 Pa ⋅ s,

or

Olive oil.

43

(a) 1.62×104 N/m2

(b) 0.111 cm3 /s

(c)10.6 cm

45
1.59
47

2.95×106 N/m2 (gauge pressure)
51

R = 1.99×102 < 2000

53

(a) nozzle: 1.27×105 , not laminar

(b) hose: 3.51×104 , not laminar.

55
2.54 << 2000, laminar.
57

1.02 m/s

1.28×10–2 L/s

59

(a) ≥ 13.0 m

(b) 2.68×10−6 N/m2

61

(a) 23.7 atm or 344 lb/in2

(b) The pressure is much too high.

(c) The assumed flow rate is very high for a garden hose.

(d) 5.27×106 > > 3000, turbulent, contrary to the assumption of laminar flow when using this equation.

62

1.41×10−3 m

64

1.3×102 s

66
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0.391 s

Test Prep for AP® Courses

1
(c)
3
(a)
5
(a)
7
(a)
9
(d)

Chapter 13
Problems & Exercises

1
102ºF

3
20.0ºC and 25.6ºC

5
9890ºF

7

(a) 22.2ºC

(b)

Δ (ºF) = 2 (ºF) − 1(ºF)

= 9
5 2 (ºC) + 32.0º − 9

5 1 (ºC) + 32.0º

= 9
5 2 (ºC) − 1(ºC) = 9

5
Δ (ºC)

9
169.98 m
11

5.4×10−6 m

13
Because the area gets smaller, the price of the land DECREASES by ~ 17 000.

15
(13.25)= 0 + Δ = 0(1 + Δ )

= (60.00 L) 1 + 950×10−6 / ºC (35.0ºC − 15.0ºC)

= 61.1 L

17

(a) 9.35 mL

(b) 7.56 mL

19
0.832 mm
21

We know how the length changes with temperature: Δ = 0Δ . Also we know that the volume of a cube is

related to its length by = 3 , so the final volume is then = 0 + Δ = 0 + Δ 3 . Substituting for Δ gives

(13.26)= 0 + 0Δ 3 = 0
3(1 + Δ )3 .

Now, because Δ is small, we can use the binomial expansion:

(13.27)≈ 0
3(1 + 3αΔT) = 0

3 + 3α 0
3Δ .

Answer Key 1595



So writing the length terms in terms of volumes gives = 0 + Δ ≈ 0 + 3α 0Δ and so

(13.28)Δ = 0Δ ≈ 3α 0Δ or ≈ 3α.

22
1.62 atm
24

(a) 0.136 atm

(b) 0.135 atm. The difference between this value and the value from part (a) is negligible.

26

(a) = (mol)(J/mol ⋅ K)(K) = J

(b) = (mol)(cal/mol ⋅ K)(K) = cal

(c)

= (mol)(L ⋅ atm/mol ⋅ K)(K)

= L ⋅ atm = (m3)(N/m2)

= N ⋅ m = J

28

7.86×10−2 mol

30

(a) 6.02×105 km3

(b) 6.02×108 km

32
−73.9ºC

34

(a) 9.14×106 N/m2

(b) 8.23×106 N/m2

(c) 2.16 K

(d) No. The final temperature needed is much too low to be easily achieved for a large object.

36
41 km
38

(a) 3.7×10−17 Pa

(b) 6.0×1017 m3

(c) 8.4×102 km

39

1.25×103 m/s

41

(a) 1.20×10−19 J

(b) 1.24×10−17 J

43
458 K

45

1.95×107 K

47

6.09×105 m/s

49
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7.89×104 Pa

51

(a) 1.99×105 Pa

(b) 0.97 atm

53

3.12×104 Pa

55
78.3%
57

(a) 2.12×104 Pa

(b) 1.06 %

59

(a) 8.80×10−2 g

(b) 6.30×103 Pa ; the two values are nearly identical.

61
82.3%
63
4.77ºC

65
38.3 m

67

B / Cu

B / Cu

= 1.02 . The buoyant force supports nearly the exact same amount of force on the copper block in both

circumstances.
69

(a) 4.41×1010 mol/m3

(b) It’s unreasonably large.

(c) At high pressures such as these, the ideal gas law can no longer be applied. As a result, unreasonable answers
come up when it is used.

71

(a) 7.03×108 m/s

(b) The velocity is too high—it’s greater than the speed of light.

(c) The assumption that hydrogen inside a supernova behaves as an idea gas is responsible, because of the great
temperature and density in the core of a star. Furthermore, when a velocity greater than the speed of light is obtained,
classical physics must be replaced by relativity, a subject not yet covered.

Test Prep for AP® Courses

1
(a), (c)
3
(d)
5
(b)
7
(a) 7.29 × 10-21 J; (b) 352K or 79ºC

Chapter 14
Problems & Exercises
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1
(14.18)5.02×108 J

3
(14.19)3.07×103 J

5
(14.20)0.171ºC

7
10.8
9
617 W
11
35.9 kcal
13

(a) 591 kcal

(b) 4.94×103 s

15
13.5 W
17

(a) 148 kcal

(b) 0.418 s, 3.34 s, 4.19 s, 22.6 s, 0.456 s

19
33.0 g
20

(a) 9.67 L

(b) Crude oil is less dense than water, so it floats on top of the water, thereby exposing it to the oxygen in the air,
which it uses to burn. Also, if the water is under the oil, it is less efficient in absorbing the heat generated by the oil.

22

a) 319 kcal

b) 2.00ºC

24
20.6ºC

26
4.38 kg
28

(a) 1.57×104 kcal

(b) 18.3 kW ⋅ h

(c) 1.29×104 kcal

30

(a) 1.01×103 W

(b) One

32
84.0 W
34
2.59 kg
36

(a) 39.7 W

(b) 820 kcal

38
35 to 1, window to wall
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40

1.05×103 K

42

(a) 83 W

(b) 24 times that of a double pane window.

44
20.0 W, 17.2% of 2400 kcal per day
45
10 m/s
47
85.7ºC

49
1.48 kg
51

2×104 MW

53

(a) 97.2 J

(b) 29.2 W

(c) 9.49 W

(d) The total rate of heat loss would be 29.2 W + 9.49 W = 38.7 W . While sleeping, our body consumes 83 W of
power, while sitting it consumes 120 to 210 W. Therefore, the total rate of heat loss from breathing will not be a major
form of heat loss for this person.

55
−21.7 kW

Note that the negative answer implies heat loss to the surroundings.
57
−266 kW

59
−36.0 W

61

(a) 1.31%

(b) 20.5%

63

(a) −15.0 kW

(b) 4.2 cm

65

(a) 48.5ºC

(b) A pure white object reflects more of the radiant energy that hits it, so a white tent would prevent more of the
sunlight from heating up the inside of the tent, and the white tunic would prevent that heat which entered the tent from
heating the rider. Therefore, with a white tent, the temperature would be lower than 48.5ºC , and the rate of radiant
heat transferred to the rider would be less than 20.0 W.

67

(a) 3×1017 J

(b) 1×1013 kg

(c) When a large meteor hits the ocean, it causes great tidal waves, dissipating large amount of its energy in the form
of kinetic energy of the water.

69

(a) 3.44×105 m3 /s

Answer Key 1599



(b) This is equivalent to 12 million cubic feet of air per second. That is tremendous. This is too large to be dissipated
by heating the air by only 5ºC . Many of these cooling towers use the circulation of cooler air over warmer water to
increase the rate of evaporation. This would allow much smaller amounts of air necessary to remove such a large
amount of heat because evaporation removes larger quantities of heat than was considered in part (a).

71
20.9 min
73

(a) 3.96×10-2 g

(b) 96.2 J

(c) 16.0 W

75

(a) 1.102

(b) 2.79×104 J

(c) 12.6 J. This will not cause a significant cooling of the air because it is much less than the energy found in part (b),
which is the energy required to warm the air from 20.0ºC to 50.0ºC .

76

(a) 36ºC

(b) Any temperature increase greater than about 3ºC would be unreasonably large. In this case the final temperature
of the person would rise to 73ºC (163ºF) .

(c) The assumption of 95% heat retention is unreasonable.

78

(a) 1.46 kW

(b) Very high power loss through a window. An electric heater of this power can keep an entire room warm.

(c) The surface temperatures of the window do not differ by as great an amount as assumed. The inner surface will
be warmer, and the outer surface will be cooler.

Test Prep for AP® Courses

1
(c)
3
(a)
5
(b)
7
(a)
9
(d)

Chapter 15
Problems & Exercises

1

1.6×109 J

3

-9.30 108 J

5

(a) −1.0×104 J , or −2.39 kcal

(b) 5.00%

7

(a) 122 W
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(b) 2.10×106 J

(c) Work done by the motor is 1.61×107 J ;thus the motor produces 7.67 times the work done by the man

9

(a) 492 kJ

(b) This amount of heat is consistent with the fact that you warm quickly when exercising. Since the body is
inefficient, the excess heat produced must be dissipated through sweating, breathing, etc.

10

6.77×103 J

12

(a) = Δ = 1.76×105 J

(b) = = 1.76×105 J . Yes, the answer is the same.

14

= 4.5×103 J

16
is not equal to the difference between the heat input and the heat output.

20

(a) 18.5 kJ

(b) 54.1%

22

(a) 1.32 × 109 J

(b) 4.68 × 109 J

24

(a) 3.80 × 109 J

(b) 0.667 barrels

26

(a) 8.30 × 1012 J , which is 3.32% of 2.50 × 1014 J .

(b) –8.30 × 1012 J , where the negative sign indicates a reduction in heat transfer to the environment.

28
403ºC

30

(a) 244ºC

(b) 477ºC

(c)Yes, since automobiles engines cannot get too hot without overheating, their efficiency is limited.

32

(a) 1 = 1 −
c,1

h,1
= 1 − 543 K

723 K
= 0.249 or 24.9%

(b) 2 = 1 − 423 K
543 K

= 0.221 or 22.1%

Answer Key 1601



(c) 1 = 1 −
c,1

h,1
⇒ c,1 = h,1 1, − , 1 similarly, c,2 = h,2 1 − 2

using h,2 = c,1 in above equation gives

c,2 = h,1 1 − 1 1 − 2 ≡ h,1 1 − overall

1 − overall = 1 − 1 1 − 2

overall = 1 − (1 − 0.249)(1 − 0.221) = 41.5%

(d) overall = 1 − 423 K
723 K

= 0.415 or 41.5%

34
The heat transfer to the cold reservoir is c = h − = 25 kJ − 12 kJ = 13 kJ , so the efficiency is

= 1 − c

h
= 1 − 13 kJ

25 kJ
= 0.48 . The Carnot efficiency is C = 1 − c

h
= 1 − 300 K

600 K
= 0.50 . The actual

efficiency is 96% of the Carnot efficiency, which is much higher than the best-ever achieved of about 70%, so her
scheme is likely to be fraudulent.
36

(a) –56.3ºC

(b) The temperature is too cold for the output of a steam engine (the local environment). It is below the freezing point
of water.

(c) The assumed efficiency is too high.

37
4.82
39
0.311
41

(a) 4.61

(b) 1.66×108 J or 3.97×104 kcal

(c) To transfer 1.66×108 J , heat pump costs $1.00, natural gas costs $1.34.

43
27.6ºC

45

(a) 1.44×107 J

(b) 40 cents

(c) This cost seems quite realistic; it says that running an air conditioner all day would cost $9.59 (if it ran
continuously).

47

(a) 9.78×104 J/K

(b) In order to gain more energy, we must generate it from things within the house, like a heat pump, human bodies,
and other appliances. As you know, we use a lot of energy to keep our houses warm in the winter because of the loss
of heat to the outside.

49

8.01×105 J

51

(a) 1.04×1031 J/K

(b) 3.28×1031 J

53
199 J/K
55
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(a) 2.47×1014 J

(b) 1.60×1014 J

(c) 2.85×1010 J/K

(d) 8.29×1012 J

57

It should happen twice in every 1.27×1030 s or once in every 6.35×1029 s

6.35×1029 s 1 h
3600 s

1 d
24 h

1 y

365.25 d

= 2.0×1022 y

59

(a) 3.0×1029

(b) 24%

61

(a) -2.38 10 – 23 J/K

(b) 5.6 times more likely

(c) If you were betting on two heads and 8 tails, the odds of breaking even are 252 to 45, so on average you would
break even. So, no, you wouldn't bet on odds of 252 to 45.

Test Prep for AP® Courses

1
(d)
3
(a)
5
(b)
7
(c)
9
(d)
11
(a)
13
(c)
15
(b)

Chapter 16
Problems & Exercises

1

(a) 1.23×103 N/m

(b) 6.88 kg

(c) 4.00 mm

3

(a) 889 N/m

(b) 133 N

5

(a) 6.53×103 N/m
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(b) Yes

7
16.7 ms
8
0.400 s / beats

9
400 Hz
10
12,500 Hz
11
1.50 kHz
12

(a) 93.8 m/s

(b) 11.3×103 rev/min

13
2.37 N/m

15
0.389 kg
18
94.7 kg
21
1.94 s
22
6.21 cm
24
2.01 s
26
2.23 Hz
28

(a) 2.99541 s

(b) Since the period is related to the square root of the acceleration of gravity, when the acceleration changes by 1%

the period changes by (0.01)2 = 0.01% so it is necessary to have at least 4 digits after the decimal to see the

changes.

30

(a) Period increases by a factor of 1.41 ( 2 )

(b) Period decreases to 97.5% of old period

32
Slow by a factor of 2.45
34
length must increase by 0.0116%.
35

(a) 1.99 Hz

(b) 50.2 cm

(c) 1.41 Hz, 0.710 m

36

(a) 3.95×106 N/m

(b) 7.90×106 J

37

a). 0.266 m/s

b). 3.00 J

39
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± 3
2

42
384 J
44

(a). 0.123 m

(b). −0.600 J

(c). 0.300 J. The rest of the energy may go into heat caused by friction and other damping forces.

46

(a) 5.00×105 J

(b) 1.20×103 s

47
(16.75)= 9.26 d

49
(16.76)= 40.0 Hz

51
(16.77)w = 16.0 m/s

53
(16.78)= 700 m

55
(16.79)= 34.0 cm

57
= 4 Hz

59

462 Hz,

4 Hz

61

(a) 3.33 m/s

(b) 1.25 Hz

63
0.225 W
65
7.07
67
16.0 d
68
2.50 kW
70

3.38×10–5 W/m2

Test Prep for AP® Courses

1
(d)
3
(b)
5

The frequency is given by

  =  1   =  50 
30

  =  1.66 

Time period is:
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  =  1   =   1
1.66

  =  0.6 s

7
(c)
9

The energy of the particle at the center of the oscillation is given by

  =  1
2

2 =  1
2

×0.2 kg×(5 m·s−1)2 =  2.5 J

11
(b)
13
19.7 J
15
(c)
17

  =  
2

2 −
2

    =  50 N ⋅ m−1   =  0.06   =  0.5kg

  =   50N ⋅ m−1

2×0.06×9.8m ⋅ s−2
(0.2)2 −

0.06×0.5kg×9.8m ⋅ s−2)
2

(50N ⋅ m−1)2
=  1.698 m

19
The waves coming from a tuning fork are mechanical waves that are longitudinal in nature, whereas electromagnetic
waves are transverse in nature.
21
The sound energy coming out of an instrument depends on its size. The sound waves produced are relative to the
size of the musical instrument. A smaller instrument such as a tambourine will produce a high-pitched sound (higher
frequency, shorter wavelength), whereas a larger instrument such as a drum will produce a deeper sound (lower
frequency, longer wavelength).
23
2  m
25
The student explains the principle of superposition and then shows two waves adding up to form a bigger wave when
a crest adds with a crest and a trough with another trough. Also the student shows a wave getting cancelled out when
a crest meets a trough and vice versa.
27
The student must note that the shape of the wave remains the same and there is first an overlap and then receding of
the waves.
29
(c)

Chapter 17
Problems & Exercises

1
0.288 m
3
332 m/s
5

(17.12)
w = (331 m/s)

273 K
= (331 m/s) 293 K

273 K

= 343 m/s

7
0.223
9

(a) 7.70 m
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(b) This means that sonar is good for spotting and locating large objects, but it isn’t able to resolve smaller objects, or
detect the detailed shapes of objects. Objects like ships or large pieces of airplanes can be found by sonar, while
smaller pieces must be found by other means.

11

(a) 18.0 ms, 17.1 ms

(b) 5.00%

(c) This uncertainty could definitely cause difficulties for the bat, if it didn’t continue to use sound as it closed in on its
prey. A 5% uncertainty could be the difference between catching the prey around the neck or around the chest, which
means that it could miss grabbing its prey.

12
(17.23)3.16×10–4 W/m2

14
(17.24)3.04×10–4 W/m2

16
106 dB
18

(a) 93 dB

(b) 83 dB

20

(a) 50.1

(b) 5.01×10–3 or 1
200

22
70.0 dB
24
100
26

(17.25)1.45×10–3 J

28
28.2 dB
30

(a) 878 Hz

(b) 735 Hz

32
(17.36)3.79×103 Hz

34

(a) 12.9 m/s

(b) 193 Hz

36

First eagle hears 4.23×103 Hz

Second eagle hears 3.56×103 Hz

38
0.7 Hz
40
0.3 Hz, 0.2 Hz, 0.5 Hz
42

(a) 256 Hz

(b) 512 Hz

44
180 Hz, 270 Hz, 360 Hz
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46
1.56 m
48

(a) 0.334 m

(b) 259 Hz

50
3.39 to 4.90 kHz
52

(a) 367 Hz

(b) 1.07 kHz

54

(a) = 47.6 Hz , = 1, 3, 5,..., 419

(b) = 95.3 Hz , = 1, 2, 3,..., 210

55
(17.49)1×106 km

57
498.5 or 501.5 Hz
59
82 dB
61
approximately 48, 9, 0, –7, and 20 dB, respectively
63

(a) 23 dB

(b) 70 dB

65
Five factors of 10
67

(a) 2×10−10 W/m2

(b) 2×10−13 W/m2

69
2.5
71
1.26
72
170 dB
74
103 dB
76

(a) 1.00

(b) 0.823

(c) Gel is used to facilitate the transmission of the ultrasound between the transducer and the patient’s body.

78

(a) 77.0 μm

(b) Effective penetration depth = 3.85 cm, which is enough to examine the eye.

(c) 16.6 μm

80

(a) 5.78×10–4 m

(b) 2.67×106 Hz
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82

(a) w = 1540 m/s = ⇒= 1540 m/s

100×103 Hz
= 0.0154 m < 3.50 m. Because the wavelength is much shorter than

the distance in question, the wavelength is not the limiting factor.

(b) 4.55 ms

84

974 Hz

(Note: extra digits were retained in order to show the difference.)

Test Prep for AP® Courses

1
(b)
3
(e)
5
(c)
7
Answers vary. Students could include a sketch showing an increased amplitude when two waves occupy the same
location. Students could also cite conceptual evidence such as sound waves passing through each other.
9
(d)
11
(c)
13
(a)
15
(c)
17
(b)
19
(a), (b)
21
(c)

Chapter 18
Problems & Exercises

1

(a) 1.25×1010

(b) 3.13×1012

3
-600 C
5

1.03×1012

7

9.09×10−13

9

1.48×108 C

15

(a) = 1.00 cm = − ∞

(b) 2.12×105 N/C

(c) one charge of +

Answer Key 1609



17

(a) 0.252 N to the left

(b) = 6.07 cm

19

(a)The electric field at the center of the square will be straight up, since and are positive and and are

negative and all have the same magnitude.

(b) 2.04×107 N/C (upward)

21
0.102 N in the − direction

23

(a)
→

= 4.36×103 N/C 35.0º , below the horizontal.

(b) No

25

(a) 0.263 N

(b) If the charges are distributed over some area, there will be a concentration of charge along the side closest to the
oppositely charged object. This effect will increase the net force.

27
The separation decreased by a factor of 5.
31

= | 1 2|
2

= ⇒=
2

2

=

9.00×109 N ⋅ m2 / C2 1.60×10–19 m
2

1.67×10–27 kg 2.00×10–9 m
2

= 3.45×1016 m/s2

32

(a) 3.2

(b) If the distance increases by 3.2, then the force will decrease by a factor of 10 ; if the distance decreases by 3.2,
then the force will increase by a factor of 10. Either way, the force changes by a factor of 10.

34

(a) 1.04×10−9 C

(b) This charge is approximately 1 nC, which is consistent with the magnitude of charge typical for static electricity

37

1.02×10−11

39
a. 0.859 m beyond negative charge on line connecting two charges

b. 0.109 m from lesser charge on line connecting two charges

42

8.75×10−4 N
44

(a) 6.94×10−8 C

(b) 6.25 N/C

46

(a) 300 N/C (east)
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(b) 4.80×10−17 N (east)

52

(a) 5.58×10−11 N/C

(b)the coulomb force is extraordinarily stronger than gravity

54

(a) −6.76×105 C

(b) 2.63×1013 m/s2 (upward)

(c) 2.45×10−18 kg

56
The charge 2 is 9 times greater than 1 .

Test Prep for AP® Courses

1
(b)
3
(c)
5
(a)
7
(b)
9
(a) -0.1 C, (b) 1.1 C, (c) Both charges will be equal to 1 C, law of conservation of charge, (d) 0.9 C
11
W is negative, X is positive, Y is negative, Z is neutral.
13
(c)
15
(c)
17
(b)
19
a) Ball 1 will have positive charge and Ball 2 will have negative charge. b) The negatively charged rod attracts
positive charge of Ball 1. The electrons of Ball 1 are transferred to Ball 2, making it negatively charged. c) If Ball 2 is
grounded while the rod is still there, it will lose its negative charge to the ground. d) Yes, Ball 1 will be positively
charged and Ball 2 will be negatively charge.
21
(c)
23
decrease by 77.78%.
25
(a)
27
(d)
29
(a) 3.60×1010 N, (b) It will become 1/4 of the original value; hence it will be equal to 8.99×109 N
31
(c)
33
(a)
35
(b)
37
(a) 350 N/C, (b) west, (c) 5.6×10−17 N, (d) west.
39
(b)
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41

(a) i) Field vectors near objects point toward negatively charged objects and away from positively charged objects.

(a) ii) The vectors closest to R and T are about the same length and start at about the same distance. We have that

/ 2 = / 2 , so the charge on R is about the same as the charge on T. The closest vectors around S are

about the same length as those around R and T. The vectors near S start at about 6 units away, while vectors near R

and T start at about 4 units. We have that / 2 = / 2 , so / = 2 / 2 = 36 / 16 = 2.25 , and so the

charge on S is about twice that on R and T.

(b)

Figure 18.35. A vector diagram.

(c)

= −
( + )2

+
2

( )2
+

( − )2

(d) The statement is not true. The vector diagram shows field vectors in this region with nonzero length, and the
vectors not shown have even greater lengths. The equation in part (c) shows that, when 0 < < , the denominator
of the negative term is always greater than the denominator of the third term, but the numerator is the same. So the
negative term always has a smaller magnitude than the third term and since the second term is positive the sum of
the terms is always positive.

Chapter 19
Problems & Exercises

1
42.8
4

1.00 105 K

6

(a) 4 104 W

(b) A defibrillator does not cause serious burns because the skin conducts electricity well at high voltages, like those
used in defibrillators. The gel used aids in the transfer of energy to the body, and the skin doesn’t absorb the energy,
but rather lets it pass through to the heart.

8

(a) 7.40 103 C

(b) 1.54 1020 electrons per second

9

3.89 106 C

11

(a) 1.44×1012 V

(b) This voltage is very high. A 10.0 cm diameter sphere could never maintain this voltage; it would discharge.

(c) An 8.00 C charge is more charge than can reasonably be accumulated on a sphere of that size.

15

1612 Answer Key

This content is available for free at http://cnx.org/content/col11844/1.13



(a) 3.00 kV

(b) 750 V

17

(a) No. The electric field strength between the plates is 2.5×106 V/m, which is lower than the breakdown strength

for air ( 3.0×106 V/m ).

(b) 1.7 mm

19
44.0 mV
21
15 kV

23

(a) 800 KeV

(b) 25.0 km

24
144 V
26

(a) 1.80 km

(b) A charge of 1 C is a very large amount of charge; a sphere of radius 1.80 km is not practical.

28

–2.22×10 – 13 C

30

(a) 3.31×106 V

(b) 152 MeV

32

(a) 2.78×10-7 C

(b) 2.00×10-10 C

35

(a) 2.96×109 m/s

(b) This velocity is far too great. It is faster than the speed of light.

(c) The assumption that the speed of the electron is far less than that of light and that the problem does not require a
relativistic treatment produces an answer greater than the speed of light.

46
21.6 mC

48
80.0 mC

50
20.0 kV
52
667 pF

54

(a) 4.4 µF

(b) 4.0×10 – 5 C

56

(a) 14.2 kV

(b) The voltage is unreasonably large, more than 100 times the breakdown voltage of nylon.

Answer Key 1613



(c) The assumed charge is unreasonably large and cannot be stored in a capacitor of these dimensions.

57
0.293 μF

59
3.08 µF in series combination, 13.0 µF in parallel combination

60
2.79 µF

62

(a) –3.00 µF

(b) You cannot have a negative value of capacitance.

(c) The assumption that the capacitors were hooked up in parallel, rather than in series, was incorrect. A parallel
connection always produces a greater capacitance, while here a smaller capacitance was assumed. This could
happen only if the capacitors are connected in series.

63

(a) 405 J

(b) 90.0 mC

64

(a) 3.16 kV

(b) 25.3 mC

66

(a) 1.42×10−5 C , 6.38×10−5 J

(b) 8.46×10−5 C , 3.81×10−4 J

67

(a) 4.43×10 – 12 F

(b) 452 V

(c) 4.52×10 – 7 J

70

(a) 133 F

(b) Such a capacitor would be too large to carry with a truck. The size of the capacitor would be enormous.

(c) It is unreasonable to assume that a capacitor can store the amount of energy needed.

Test Prep for AP® Courses

1
(a)
3
(b)
5
(c)
7
(a)
9
(b)
11
(b)
13
(a)
15
(c)
17
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(b)
19
(a)
21
(d)
23
(d)
25
(a)
27
(b)
29
(c)
31
(d)
33
(a)
35
(c)
37
(c)
39
(b)
41
(a)
43
(d)

Chapter 20
Problems & Exercises

1
0.278 mA
3
0.250 A
5
1.50ms
7

(a) 1.67k Ω

(b) If a 50 times larger resistance existed, keeping the current about the same, the power would be increased by a

factor of about 50 (based on the equation = 2 ), causing much more energy to be transferred to the skin, which
could cause serious burns. The gel used reduces the resistance, and therefore reduces the power transferred to the
skin.

9

(a) 0.120 C

(b) 7.50 1017 electrons

11
96.3 s
13

(a) 7.81 × 1014 He++ nuclei/s

(b) 4.00 × 103 s

(c) 7.71 × 108 s

15

−1.13 10−4 m/s

Answer Key 1615



17

9.42 1013 electrons

18
0.833 A
20

7.33 10−2 Ω

22

(a) 0.300 V

(b) 1.50 V

(c) The voltage supplied to whatever appliance is being used is reduced because the total voltage drop from the wall
to the final output of the appliance is fixed. Thus, if the voltage drop across the extension cord is large, the voltage
drop across the appliance is significantly decreased, so the power output by the appliance can be significantly
decreased, reducing the ability of the appliance to work properly.

24
0.104 Ω

26

2.8 10−2 m

28

1.10 10−3 A

30
−5ºC to 45ºC

32
1.03
34
0.06%
36
−17ºC

38

(a) 4.7 Ω (total)

(b) 3.0% decrease

40

2.00 1012 W

44

(a) 1.50 W

(b) 7.50 W

46

V2

Ω
= V2

V/A
= AV = C

s
J
C

= J
s = 1 W

48

1 kW ⋅ h= 1×103 J
1 s

(1 h) 3600 s
1 h

= 3.60×106 J

50
$438/y
52
$6.25
54
1.58 h
56
$3.94 billion/year
58
25.5 W
60

(a) 2.00 109 J
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(b) 769 kg

62
45.0 s
64

(a) 343 A

(b) 2.17 103 A

(c) 1.10 103 A

66

(a) 1.23×103 kg

(b) 2.64×103 kg

69

(a) 2.08×105 A

(b) 4.33×104 MW

(c) The transmission lines dissipate more power than they are supposed to transmit.

(d) A voltage of 480 V is unreasonably low for a transmission voltage. Long-distance transmission lines are kept at
much higher voltages (often hundreds of kilovolts) to reduce power losses.

73
480 V
75
2.50 ms
77

(a) 4.00 kA

(b) 16.0 MW

(c) 16.0%

79
2.40 kW
81

(a) 4.0

(b) 0.50

(c) 4.0

83

(a) 1.39 ms

(b) 4.17 ms

(c) 8.33 ms

85

(a) 230 kW

(b) 960 A

87

(a) 0.400 mA, no effect

(b) 26.7 mA, muscular contraction for duration of the shock (can't let go)

89

1.20 105 Ω

91

(a) 1.00 Ω
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(b) 14.4 kW

93
Temperature increases 860º C . It is very likely to be damaging.
95
80 beats/minute

Test Prep for AP® Courses

1
(a)
3
10 A
5
(a)
7
3.2 Ω, 2.19 A
9
(b), (d)
11
9.72 × 10−8 Ω·m
13
18 Ω
15
10:3 or 3.33

Chapter 21
Problems & Exercises

1

(a) 2.75 k Ω

(b) 27.5 Ω

3

(a) 786 Ω

(b) 20.3 Ω

5
29.6 W

7

(a) 0.74 A

(b) 0.742 A

9

(a) 60.8 W

(b) 3.18 kW

11

(a)
s = 1 + 2

⇒ s 1 1 >> 2

(b) 1
p

= 1

1
+ 1

2
= 1 + 2

1 2
,

so that

p = 1 2

1 + 2

1 2

1
= 2 1 >> 2 .

13
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(a) -400 k Ω

(b) Resistance cannot be negative.

(c) Series resistance is said to be less than one of the resistors, but it must be greater than any of the resistors.

14
2.00 V
16
2.9994 V
18
0.375 Ω

21

(a) 0.658 A

(b) 0.997 W

(c) 0.997 W; yes

23

(a) 200 A

(b) 10.0 V

(c) 2.00 kW

(d) 0.1000 Ω 80.0 A, 4.0 V, 320 W

25

(a) 0.400 Ω

(b) No, there is only one independent equation, so only can be found.

29

(a) –0.120 V

(b) -1.41 10−2 Ω

(c) Negative terminal voltage; negative load resistance.

(d) The assumption that such a cell could provide 8.50 A is inconsistent with its internal resistance.

31
(21.69)− 2 2 + emf1 − 2 1 + 3 3 + 3 2 - emf2 = 0

35
(21.70)3 = 1 + 2

37
(21.71)emf2 - 2 2 - 2 2 + 1 5 + 1 1 - emf1 + 1 1 = 0

39

(a) I1 = 4.75 A

(b) I2 = -3.5 A

(c) I3 = 8.25 A

41

(a) No, you would get inconsistent equations to solve.

(b) 1 ≠ 2 + 3 . The assumed currents violate the junction rule.

42
30

44
1.98 k Ω

46
(21.75)1.25 10-4 Ω
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48

(a) 3.00 M Ω

(b) 2.99 k Ω

50

(a) 1.58 mA

(b) 1.5848 V (need four digits to see the difference)

(c) 0.99990 (need five digits to see the difference from unity)

52
15.0 μA

54

(a)

Figure 21.39.

(b) 10.02 Ω

(c) 0.9980, or a 2.0×10–1 percent decrease

(d) 1.002, or a 2.0×10–1 percent increase

(e) Not significant.

56

(a) −66.7 Ω

(b) You can’t have negative resistance.

(c) It is unreasonable that G is greater than tot (see Figure 21.36). You cannot achieve a full-scale deflection

using a current less than the sensitivity of the galvanometer.

57
24.0 V
59
1.56 k Ω

61

(a) 2.00 V

(b) 9.68 Ω

62
(21.82)Range = 5.00 Ω to 5.00 k Ω

63
range 4.00 to 30.0 M Ω

65

(a) 2.50 μF

(b) 2.00 s

67
86.5%
69

(a) 1.25 k Ω

(b) 30.0 ms

71

(a) 20.0 s
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(b) 120 s

(c) 16.0 ms

73

1.73×10−2 s

74

3.33 10−3 Ω

76

(a) 4.99 s

(b) 3.87ºC

(c) 31.1 k Ω

(d) No

Test Prep for AP® Courses

1
(a), (b)
3
(b)
5
(a) 4-Ω resistor; (b) combination of 20-Ω, 20-Ω, and 10-Ω resistors; (c) 20 W in each 20-Ω resistor, 40 W in 10-Ω
resistor, 64 W in 4-Ω resistor, total 144W total in resistors, output power is 144 W, yes they are equal (law of
conservation of energy); (d) 4 Ω and 3 Ω for part (a) and no change for part (b); (e) no effect, it will remain the same.
7
0.25 Ω, 0.50 Ω, no change
9

a. (c)

b. (c)

c. (d)

d. (d)

11
a. I1 + I3 = I2

b. E1 - I1R1 - I2R2 - I1r1 = 0; - E2 + I1R1 - I3R3 - I3r2 = 0

c. I1 = 8/15 A, I2 = 7/15 A and I3 = -1/15 A

d. I1 = 2/5 A, I2 = 3/5 A and I3 = 1/5 A

e. PE1 = 18/5 W and PR1 = 24/25 W, PR2 = 54/25 W, PR3 = 12/25 W. Yes, PE1 = PR1+ PR2 + PR3

f. R3, losses in the circuit

13
(a) 20 mA, Figure 21.44, 5.5 s; (b) 24 mA, Figure 21.35, 2 s

Chapter 22
Problems & Exercises

1

(a) Left (West)

(b) Into the page

(c) Up (North)

(d) No force

(e) Right (East)

(f) Down (South)

3

(a) East (right)

Answer Key 1621



(b) Into page

(c) South (down)

5

(a) Into page

(b) West (left)

(c) Out of page

7

7.50×10−7 N perpendicular to both the magnetic field lines and the velocity
9

(a) 3.01×10−5 T

(b) This is slightly less then the magnetic field strength of 5×10−5 T at the surface of the Earth, so it is consistent.

11

(a) 6.67×10−10 C (taking the Earth’s field to be 5.00×10−5 T )

(b) Less than typical static, therefore difficult

12
4.27 m
14

(a) 0.261 T

(b) This strength is definitely obtainable with today’s technology. Magnetic field strengths of 0.500 T are obtainable
with permanent magnets.

16

4.36×10−4 m

18

(a) 3.00 kV/m

(b) 30.0 V

20
0.173 m
22

7.50×10−4 V

24

(a) 1.18 × 10 3 m/s

(b) Once established, the Hall emf pushes charges one direction and the magnetic force acts in the opposite direction
resulting in no net force on the charges. Therefore, no current flows in the direction of the Hall emf. This is the same
as in a current-carrying conductor—current does not flow in the direction of the Hall emf.

26
11.3 mV
28
1.16 μV

30
2.00 T
31

(a) west (left)

(b) into page

(c) north (up)

(d) no force

(e) east (right)

(f) south (down)
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33

(a) into page

(b) west (left)

(c) out of page

35

(a) 2.50 N

(b) This is about half a pound of force per 100 m of wire, which is much less than the weight of the wire itself.
Therefore, it does not cause any special concerns.

37
1.80 T
39

(a) 30º

(b) 4.80 N

41

(a) τ decreases by 5.00% if B decreases by 5.00%

(b) 5.26% increase

43
10.0 A
45

A ⋅ m2 ⋅ T = A ⋅ m2 N
A ⋅ m

= N ⋅ m .

47

3.48×10−26 N ⋅ m

49

(a) 0.666 N ⋅ m west

(b) This is not a very significant torque, so practical use would be limited. Also, the current would need to be
alternated to make the loop rotate (otherwise it would oscillate).

50

(a) 8.53 N, repulsive

(b) This force is repulsive and therefore there is never a risk that the two wires will touch and short circuit.

52
400 A in the opposite direction
54

(a) 1.67×10−3 N/m

(b) 3.33×10−3 N/m

(c) Repulsive

(d) No, these are very small forces

56

(a) Top wire: 2.65×10−4 N/m s, 10.9º to left of up

(b) Lower left wire: 3.61×10−4 N/m , 13.9º down from right

(c) Lower right wire: 3.46×10−4 N/m , 30.0º down from left

58

(a) right-into page, left-out of page

(b) right-out of page, left-into page

(c) right-out of page, left-into page
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60

(a) clockwise

(b) clockwise as seen from the left

(c) clockwise as seen from the right

61

1.01×1013 T

63

(a) 4.80×10−4 T

(b) Zero

(c) If the wires are not paired, the field is about 10 times stronger than Earth’s magnetic field and so could severely
disrupt the use of a compass.

65
39.8 A
67

(a) 3.14×10−5 T

(b) 0.314 T

69

7.55×10−5 T , 23.4º

71
10.0 A
73

(a) 9.09×10−7 N upward

(b) 3.03×10−5 m/s2

75
60.2 cm
77

(a) 1.02×103 N/m2

(b) Not a significant fraction of an atmosphere

79

17.0×10−4%/ºC

81
18.3 MHz
83

(a) Straight up

(b) 6.00×10−4 N/m

(c) 94.1 μm

(d)2.47 Ω/m, 49.4 V/m

85

(a) 571 C

(b) Impossible to have such a large separated charge on such a small object.

(c) The 1.00-N force is much too great to be realistic in the Earth’s field.

87

(a) 2.40×106 m/s

(b) The speed is too high to be practical ≤ 1% speed of light
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(c) The assumption that you could reasonably generate such a voltage with a single wire in the Earth’s field is
unreasonable

89

(a) 25.0 kA

(b) This current is unreasonably high. It implies a total power delivery in the line of 50.0x10^9 W, which is much too
high for standard transmission lines.

(c)100 meters is a long distance to obtain the required field strength. Also coaxial cables are used for transmission
lines so that there is virtually no field for DC power lines, because of cancellation from opposing currents. The
surveyor’s concerns are not a problem for his magnetic field measurements.

Test Prep for AP® Courses

1
(a)
3
(b)
5
(b)
7
(a)
9
(b)
11
(e)
13
(c)
15
(c)

Chapter 23
Problems & Exercises

1
Zero
3

(a) CCW

(b) CW

(c) No current induced

5

(a) 1 CCW, 2 CCW, 3 CW

(b) 1, 2, and 3 no current induced

(c) 1 CW, 2 CW, 3 CCW

9
(a) 3.04 mV
(b) As a lower limit on the ring, estimate R = 1.00 mΩ. The heat transferred will be 2.31 mJ. This is not a significant
amount of heat.
11
0.157 V
13

proportional to 1

17

(a) 0.630 V

(b) No, this is a very small emf.

19
2.22 m/s
25

Answer Key 1625



(a) 10.0 N

(b) 2.81×108 J

(c) 0.36 m/s

(d) For a week-long mission (168 hours), the change in velocity will be 60 m/s, or approximately 1%. In general, a
decrease in velocity would cause the orbit to start spiraling inward because the velocity would no longer be sufficient
to keep the circular orbit. The long-term consequences are that the shuttle would require a little more fuel to maintain
the desired speed, otherwise the orbit would spiral slightly inward.

28
474 V
30
0.247 V
32

(a) 50

(b) yes

34

(a) 0.477 T

(b) This field strength is small enough that it can be obtained using either a permanent magnet or an electromagnet.

36

(a) 5.89 V

(b) At t=0

(c) 0.393 s

(d) 0.785 s

38

(a) 1.92×106 rad/s

(b) This angular velocity is unreasonably high, higher than can be obtained for any mechanical system.

(c) The assumption that a voltage as great as 12.0 kV could be obtained is unreasonable.

39

(a) 12.00 Ω

(b) 1.67 A

41
72.0 V
43
0.100 Ω

44

(a) 30.0

(b) 9.75×10−2 A

46

(a) 20.0 mA

(b) 2.40 W

(c) Yes, this amount of power is quite reasonable for a small appliance.

48

(a) 0.063 A

(b) Greater input current needed.

50

(a) 2.2

(b) 0.45
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(c) 0.20, or 20.0%

52

(a) 335 MV

(b) way too high, well beyond the breakdown voltage of air over reasonable distances

(c) input voltage is too high

54

(a) 15.0 V

(b) 75.0 A

(c) yes

55
1.80 mH
57
3.60 V
61

(a) 31.3 kV

(b) 125 kJ

(c) 1.56 MW

(d) No, it is not surprising since this power is very high.

63

(a) 1.39 mH

(b) 3.33 V

(c) Zero

65
60.0 mH
67

(a) 200 H

(b) 5.00ºC

69
500 H
71
50.0 Ω

73

1.00×10–18 s to 0.100 s
75
95.0%
77

(a) 24.6 ms

(b) 26.7 ms

(c) 9% difference, which is greater than the inherent uncertainty in the given parameters.

79
531 Hz
81
1.33 nF
83

(a) 2.55 A

(b) 1.53 mA

85
63.7 µH

87

Answer Key 1627



(a) 21.2 mH

(b) 8.00 Ω

89

(a) 3.18 mF

(b) 16.7 Ω

92

(a) 40.02 Ω at 60.0 Hz, 193 Ω at 10.0 kHz

(b) At 60 Hz, with a capacitor, Z=531 Ω , over 13 times as high as without the capacitor. The capacitor makes a large
difference at low frequencies. At 10 kHz, with a capacitor Z=190 Ω , about the same as without the capacitor. The
capacitor has a smaller effect at high frequencies.

94

(a) 529 Ω at 60.0 Hz, 185 Ω at 10.0 kHz

(b) These values are close to those obtained in Example 23.12 because at low frequency the capacitor dominates
and at high frequency the inductor dominates. So in both cases the resistor makes little contribution to the total
impedance.

96
9.30 nF to 101 nF
98
3.17 pF
100

(a) 1.31 μH

(b) 1.66 pF

102

(a) 12.8 kΩ

(b) 1.31 kΩ

(c) 31.9 mA at 500 Hz, 312 mA at 7.50 kHz

(d) 82.2 kHz

(e) 0.408 A

104

(a) 0.159

(b) 80.9º

(c) 26.4 W

(d) 166 W

106
16.0 W

Test Prep for AP® Courses

1

(c)
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Figure 23.6.

3
(c)
5
(a), (d)
7
(c)

Chapter 24
Problems & Exercises

3
150 kV/m
6

(a) 33.3 cm (900 MHz) 11.7 cm (2560 MHz)

(b) The microwave oven with the smaller wavelength would produce smaller hot spots in foods, corresponding to the
one with the frequency 2560 MHz.

8
26.96 MHz
10

5.0×1014 Hz
12

()
= = 3.00 108 m/s

1.20 1015 Hz
= 2.50 10 – 7 m

14
0.600 m
16

(a) = = 3.00 108 m/s

1 10-10 m
= 3 1018 Hz

(b) X-rays

19

(a) 6.00×106 m

(b) 4.33×10−5 T

21
(a) 1.50 × 10 6 Hz, AM band
(b) The resonance of currents on an antenna that is 1/4 their wavelength is analogous to the fundamental resonant
mode of an air column closed at one end, since the tube also has a length equal to 1/4 the wavelength of the
fundamental oscillation.
23

(a) 1.55×1015 Hz

(b) The shortest wavelength of visible light is 380 nm, so that

Answer Key 1629



()visible

UV

= 380 nm
193 nm

= 1.97.

In other words, the UV radiation is 97% more accurate than the shortest wavelength of visible light, or almost twice as
accurate!

25

3.90×108 m

27

(a) 1.50×1011 m

(b) 0.500 s

(c) 66.7 ns

29

(a) −3.5 102 W/m2

(b) 88%

(c) 1.7 T

30
()

= 0 0
2

2

=
3.00 108 m/s 8.85 10–12 C2 /N ⋅ m2 (125 V/m)2

2

= 20.7 W/m2

32

(a) = =
2

= 0.250 10−3 W

0.500 10−3 m
2

= 318 W/m2

(b)

ave = 0
2

2μ0
⇒ 0 =

2μ0
1 / 2

=
2 4 10−7 T ⋅ m/A 318.3 W/m2

3.00 108 m/s

1 / 2

= 1.63 10−6 T

(c) 0 = 0 = 3.00 108 m/s 1.633 10−6 T

= 4.90 102 V/m

34

(a) 89.2 cm

(b) 27.4 V/m

36

(a) 333 T

(b) 1.33 1019 W/m2

(c) 13.3 kJ

38
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(a) = =
4π 2

∝ 1
2

(b) 0
2 , 0

2 ⇒ 0
2 , 0

2 1
2

⇒ 0 0
1

40
13.5 pF
42

(a) 4.07 kW/m2

(b) 1.75 kV/m

(c) 5.84 T

(d) 2 min 19 s

44

(a) 5.00 103 W/m2

(b) 3.88×10−6 N

(c) 5.18×10−12 N

46

(a) = 0

(b) 7.50×10−10 s

(c) 1.00×10−9 s

48

(a) 1.01×106 W/m2

(b) Much too great for an oven.

(c) The assumed magnetic field is unreasonably large.

50

(a) 2.53×10−20 H

(b) L is much too small.

(c) The wavelength is unreasonably small.

Test Prep for AP® Courses

1
(b)
3
(a)
5
(d)
7
(d)
9
(d)
11
(a)

Chapter 25
Problems & Exercises

1

Answer Key 1631



Top 1.715 m from floor, bottom 0.825 m from floor. Height of mirror is 0.890 m , or precisely one-half the height of
the person.
5

2.25×108 m/s in water

2.04×108 m/s in glycerine

7
1.490 , polystyrene
9
1.28 s

11
1.03 ns

13
= 1.46 , fused quartz

17

(a) 0.898

(b) Can’t have < 1.00 since this would imply a speed greater than .

(c) Refracted angle is too big relative to the angle of incidence.

19

(a)
5.00

(b) Speed of light too slow, since index is much greater than that of diamond.

(c) Angle of refraction is unreasonable relative to the angle of incidence.

22
66.3º

24
> 1.414

26
1.50, benzene
29
46.5º, red; 46.0º, violet

31

(a) 0.043º

(b) 1.33 m

33
71.3º

35
53.5º, red; 55.2º, violet

37
5.00 to 12.5 D

39
−0.222 m

41

(a) 3.43 m

(b) 0.800 by 1.20 m

42

(a) −1.35 m (on the object side of the lens).

(b) +10.0

(c) 5.00 cm
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43
44.4 cm
45

(a) 6.60 cm

(b) –0.333

47

(a) +7.50 cm

(b) 13.3 D

(c) Much greater

49

(a) +6.67

(b) +20.0

(c) The magnification increases without limit (to infinity) as the object distance increases to the limit of the focal
distance.

51
−0.933 mm

53
+0.667 m
55

(a) –1.5×10–2 m

(b) –66.7 D

57
+0.360 m (concave)
59

(a) +0.111

(b) -0.334 cm (behind “mirror”)

(c) 0.752cm

61
(25.61)

= i

o
= − i

o
= −

− o

o
= o

o
= 1 ⇒ i = o

63

6.82 kW/m2

Test Prep for AP® Courses

1
(c)
3
(c)
5
(a)
7
Since light bends toward the normal upon entering a medium with a higher index of refraction, the upper path is a
more accurate representation of a light ray moving from A to B.
9

First, measure the angle of incidence and the angle of refraction for light entering the plastic from air. Since the two
angles can be measured and the index of refraction of air is known, the student can solve for the index of refraction of
the plastic.

Next, measure the angle of incidence and the angle of refraction for light entering the gas from the plastic. Since the
two angles can be measured and the index of refraction of the plastic is known, the student can solve for the index of
refraction of the gas.

11

Answer Key 1633



The speed of light in a medium is simply c/n, so the speed of light in water is 2.25 × 108 m/s. From Snell’s law, the
angle of incidence is 44°.
13
(d)
15
(a)
17
(a)
19
(b)

Chapter 26
Problems & Exercises

1
52.0 D

3

(a) −0.233 mm

(b) The size of the rods and the cones is smaller than the image height, so we can distinguish letters on a page.

5

(a) +62.5 D

(b) –0.250 mm

(c) –0.0800 mm

6
2.00 m
8

(a) ±0.45 D

(b) The person was nearsighted because the patient was myopic and the power was reduced.

10
0.143 m
12
1.00 m
14
20.0 cm
16
–5.00 D

18
25.0 cm
20
–0.198 D

22
30.8 cm
24
–0.444 D

26

(a) 4.00

(b) 1600

28

(a) 0.501 cm

(b) Eyepiece should be 204 cm behind the objective lens.

30

(a) +18.3 cm (on the eyepiece side of the objective lens)
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(b) -60.0

(c) -11.3 cm (on the objective side of the eyepiece)

(d) +6.67

(e) -400

33
−40.0

35
−1.67

37
+10.0 cm

39

(a) 0.251 μm

(b) Yes, this thickness implies that the shape of the cornea can be very finely controlled, producing normal distant
vision in more than 90% of patients.

Test Prep for AP® Courses

1
(a)
3
(c)
5
(a)
7
(b)
9
(d)
11
(c)

Chapter 27
Problems & Exercises

1
1 / 1.333 = 0.750

3
1.49, Polystyrene
5
0.877 glass to water
6
0.516º

8

1.22×10−6 m

10
600 nm
12
2.06º

14
1200 nm (not visible)
16

(a) 760 nm

(b) 1520 nm

18

For small angles sin − tan ≈ (in radians) .

For two adjacent fringes we have,

Answer Key 1635



(27.11)sin m =

and

(27.12)sin m + 1 = ( + 1)

Subtracting these equations gives

(27.13)sin m + 1 − sin m = ( + 1) −

m + 1 − m =

tan m = m ≈ m ⇒ m + 1 − m =

Δ
= ⇒ Δ =

20
450 nm
21
5.97º

23

8.99×103

25
707 nm
27

(a)  11.8º, 12.5º, 14.1º, 19.2º

(b)  24.2º, 25.7º, 29.1º, 41.0º

(c) Decreasing the number of lines per centimeter by a factor of x means that the angle for the x‐order maximum is
the same as the original angle for the first- order maximum.

29
589.1 nm and 589.6 nm
31
28.7º

33
43.2º

35
90.0º

37

(a) The longest wavelength is 333.3 nm, which is not visible.

(b) 333 nm (UV)

(c) 6.58×103 cm

39

1.13×10−2 m

41

(a) 42.3 nm

(b) Not a visible wavelength

The number of slits in this diffraction grating is too large. Etching in integrated circuits can be done to a resolution of
50 nm, so slit separations of 400 nm are at the limit of what we can do today. This line spacing is too small to produce
diffraction of light.

43

(a) 33.4º

(b) No

45

(a) 1.35×10−6 m
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(b) 69.9º

47
750 nm
49

(a) 9.04º

(b) 12

51

(a) 0.0150º

(b) 0.262 mm

(c) This distance is not easily measured by human eye, but under a microscope or magnifying glass it is quite easily
measurable.

53

(a) 30.1º

(b) 48.7º

(c) No

(d) 2θ1 = (2)(14.5º) = 29º 2 − 1 = 30.05º−14.5º=15.56º . Thus, 29º ≈ (2)(15.56º) = 31.1º .

55
23.6º and 53.1º

57

(a) 1.63×10−4 rad

(b) 326 ly

59

1.46×10−5 rad

61

(a) 3.04×10−7 rad

(b) Diameter of 235 m

63
5.15 cm
65

(a) Yes. Should easily be able to discern.

(b) The fact that it is just barely possible to discern that these are separate bodies indicates the severity of
atmospheric aberrations.

70
532 nm (green)
72
83.9 nm
74
620 nm (orange)
76
380 nm
78
33.9 nm
80

4.42×10−5 m

82
The oil film will appear black, since the reflected light is not in the visible part of the spectrum.
84
45.0º

86
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45.7 mW/m2

88
90.0%

90
0

92
48.8º

94
41.2º

96

(a) 1.92, not diamond (Zircon)

(b) 55.2º

98

2 = 0.707 1

100

(a) 2.07×10-2 °C/s

(b) Yes, the polarizing filters get hot because they absorb some of the lost energy from the sunlight.

Test Prep for AP® Courses

1
(b)
3
(b) and (c)
5
(b)
7
(b)
9
(b)
11
(d)
13
(b)
15
(d)
17
(b)

Chapter 28
Problems & Exercises

1

(a) 1.0328

(b) 1.15

3

5.96×10−8 s

5
0.800

7
0.140

9

(a) 0.745

(b) 0.99995 (to five digits to show effect)
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11

(a) 0.996

(b) cannot be less than 1.

(c) Assumption that time is longer in moving ship is unreasonable.

12
48.6 m
14

(a) 1.387 km = 1.39 km

(b) 0.433 km

(c) =

Thus, the distances in parts (a) and (b) are related when = 3.20 .

16

(a) 4.303 y (to four digits to show any effect)

(b) 0.1434 y

(c) Δt = γΔt0 ⇒ = Δt
Δt0

=
4.303 y

0.1434 y
= 30.0

Thus, the two times are related when 30.00 .

18

(a) 0.250

(b) must be ≥1

(c) The Earth-bound observer must measure a shorter length, so it is unreasonable to assume a longer length.

20

(a) 0.909

(b) 0.400

22
0.198

24

a) 658 nm

b) red

c) / 9.92×10−5 (negligible)

26
0.991

28
−0.696

30
0.01324

32

′ = , so

=
1 + ( 2)

=
1 + ( / 2)

=
1 + ( / )

=
( )

=

34

a) 0.99947
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b) 1.2064×1011 y

c) 1.2058×1011 y (all to sufficient digits to show effects)

35

4.09×10–19 kg ⋅ m/s

37

(a) 3.000000015×1013 kg ⋅ m/s .

(b) Ratio of relativistic to classical momenta equals 1.000000005 (extra digits to show small effects)

39

2.9957×108 m/s

41

(a) 1.121×10–8 m/s

(b) The small speed tells us that the mass of a proton is substantially smaller than that of even a tiny amount of
macroscopic matter!

43

8.20×10−14 J

0.512 MeV

45

2.3×10−30 kg

47

(a) 1.11×1027 kg

(b) 5.56×10−5

49

7.1×10−3 kg

7.1×10−3

The ratio is greater for hydrogen.

51

208

0.999988

53

6.92×105 J

1.54

55

(a) 0.914

(b) The rest mass energy of an electron is 0.511 MeV, so the kinetic energy is approximately 150% of the rest mass
energy. The electron should be traveling close to the speed of light.

57
90.0 MeV
59
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(a)

2 = 2 2 + 2 4 = 2 2 4 so that

2 2 = 2 − 1 2 4 , and therefore

( )2

2
2

= 2 − 1

(b) yes

61

1.07×103

63

6.56×10−8 kg

4.37×10−10

65

0.314

0.99995

67

(a) 1.00 kg

(b) This much mass would be measurable, but probably not observable just by looking because it is 0.01% of the total
mass.

69

(a) 6.3×1011 kg/s

(b) 4.5×1010 y

(c) 4.44×109 kg

(d) 0.32%

Test Prep for AP® Courses

1
(a)
3
The relativistic Doppler effect takes into account the special relativity concept of time dilation and also does not
require a medium of propagation to be used as a point of reference (light does not require a medium for propagation).
5

Relativistic kinetic energy is given as KErel = ( − 1) 2

where = 1

1 −
2

2

Classical kinetic energy is given as KEclass = 1
2

2

At low velocities = 0 , a binomial expansion and subsequent approximation of gives:

= 1 + 1 2

2 2
or − 1 = 1 2

2 2

Substituting − 1 in the expression for KErel gives

KErel = 1 2

2 2
2 = 1

2
2 = KEclass

Answer Key 1641



Hence, relativistic kinetic energy becomes classical kinetic energy when ≪ .

Chapter 29
Problems & Exercises

1

(a) 0.070 eV

(b) 14

3

(a) 2.21×1034 J

(b) 2.26×1034

(c) No

4
263 nm
6
3.69 eV
8
0.483 eV
10
2.25 eV
12

(a) 264 nm

(b) Ultraviolet

14

1.95×106 m/s

16

(a) 4.02×1015 /s

(b) 0.256 mW

18

(a) –1.90 eV

(b) Negative kinetic energy

(c) That the electrons would be knocked free.

20

6.34×10−9 eV , 1.01×10−27 J

22

2.42×1020 Hz

24
(29.22)

= 6.62607×10−34 J ⋅ s 2.99792×108 m/s 109 nm
1 m

1.00000 eV

1.60218×10−19 J

= 1239.84 eV ⋅ nm

≈ 1240 eV ⋅ nm

26

(a) 0.0829 eV

(b) 121

(c) 1.24 MeV

(d) 1.24×105

28
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(a) 25.0×103 eV

(b) 6.04×1018 Hz

30

(a) 2.69

(b) 0.371

32

(a) 1.25×1013 photons/s

(b) 997 km

34

8.33×1013 photons/s

36
181 km
38

(a) 1.66×10−32 kg ⋅ m/s

(b) The wavelength of microwave photons is large, so the momentum they carry is very small.

40

(a) 13.3 μm

(b) 9.38×10-2 eV

42

(a) 2.65×10−28 kg ⋅ m/s

(b) 291 m/s

(c) electron 3.86×10−26 J , photon 7.96×10−20 J , ratio 2.06×106

44

(a) 1.32×10−13 m

(b) 9.39 MeV

(c) 4.70×10−2 MeV

46

= 2 and = , so

(29.35)
=

2

=
2
.

As the mass of particle approaches zero, its velocity will approach , so that the ratio of energy to momentum in
this limit is

(29.36)
lim →0 =

2
=

which is consistent with the equation for photon energy.

48

(a) 3.00×106 W

(b) Headlights are way too bright.

(c) Force is too large.

49

7.28×10–4 m
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51

6.62×107 m/s

53

1.32×10–13 m

55

(a) 6.62×107 m/s

(b) 22.9 MeV

57
(29.42)15.1 keV

59

(a) 5.29 fm

(b) 4.70×10−12 J

(c) 29.4 MV

61

(a) 7.28×1012 m/s

(b) This is thousands of times the speed of light (an impossibility).

(c) The assumption that the electron is non-relativistic is unreasonable at this wavelength.

62

(a) 57.9 m/s

(b) 9.55×10−9 eV

(c) From Table 29.1, we see that typical molecular binding energies range from about 1eV to 10 eV, therefore the
result in part (b) is approximately 9 orders of magnitude smaller than typical molecular binding energies.

64

29 nm,

290 times greater

66

1.10×10−13 eV

68

3.3×10−22 s

70

2.66×10−46 kg

72
0.395 nm
74

(a) 1.3×10−19 J

(b) 2.1×1023

(c) 1.4×102 s

76

(a) 3.35×105 J

(b) 1.12×10–3 kg ⋅ m/s

(c) 1.12×10–3 m/s

(d) 6.23×10–7 J
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78

(a) 1.06×103

(b) 5.33×10−16 kg ⋅ m/s

(c) 1.24×10−18 m

80

(a) 1.62×103 m/s

(b) 4.42×10−19 J for photon, 1.19×10−24 J for electron, photon energy is 3.71×105 times greater

(c) The light is easier to make because 450-nm light is blue light and therefore easy to make. Creating electrons with
7.43 μeV of energy would not be difficult, but would require a vacuum.

81

(a) 2.30×10−6 m

(b) 3.20×10−12 m

83

3.69×10−4 ºC

85

(a) 2.00 kJ

(b) 1.33×10−5 kg ⋅ m/s

(c) 1.33×10−5 N

(d) yes

Test Prep for AP® Courses

1
(b)
3
(c)
5
(b)
7
(c)
9
(c)
11
(a)
13
(a)
15
(c)
17
(d)
19
(d)

Chapter 30
Problems & Exercises

1

1.84×103

3
50 km

Answer Key 1645



4

6×1020 kg/m3

6

(a) 10.0 μm

(b) It isn’t hard to make one of approximately this size. It would be harder to make it exactly 10.0 μm .

7

1 = 1

f
2

− 1

i
2

⇒ = 1 ( i ⋅ f)
2

i
2 − f

2 i = 2, f = 1, so that

= m

1.097×107

(2×1)2

22 − 12
= 1.22×10−7 m = 122 nm , which is UV radiation.

9

B =
2

4 2 2
=

(6.626×10−34 J·s)2

4 2(9.109×10−31 kg)(8.988×109 N·m2 / C2)(1)(1.602×10−19 C)2
= 0.529×10−10 m

11
0.850 eV
13

2.12×10–10 m

15

365 nm

It is in the ultraviolet.

17

No overlap

365 nm

122 nm

19
7
21

(a) 2

(b) 54.4 eV

23
2

2
=

2

, so that =
2

2
=

2
1

2
. From the equation =

2
, we can substitute for the

velocity, giving: =
2

⋅
4 2 2 2

2 2
so that =

2 2

4 2 2
=

2

B where B =
2

4π2 2
.

25

(a) 0.248×10−10 m

(b) 50.0 keV

(c) The photon energy is simply the applied voltage times the electron charge, so the value of the voltage in volts is
the same as the value of the energy in electron volts.

27

(a) 100×103 eV , 1.60×10−14 J

(b) 0.124×10−10 m

29

(a) 8.00 keV
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(b) 9.48 keV

30

(a) 1.96 eV

(b) (1240 eV·nm) / (1.96 eV) = 633 nm

(c) 60.0 nm

32
693 nm
34

(a) 590 nm

(b) (1240 eV·nm) / (1.17 eV) = 1.06 μm

35
= 4, 3 are possible since < and ∣ ∣ ≤ .

37
= 4 ⇒ = 3, 2, 1, 0 ⇒ = ±3, ± 2, ± 1, 0 are possible.

39

(a) 1.49×10−34 J ⋅ s

(b) 1.06×10−34 J ⋅ s

41

(a) 3.66×10−34 J ⋅ s

(b) = 9.13×10−35 J ⋅ s

(c) = 12
3 / 4

= 4

43
= 54.7º, 125.3º

44
(a) 32. (b) 2 in 6 in 10 in and 14 in , for a total of 32.

46

(a) 2

(b) 3 9

48

(b) ≥ is violated,

(c) cannot have 3 electrons in subshell since 3 > (2 + 1) = 2

(d) cannot have 7 electrons in subshell since 7 > (2 + 1) = 2(2 + 1) = 6

50

(a) The number of different values of is ± ± ( − 1), ...,0 for each > 0 and one for = 0 ⇒ (2 + 1). Also an

overall factor of 2 since each can have equal to either +1 / 2 or −1 / 2 ⇒ 2(2 + 1) .

(b) for each value of , you get 2(2 + 1)

= 0, 1, 2, ...,( –1) ⇒ 2 (2)(0) + 1 + (2)(1) + 1 + .... + (2)( − 1) + 1 = 2 1 + 3 + ... + (2 − 3) + (2 − 1)
⏟
terms

to see

that the expression in the box is
= 2 imagine taking ( − 1) from the last term and adding it to first term

Answer Key 1647



= 2 1 + ( –1) + 3 + ... + (2 − 3) + (2 − 1) ( − 1) = 2 + 3 + .... + (2 − 3) + . Now take ( − 3) from

penultimate term and add to the second term 2[ + + ... + + ]
⏟
terms

= 2 2 .

52
The electric force on the electron is up (toward the positively charged plate). The magnetic force is down (by the
RHR).
54
401 nm
56

(a) 6.54×10−16 kg

(b) 5.54×10−7 m

58

1.76×1011 C/kg , which agrees with the known value of 1.759×1011 C/kg to within the precision of the

measurement
60

(a) 2.78 fm

(b) 0.37 of the nuclear radius.

62

(a) 1.34×1023

(b) 2.52 MW

64

(a) 6.42 eV

(b) 7.27×10−20 J/molecule

(c) 0.454 eV, 14.1 times less than a single UV photon. Therefore, each photon will evaporate approximately 14
molecules of tissue. This gives the surgeon a rather precise method of removing corneal tissue from the surface of
the eye.

66
91.18 nm to 91.22 nm
68

(a) 1.24×1011 V

(b) The voltage is extremely large compared with any practical value.

(c) The assumption of such a short wavelength by this method is unreasonable.

Test Prep for AP® Courses

1
(a), (d)
3
(a)
5
(a)
7
(b)
9
(a)
11
(d)
13
(d)
15
(a), (c)
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Chapter 31
Problems & Exercises

1

1.67×104

5
(31.17)

= = 3 ⇒ =
1/3

=
2.3×1017 kg

1000 kg/m3

1
3

= 61×103 m = 61 km

7
1.9 fm

9

(a) 4.6 fm

(b) 0.61 to 1

11
85.4 to 1

13
12.4 GeV

15
19.3 to 1
17

(31.47)
1
3 H2 → 2

3 He1 + − + ¯

19
(31.48)

25
50

25 → 24
50 Cr26 + + +

21
(31.49)

4
7 Be3 + − → 3

7 Li4 +

23
(31.50)

84
210 Po126 → 82

206 Pb124 + 2
4He2

25
(31.51)

55
137 Cs82 → 56

137 Ba81 + − + ¯

27
(31.52)

90
232 Th142 → 88

228 Ra140 + 2
4He2

29

(a) charge:(+1) + (−1) = 0 electron family number: (+1) + (−1) = 0 : 0 + 0 = 0

(b) 0.511 MeV

(c) The two rays must travel in exactly opposite directions in order to conserve momentum, since initially there is

zero momentum if the center of mass is initially at rest.

31
(31.53)= ( + 1) − 1; = ; efn : 0 = (+1) + (−1)

33
(31.54)- 1 = − 1; = ; efn :(+1) = (+1)

35

(a) 88
226 Ra138 → 86

222 Rn136 + 2
4He2

(b) 4.87 MeV

37
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(a) n → p + − + ¯

(b) ) 0.783 MeV

39
1.82 MeV
41

(a) 4.274 MeV

(b) 1.927×10−5

(c) Since U-238 is a slowly decaying substance, only a very small number of nuclei decay on human timescales;
therefore, although those nuclei that decay lose a noticeable fraction of their mass, the change in the total mass of
the sample is not detectable for a macroscopic sample.

43

(a) 8
15 O7 + − → 7

15 N8 +

(b) 2.754 MeV

44
57,300 y
46

(a) 0.988 Ci

(b) The half-life of 226 Ra is now better known.

48

1.22×103 Bq

50

(a) 16.0 mg

(b) 0.0114%

52

1.48×1017 y

54

5.6×104 y

56
2.71 y
58

(a) 1.56 mg

(b) 11.3 Ci

60

(a) 1.23×10−3

(b) Only part of the emitted radiation goes in the direction of the detector. Only a fraction of that causes a response in
the detector. Some of the emitted radiation (mostly particles) is observed within the source. Some is absorbed
within the source, some is absorbed by the detector, and some does not penetrate the detector.

62

(a) 1.68×10 – 5 Ci

(b) 8.65×1010 J

(c) $ 2.9×103

64

(a) 6.97×1015 Bq
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(b) 6.24 kW

(c) 5.67 kW

68

(a) 84.5 Ci

(b) An extremely large activity, many orders of magnitude greater than permitted for home use.

(c) The assumption of 1.00 μA is unreasonably large. Other methods can detect much smaller decay rates.

69
1.112 MeV, consistent with graph
71
7.848 MeV, consistent with graph
73

(a) 7.680 MeV, consistent with graph

(b) 7.520 MeV, consistent with graph. Not significantly different from value for 12 C , but sufficiently lower to allow

decay into another nuclide that is more tightly bound.

75

(a) 1.46×10−8 u vs. 1.007825 u for 1 H

(b) 0.000549 u

(c) 2.66×10−5

76

(a) –9.315 MeV

(b) The negative binding energy implies an unbound system.

(c) This assumption that it is two bound neutrons is incorrect.

78
22.8 cm
79

(a) 92
235 U143 → 90

231 Th141 + 2
4 He2

(b) 4.679 MeV

(c) 4.599 MeV

81

a) 2.4×108 u

(b) The greatest known atomic masses are about 260. This result found in (a) is extremely large.

(c) The assumed radius is much too large to be reasonable.

82

(a) –1.805 MeV

(b) Negative energy implies energy input is necessary and the reaction cannot be spontaneous.

(c) Although all conversation laws are obeyed, energy must be supplied, so the assumption of spontaneous decay is
incorrect.

Test Prep for AP® Courses

1
(c)
3
(a)
5

When 95
241 Am undergoes α decay, it loses 2 neutrons and 2 protons. The resulting nucleus is therefore 93

237 Np .

7
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During this process, the nucleus emits a particle with -1 charge. In order for the overall charge of the system to
remain constant, the charge of the nucleus must therefore increase by +1.
9
a. No. Nucleon number is conserved (238 = 234 + 4), but the atomic number or charge is NOT conserved (92 ≠

88+2).

b. Yes. Nucleon number is conserved (223 = 209 + 14), and atomic number is conserved (88 = 82 + 6).

c. Yes. Nucleon number is conserved (14 = 14), and charge is conserved if the electron’s charge is properly
counted (6 = 7 + (-1)).

d. No. Nucleon number is not conserved (24 ≠ 23). The positron released counts as a charge to conserve charge,
but it doesn’t count as a nucleon.

11

This must be alpha decay since 4 nucleons (2 positive charges) are lost from the parent nucleus. The number
remaining is found from:

N( ) = N0
−0.693

1
2

= 3.4×1017 −(0.693)(0.035)
0.00173

N( ) = 4.1×1011 nuclei

Chapter 32
Problems & Exercises

1
5.701 MeV
3

42
99 Mo57 → 43

99 Tc56 + − + ¯

5

1.43×10−9 g

7

(a) 6.958 MeV

(b) 5.7×10−10 g

8

(a) 100 mSv

(b) 80 mSv

(c) ~30 mSv

10
~2 Gy
12
1.69 mm
14
1.24 MeV
16

7.44×108

18

4.92×10–4 Sv

20
4.43 g
22
0.010 g
24
95%
26
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(a) =1+1=2 , =1+1=1+1 , efn = 0 = −1 + 1

(b) =1+2=3 , =1+1=2 , efn=0=0

(c) =3+3=4+1+1 , =2+2=2+1+1 , efn=0=0

28

= ( i − f)
2

= 4 1 H − 4 He 2

= 4(1.007825) − 4.002603 (931.5 MeV)

= 26.73 MeV

30

3.12×105 kg (about 200 tons)

32

= ( i − f)
2

1 = (1.008665 + 3.016030 − 4.002603)(931.5 MeV)

= 20.58 MeV

2 = (1.008665 + 1.007825 − 2.014102)(931.5 MeV)

= 2.224 MeV

4 He is more tightly bound, since this reaction gives off more energy per nucleon.

34

1.19×104 kg

36

2 − + 41 H → 4 He + 7γ + 2

38

(a) =12+1=13 , =6+1=7 , efn = 0 = 0

(b) =13=13 , =7=6+1 , efn = 0 = −1 + 1

(c) =13 + 1=14 , =6+1=7 , efn = 0 = 0

(d) =14 + 1=15 , =7+1=8 , efn = 0 = 0

(e) =15=15 , =8=7+1 , efn = 0 = −1 + 1

(f) =15 + 1=12 + 4 , =7+1=6 + 2 , efn = 0 = 0

40

= 20.6 MeV

4 He
= 5.68×10-2 MeV

42

(a) 3×109 y

(b) This is approximately half the lifetime of the Earth.

43

(a) 177.1 MeV

(b) Because the gain of an external neutron yields about 6 MeV, which is the average BE/ for heavy nuclei.

(c) = 1 + 238 = 96 + 140 + 1 + 1 + 1, = 92 = 38 + 53 efn = 0 = 0

45

(a) 180.6 MeV
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(b) = 1 + 239 = 96 + 140 + 1 + 1 + 1 + 1, = 94 = 38 + 56 efn = 0 = 0

47

238 U + → 239 U + 4.81 MeV

239 U → 239 Np + − + 0.753 MeV

Np → Pu + − + 0.211 MeV

49

(a) 2.57×103 MW

(b) 8.03×1019 fission/s

(c) 991 kg

51
0.56 g
53
4.781 MeV
55

(a) Blast yields 2.1×1012 J to 8.4×1011 J , or 2.5 to 1, conventional to radiation enhanced.

(b) Prompt radiation yields 6.3×1011 J to 2.1×1011 J , or 3 to 1, radiation enhanced to conventional.

57

(a) 1.1×1025 fissions , 4.4 kg

(b) 3.2×1026 fusions , 2.7 kg

(c) The nuclear fuel totals only 6 kg, so it is quite reasonable that some missiles carry 10 overheads. The mass of the
fuel would only be 60 kg and therefore the mass of the 10 warheads, weighing about 10 times the nuclear fuel, would
be only 1500 lbs. If the fuel for the missiles weighs 5 times the total weight of the warheads, the missile would weigh
about 9000 lbs or 4.5 tons. This is not an unreasonable weight for a missile.

59

7×104 g

61

(a) 4.86×109 W

(b) 11.0 y

Test Prep for AP® Courses

1
(b)
3
(c)
5
(d)
7
(d)
9
(b)

Chapter 33
Problems & Exercises

1

3×10−39 s

3
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1.99×10−16 m (0.2 fm)

4

(a) 10−11 to 1, weak to EM

(b) 1 to 1

6

(a) 2.09×10−5 s

(b) 4.77×104 Hz

8
78.0 cm
10

1.40×106

12
100 GeV
13
67.5 MeV
15

(a) 1×1014

(b) 2×1017

17

(a) 1671 MeV

(b) = 1, ′ = 1 + 0 + 0 = 1. = − 1; ′ = − 1; = 0; ′ = − 1 + 1 = 0

(c)
− → −+ + ¯

⇒ −   antiparticle of +;   of ¯ ; ¯   of 

19

(a) 3.9 eV

(b) 2.9×10−8

21

(a) The composition is the same as for a proton.

(b) 3.3×10−24 s

(c) Strong (short lifetime)

23

a) Δ++( ) = 1
3

+ 1
3

+ 1
3

= 1

b)
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Figure 33.20.

25

(a) +1

(b) = 1 = 1 + 0, = = 0 + ( − 1) , all lepton numbers are 0 before and after

(c) ( ) → ( ) + ( - )

27

(a) ( - +
¯

) → ( - +
¯

) + ( - +
¯

)

(b) 277.9 MeV

(c) 547.9 MeV

29
No. Charge = −1 is conserved.

i
= 0 ≠

f
= 2 is not conserved. = 1 is conserved.

31

(a)Yes. = −1 = 0 + ( − 1) , = 1 = 1 + 0 , all lepton family numbers are 0 before and after, spontaneous since

mass greater before reaction.

(b) → + -

33

(a) 216

(b) There are more baryons observed because we have the 6 antiquarks and various mixtures of quarks (as for the
π-meson) as well.

35
Ω+ ( - - - )

= −1
3

− 1
3

− 1
3

= −1,

= 0 + 0 + 0 = 0,

= 1
3

+ 1
3

+ 1
3

= 1,

= 1 + 1 + 1 = 3.

37

(a)803 MeV
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(b) 938.8 MeV

(c) The annihilation energy of an extra electron is included in the total energy.

39
¯

41

a)The antiproton

b) - → 0 + −

43

(a) 5×1010

(b) 5×104 particles/m2

45

2.5×10−17 m

47

(a) 33.9 MeV

(b) Muon antineutrino 29.8 MeV, muon 4.1 MeV (kinetic energy)

49

(a) 7.2×105 kg

(b) 7.2×102 m3

(c) 100 months

Test Prep for AP® Courses

1
(d)
3
(d)
5
(b)
7
(a)
9
(c), though this comes from Einstein's special relativity
11
(a)
13
(d)
15
(b)
17
(b)

Chapter 34
Problems & Exercises

1

3×1041 kg

3

(a) 3×1052 kg

(b) 2×1079
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(c) 4×1088

5
0.30 Gly
7

(a) 2.0×105 km/s

(b) 0.67

9

2.7×105 m/s

11

6×10−11 (an overestimate, since some of the light from Andromeda is blocked by gas and dust within that galaxy)
13

(a) 2×10−8 kg

(b) 1×1019

15

(a) 30km/s ⋅ Mly

(b) 15km/s ⋅ Mly

17
960 rev/s
19
89.999773º (many digits are used to show the difference between 90º )
22
23.6 km
24

(a) 2.95×1012 m

(b) 3.12×10−4 ly

26

(a) 1×1020

(b) 10 times greater

27
(34.6)1.5×1015

29
(34.7)0.6 m−3

31
(34.8)0.30 Ω
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Index

Symbols
(peak) emf, 1030
RC circuit, 945

A
aberration, 1176
aberrations, 1175
absolute pressure, 454, 478
absolute zero, 532, 565
AC current, 887, 901
AC voltage, 887, 901
acceleration, 43, 82, 146, 178
acceleration due to gravity, 68, 82
accommodation, 1155, 1176
Accuracy, 22
accuracy, 29
acoustic impedance , 755, 761
active transport, 518, 519
activity, 1400, 1410
adaptive optics, 1174, 1176
adhesive forces, 465, 478
adiabatic, 632
adiabatic process, 661
air resistance, 113, 128
alpha, 1379
alpha decay, 1391, 1410
alpha rays, 1410
Alternating current, 886
alternating current, 901
ammeter, 950
ammeters, 938
ampere, 869, 901
Ampere’s law, 991, 999
amplitude, 681, 711, 1074, 1090, 1092
amplitude modulation, 1080
amplitude modulation (AM), 1092
analog meter, 950
Analog meters, 939
analytical method, 128
Analytical methods, 107
Anger camera, 1427, 1453
angular acceleration, 391, 425
angular magnification, 1172, 1176
angular momentum, 413, 425
angular momentum quantum number,
1353, 1364
angular velocity, 222, 249
antielectron, 1395, 1410
antimatter, 1394, 1410
antinode, 706, 711, 743, 761
approximation, 29
approximations, 27
arc length, 221, 249
Archimedes' principle, 459, 478
astigmatism, 1161, 1176
atom, 1318, 1364
atomic de-excitation, 1340, 1364
atomic excitation, 1340, 1364
atomic mass, 1386, 1410
atomic number, 1358, 1364, 1386,
1410
atomic spectra, 1279, 1306
Average Acceleration, 43
average acceleration, 84, 82
Average speed, 41

average speed, 82
Average velocity, 40
average velocity, 82
Avogadro’s number, 546, 565
axions, 1518, 1524
axis of a polarizing filter, 1213, 1224

B
B-field, 973, 999
back emf, 1031, 1056
banked curve, 249
banked curves, 230
barrier penetration, 1408, 1410
baryon number, 1478, 1492
Baryons, 1478
baryons, 1492
basal metabolic rate, 296, 301
beat frequency, 707, 711
becquerel, 1400, 1410
Bernoulli's equation, 496, 519
Bernoulli's principle, 497, 519
beta, 1379
beta decay, 1393, 1410
beta rays, 1410
Big Bang, 1504, 1524
binding energy, 1281, 1306, 1403,
1410
binding energy per nucleon, 1405,
1410
bioelectricity, 895, 901
Biot-Savart law, 991, 999
birefringent, 1221, 1224
Black holes, 1511
black holes, 1524
blackbodies, 1278
blackbody, 1306
blackbody radiation, 1278, 1306
Bohr radius, 1331, 1364
Boltzmann constant, 544, 565
boson, 1476, 1492
bottom, 1486, 1492
bow wake, 739, 761
break-even, 1442, 1453
breeder reactors, 1448, 1454
breeding, 1448, 1454
bremsstrahlung, 1287, 1306
Brewster’s angle, 1216, 1224
Brewster’s law, 1216, 1224
bridge device, 950
bridge devices, 944
Brownian motion, 1319, 1364
buoyant force, 458, 478

C
capacitance, 843, 855, 945, 950
capacitive reactance, 1049, 1056
capacitor, 841, 855, 945, 950
capillary action, 470, 478
carbon-14 dating, 1398, 1410
Carnot cycle, 640, 661
Carnot efficiency, 640, 661
Carnot engine, 640, 661
carrier particle, 178
carrier particles, 177
carrier wave, 1080, 1092
cathode-ray tube, 1364
cathode-ray tubes, 1320
Celsius, 531

Celsius scale, 565
center of gravity, 364, 380
center of mass, 237, 249
centrifugal force, 233, 249
centrifuge, 226
centripetal acceleration, 225, 249
centripetal force, 228, 249
change in angular velocity, 391, 425
change in entropy, 650, 661
change in momentum, 319, 343
Chaos, 1520
chaos, 1524
characteristic time constant, 1045,
1057
characteristic x rays, 1287, 1306
charm, 1486, 1492
chart of the nuclides, 1389, 1410
chemical energy, 287, 301
classical physics, 12, 29
Classical relativity, 125
classical relativity, 128
classical velocity addition, 1267
coefficient of linear expansion, 537,
565
coefficient of performance, 648, 661
coefficient of volume expansion, 539,
565
coherent, 1191, 1224
cohesive forces, 465, 478
Colliding beams, 1473
colliding beams, 1492
color, 1487, 1492
color constancy, 1164, 1176
commutative, 104, 129, 128
complexity, 1519, 1524
component (of a 2-d vector), 128
components , 106
compound microscope, 1165, 1176
Compton effect, 1291, 1306
Conduction, 590
conduction, 606
conductor, 782, 805
Conductors, 786
confocal microscopes, 1223, 1224
conservation laws, 933, 950
conservation of mechanical energy,
279, 301
conservation of momentum principle,
324, 343
Conservation of total , 1478
conservation of total baryon number,
1478, 1492
conservation of total electron family
number, 1492
conservation of total , 1478

conservation of total muon family
number, 1492
conservative force, 277, 301
constructive interference, 704, 711
constructive interference for a
diffraction grating, 1197, 1224
constructive interference for a double
slit, 1193, 1224
contact angle, 470, 478
Contrast, 1222
contrast, 1224
Convection, 590
convection, 607
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converging (or convex) lens, 1122
converging lens, 1142
converging mirror, 1142
conversion factor, 19, 29
Coriolis force, 234, 249
corner reflector, 1116, 1142
correspondence principle, 1277, 1306
cosmic microwave background, 1505,
1524
cosmological constant, 1516, 1525
cosmological red shift, 1504, 1525
Cosmology, 1502
cosmology, 1525
Coulomb force, 792, 805
Coulomb forces, 791
Coulomb interaction, 799, 805
Coulomb's law, 790, 805
critical angle, 1112, 1142
Critical damping, 694
critical damping, 711
critical density, 1516, 1525
critical mass, 1446, 1454
critical point, 557, 565
Critical pressure, 557
critical pressure, 565
critical temperature, 557, 565, 1521,
1525
criticality, 1447, 1454
curie, 1400, 1411
Curie temperature, 970, 999
current, 915, 950
Current sensitivity, 939
current sensitivity, 950
cyclical process, 636, 661
cyclotron, 1472, 1492

D
Dalton’s law of partial pressures, 560,
565
dark matter, 1515, 1525
daughter, 1411
daughters, 1390
de Broglie wavelength, 1296, 1306
decay, 1379, 1390, 1411
decay constant, 1398, 1411
decay equation, 1392, 1396, 1411
decay series, 1390, 1411
deceleration, 82
defibrillator, 853, 855
deformation, 203, 212, 675, 711
degree Celsius, 531, 565
degree Fahrenheit, 531, 565
Density, 441
density, 478
dependent variable, 75, 82
derived units, 16, 29
destructive interference, 704, 711
destructive interference for a double
slit, 1193, 1225
destructive interference for a single slit,
1202, 1225
dew point, 561, 565
dialysis, 518, 519
diastolic pressure, 455, 478
Diastolic pressure, 474
dielectric, 846, 855
dielectric strength, 855
dielectric strengths, 846

diffraction, 1190, 1225
diffraction grating, 1196, 1225
Diffusion, 515
diffusion, 519
digital meter, 950
digital meters, 939
dipole, 799, 805
Direct current, 886
direct current, 901
direction, 102
direction (of a vector), 128
direction of magnetic field lines, 973,
999
direction of polarization, 1213, 1225
Dispersion, 1118
dispersion, 1142
displacement, 34, 82
Distance, 36
distance, 82
Distance traveled, 36
distance traveled, 82
diverging lens, 1124, 1142
diverging mirror, 1142
domains, 969, 999
Doppler effect, 736, 762
Doppler shift, 736, 762
Doppler-shifted ultrasound, 759, 762
Double-slit interference, 1329
double-slit interference, 1364
down, 1481, 1492
drag force, 198, 212
drift velocity , 872, 901
dynamic equilibrium, 358, 380
Dynamics, 141, 144, 179
dynamics, 178

E
eddy current, 1024, 1057
efficiency, 290, 301
Elapsed time, 39
elapsed time, 83
elastic collision, 328, 343
elastic potential energy, 677, 711
electric and magnetic fields, 1090
electric charge, 777, 805
electric current, 869, 901
electric field, 786, 805, 1074, 1092
electric field lines, 805, 1092
Electric field lines, 1071
electric field strength, 793, 1092
electric fields, 794
electric generator, 1057
Electric generators, 1028
electric potential, 824, 855
electric power, 883, 901
Electrical energy, 287
electrical energy, 301
electrocardiogram (ECG), 900, 901
electromagnet, 999
electromagnetic force, 806
electromagnetic induction, 1018, 1057
electromagnetic spectrum, 1092
electromagnetic waves, 1073, 1090,
1092
Electromagnetism, 970
electromagnetism, 999
electromagnets, 970
electromotive force, 924

electromotive force (emf), 950, 1092
electron, 806
Electron capture, 1396
electron capture, 1411
electron capture equation, 1396, 1411
electron family number , 1478, 1492
electron volt, 828, 856
electrons, 777
electron’s antineutrino, 1394, 1411
electron’s neutrino, 1396, 1411
electrostatic equilibrium, 786, 806
electrostatic force, 790, 806
electrostatic precipitators, 803, 806
Electrostatic repulsion, 783
electrostatic repulsion, 806
electrostatics, 800, 806
electroweak epoch, 1508, 1525
electroweak theory, 1488, 1493
emf, 934
emf induced in a generator coil, 1029,
1057
emissivity, 603, 607
endoscope, 1114
energies of hydrogen-like atoms, 1332,
1364
energy, 301
energy stored in an inductor , 1044,
1057
energy-level diagram, 1330, 1364
English units, 15, 29
entropy, 649, 661
equipotential line, 856
equipotential lines, 838
escape velocity, 1511, 1525
event horizon, 1511, 1525
external force, 146, 178
external forces, 144
External forces, 179
Extremely low frequency (ELF), 1079
extremely low frequency (ELF), 1092
eyepiece, 1166, 1176

F
Fahrenheit, 531
Fahrenheit scale, 565
far point, 1158, 1176
Faraday cage, 788, 806
Faraday’s law of induction, 1019, 1057
Farsightedness, 1158
farsightedness, 1176
fermion, 1476, 1493
ferromagnetic, 969, 999
Feynman diagram, 1470, 1493
Fiber optics, 1114
fiber optics, 1142
fictitious force, 233, 249
field, 806
fine structure, 1351, 1364
first law of thermodynamics, 621, 661
first postulate of special relativity, 1239,
1267
fission fragments, 1445, 1454
flat (zero curvature) universe, 1516,
1525
flavors, 1481, 1493
Flow rate, 490
flow rate, 519
fluid dynamics, 519
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fluids, 440, 478
Fluorescence, 1340
fluorescence, 1364
focal length, 1122, 1142
focal point, 1122, 1142
Food irradiation, 1437
food irradiation, 1454
force, 144, 178
Force, 179
force constant, 676, 711
force field, 175, 176, 178, 792
fossil fuels, 298, 301
free charge, 806
free charges, 786
free electron, 806
free electrons, 782
free radicals, 1438, 1454
free-body diagram, 144, 179, 167, 178
free-fall, 68, 83, 149, 178
Frequency, 680
frequency, 712, 1074, 1092
frequency modulation, 1080
frequency modulation (FM), 1092
friction, 147, 178, 212, 301
Friction, 192, 282
full-scale deflection, 939, 950
fundamental, 744, 762
fundamental frequency, 706, 712
fundamental particle, 1480, 1493
fundamental units, 16, 29

G
galvanometer, 939, 950
gamma, 1379
gamma camera, 1427, 1454
Gamma decay, 1397
gamma decay, 1411
gamma ray, 1088, 1092, 1306
Gamma rays, 1284
gamma rays, 1411
gauge boson, 1493
gauge bosons, 1476
gauge pressure, 454, 478
gauss, 975, 999
Geiger tube, 1383, 1411
general relativity, 1509, 1525
geometric optics, 1103, 1142
glaucoma, 475, 478
gluons, 1470, 1493
Gluons, 1489
grand unified theory, 1493
Grand Unified Theory (GUT), 1488
gravitational constant, 237
gravitational constant, G, 249
gravitational potential energy, 272, 301
Gravitational waves, 1512
gravitational waves, 1525
gray (Gy), 1429, 1454
greenhouse effect, 605, 607
grounded, 801, 806
grounding, 839, 856
GUT epoch, 1508, 1525

H
Hadrons, 1476
hadrons, 1493
half-life, 1397, 1411
Hall effect, 982, 999

Hall emf, 982, 999
harmonics, 744, 762
head, 100
head (of a vector), 128
head-to-tail method, 100, 129, 128
Hearing, 724, 749
hearing, 762
heat, 576, 607
heat engine, 627, 661
heat of sublimation, 589, 607
heat pump, 661
heat pump's coefficient of performance,
646
Heisenberg uncertainty principle, 1302
Heisenberg’s uncertainty principle ,
1303, 1306
henry, 1041, 1057
hertz, 1092
Higgs boson, 1490, 1493
high dose, 1430, 1454
hologram, 1347, 1364
Holography, 1347
holography, 1364
Hooke's law, 203, 212
horizontally polarized, 1213, 1225
Hormesis, 1431
hormesis, 1454
horsepower, 293, 301
Hubble constant, 1504, 1525
hues, 1162, 1176
Human metabolism, 625
human metabolism, 661
Huygens’s principle, 1188, 1225
Hydrogen spectrum wavelength, 1329
hydrogen spectrum wavelengths, 1364
hydrogen-like atom, 1331, 1364
hydrogen-spectrum wavelengths, 1328
hyperopia, 1158, 1176

I
ideal angle, 249
ideal banking, 230, 249
ideal gas law, 544, 565
ideal speed, 249
Ignition, 1442
ignition, 1454
Image distance , 1128
impedance, 1051, 1057
impulse, 319, 343
Incoherent, 1191
incoherent, 1225
independent variable, 75, 83
index of refraction, 1108, 1142
inductance, 1040, 1057
induction, 783, 806, 1057
inductive reactance, 1047, 1057
inductor, 1042, 1057
inelastic collision, 332, 343
inertia, 146, 179
Inertia, 179
inertial confinement, 1442, 1454
inertial frame of reference, 165, 179,
1239, 1267
inflationary scenario, 1509, 1525
Infrared radiation, 1083
infrared radiation, 1306
infrared radiation (IR), 1092
Infrared radiation (IR), 1289

infrasound, 749, 762
ink jet printer, 802
ink-jet printer, 806
Instantaneous acceleration, 49
instantaneous acceleration, 83
Instantaneous speed, 41
instantaneous speed, 83
Instantaneous velocity, 40
instantaneous velocity, 83
insulator, 806
insulators, 782
intensity, 709, 712, 732, 762, 1091,
1092
intensity reflection coefficient, 756, 762
Interference microscopes, 1222
interference microscopes, 1225
internal energy, 622, 661
Internal kinetic energy, 328
internal kinetic energy, 343
internal resistance, 924, 950
intraocular pressure, 475, 478
intrinsic magnetic field , 1351, 1364
intrinsic spin, 1351, 1364
ionizing radiation, 1284, 1306, 1381,
1411
ionosphere, 787, 806
irreversible process, 635, 661
isobaric process, 628, 661
isochoric, 630
isochoric process, 661
isolated system, 325, 343
isothermal, 632
isothermal process, 661
isotopes, 1387, 1411

J
joule, 265, 301
Joule’s law, 916, 950
junction rule, 933, 950

K
Kelvin, 532
Kelvin scale, 565
kilocalorie, 576, 607
kilogram, 16, 29
kilowatt-hour, 301
kilowatt-hours, 295
kinematics, 83, 114, 128
kinematics of rotational motion, 395,
425
kinetic energy, 268, 301
kinetic friction, 192, 212
Kirchhoff’s rules, 932, 950

L
Laminar, 504
laminar, 519
laser, 1343, 1364
laser printer, 806
Laser printers, 802
Laser vision correction, 1161
laser vision correction, 1176
latent heat coefficient, 607
latent heat coefficients, 585
law, 11, 29
law of conservation of angular
momentum, 416, 425
law of conservation of charge, 780, 806
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law of conservation of energy, 287, 301
law of inertia, 146, 179, 179
law of reflection, 1142
law of refraction, 1110
Length contraction , 1248
length contraction, 1267
Lenz’s law, 1019, 1057
leptons, 1476, 1493
linear accelerator, 1474, 1493
linear hypothesis, 1431, 1454
Linear momentum, 316
linear momentum, 343
liquid drop model, 1445, 1454
liter, 490, 519
longitudinal wave, 702, 712
loop rule, 934, 950
Lorentz force, 975, 999
loudness, 749, 762
low dose, 1430, 1454

M
MACHOs, 1518, 1525
macrostate, 656, 661
magic numbers, 1389, 1411
magnetic confinement, 1442, 1454
magnetic damping, 1024, 1057
magnetic field, 973, 999, 1074, 1092
magnetic field lines, 973, 1000, 1093
Magnetic field lines, 1072
magnetic field strength, 1093
magnetic field strength (magnitude)
produced by a long straight current-
carrying wire, 990, 1000
magnetic field strength at the center of
a circular loop, 991, 1000
magnetic field strength inside a
solenoid, 992, 1000
magnetic flux, 1018, 1057
magnetic force, 975, 1000
magnetic monopoles, 972, 1000
Magnetic resonance imaging (MRI),
998
magnetic resonance imaging (MRI),
1000
magnetized, 969, 1000
magnetocardiogram (MCG), 999, 1000
magnetoencephalogram (MEG), 999,
1000
magnification, 1128, 1143
magnitude, 102
magnitude (of a vector), 128
magnitude of kinetic friction, 212
magnitude of kinetic friction fk , 193

magnitude of static friction, 212
magnitude of static friction fs , 193

magnitude of the intrinsic (internal) spin
angular momentum, 1355, 1364
mass, 146, 179
Mass, 179
mass number, 1386, 1411
massive compact halo objects, 1518
maximum field strength, 1090, 1093
Maxwell’s equations, 991, 1000, 1071,
1093
mechanical advantage, 371, 380
mechanical energy, 279, 301, 856
Mechanical energy, 829

mechanical equivalent of heat, 577,
607
meson, 1468, 1493
Mesons, 1478
metabolic rate, 296, 301
metastable, 1342, 1364
meter, 16, 29, 1000
Meters, 988
method of adding percents, 24, 29
metric system, 17, 29
Michelson-Morley experiment, 1240,
1267
Microgravity, 242
microgravity, 249
microlensing, 1518, 1525
microshock sensitive, 894, 901
microstate, 656, 661
Microwaves, 1082, 1289
microwaves, 1093, 1306
micturition reflex, 477, 478
mirror, 1143
model, 11, 29, 41, 83
moderate dose, 1430, 1454
Modern physics, 14
modern physics, 29
mole, 546, 565
moment of inertia, 401, 401, 425
motion, 113, 128
motor, 1000
Motors, 986
muon family number, 1478, 1493
Mutual inductance, 1040
mutual inductance, 1057
myopia, 1158, 1176

N
natural frequency, 698, 712
near point, 1158, 1176
Nearsightedness, 1158
nearsightedness, 1176
negatively curved, 1516, 1525
Nerve conduction, 895
nerve conduction, 901
net external force, 147, 179
net rate of heat transfer by radiation,
604, 607
net work, 267, 301
neutral equilibrium, 366, 380
neutralinos, 1518, 1525
neutrino, 1393, 1411
neutrino oscillations, 1518, 1525
neutron, 1386, 1411
Neutron stars, 1512
neutron stars, 1525
Neutron-induced fission, 1445
neutron-induced fission, 1454
newton, 149
Newton's universal law of gravitation,
236, 249
newton-meters, 265
Newton’s first law of motion, 145, 179,
179
Newton’s second law of motion, 146,
179
Newton’s third law of motion, 153, 180,
179
node, 743, 762
Nodes, 705

nodes, 712
non-inertial frame of reference, 233,
249
nonconservative force, 282, 301
normal force, 158, 179
north magnetic pole, 967, 1000
note, 762
notes, 749
Nuclear energy, 287
nuclear energy, 301
Nuclear fission, 1444
nuclear fission, 1454
Nuclear fusion, 1439
nuclear fusion, 1454
nuclear magnetic resonance (NMR),
998, 1000
nuclear radiation, 1379, 1411
nuclear reaction energy, 1392, 1411
nucleons, 1386, 1411
nucleus, 1411
nuclide, 1386, 1411
Null measurements, 942
null measurements, 951
numerical aperture, 1176
numerical aperture , 1167

O
objective lens, 1166, 1177
ohm, 875, 901
Ohm's law, 874, 901
ohmic, 875, 901
ohmmeter, 951
ohmmeters, 943
Ohm’s law, 915, 951
optically active, 1220, 1225
orbital angular momentum, 1350, 1364
orbital magnetic field, 1350, 1364
order, 1193, 1225
order of magnitude, 17, 29
oscillate, 712, 1093
Osmosis, 518
osmosis, 519
osmotic pressure, 518, 519
Otto cycle, 638, 661
over damping, 712
overdamped, 695
overtones, 706, 712, 744, 762

P
parallel, 917, 951
parallel plate capacitor, 842, 856
parent, 1390, 1411
Partial pressure, 560
partial pressure, 565
particle physics, 1493
particle-wave duality, 1295, 1306
Particle-wave duality, 1304
Pascal's principle, 451
Pascal's Principle, 478
Pauli exclusion principle, 1358, 1365
peak emf, 1057
percent relative humidity, 563, 565
percent uncertainty, 24, 29
perfectly inelastic collision, 332, 343
period, 680, 712
periodic motion, 680, 712
permeability of free space, 990, 1000
perpendicular lever arm, 360, 380
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phase angle, 1054, 1057
phase diagram, 565
phase diagrams, 558
phase-contrast microscope, 1223,
1225
phon, 750, 762
Phosphorescence, 1342
phosphorescence, 1365
photoconductor, 801, 806
photoelectric effect, 1280, 1306
photomultiplier, 1384, 1411
photon, 1280, 1290, 1306
photon energy, 1280, 1306
photon momentum, 1291, 1307
physical quantity, 15, 29
Physics, 8
physics, 29
pion, 1467, 1493
pit, 221, 249
pitch, 726, 749, 762
Planck’s constant, 1278, 1307
planetary model of the atom, 1326,
1365
point charge, 792, 806
point masses, 336, 343
Poiseuille's law, 507, 519
Poiseuille's law for resistance, 506, 519
polar molecule, 799, 806, 847, 856
polarization, 783, 806, 1225
Polarization, 1213
polarization microscope, 1223, 1225
polarized, 786, 806, 1213, 1225
population inversion, 1343, 1365
position, 34, 83
positively curved, 1516, 1525
positron, 1396, 1411
positron decay, 1395, 1411
positron emission tomography (PET),
1427, 1454
potential difference, 824, 924, 951
potential difference (or voltage), 856
potential energy, 277, 279, 301
potential energy of a spring, 278, 301
potentiometer, 943, 951
power, 292, 301, 1123, 1143
power factor, 1054, 1057
precision, 23, 29
presbyopia, 1158, 1177
pressure, 444, 447, 478
Pressure, 451
probability distribution, 1300, 1307
projectile, 113, 128
Projectile motion, 113
projectile motion, 128
Proper length , 1248
proper length, 1267
Proper time , 1243
proper time, 1267
proton, 806
proton-proton cycle, 1440, 1454
protons, 777, 1386, 1411
PV diagram, 557, 565

Q
quality factor, 1429, 1454
quantized, 1277, 1307
quantum chromodynamics, 1487,
1490, 1493

quantum electrodynamics, 1470, 1493
Quantum gravity, 1509, 1525
quantum mechanical tunneling, 1408,
1411
Quantum mechanics, 14
quantum mechanics, 29, 1277, 1307
quantum numbers, 1353, 1365
quark, 343, 1493
quarks, 327, 1480
quasars, 1512, 1525

R
R factor, 607

factor, 594
rad, 1429, 1454
Radar, 1082
radar, 1093
radians, 221, 250
radiant energy, 287, 302
radiation, 590, 602, 607
radiation detector, 1383, 1411
radio waves, 1070, 1079, 1093
radioactive, 1379, 1411
Radioactive dating, 1398
radioactive dating, 1411
radioactivity, 1379, 1412
radiolytic products, 1438, 1454
radiopharmaceutical, 1425, 1454
radiotherapy, 1435, 1454
radius of a nucleus, 1387, 1412
radius of curvature, 221, 250
rainbow, 1143
range, 119, 128
range of radiation, 1381, 1412
rate of conductive heat transfer, 593,
607
rate of decay, 1400, 1412
ray, 1102, 1143
Ray tracing, 1125
Rayleigh criterion, 1204, 1225
RC circuit, 951
real image, 1127, 1143
reflected light is completely polarized,
1216
reflected light that is completely
polarized, 1225
refraction, 1106, 1143
relative biological effectiveness, 1429
relative biological effectiveness (RBE),
1454
relative humidity, 561, 565
relative osmotic pressure, 518, 519
relative velocities, 125
relative velocity, 128
relativistic Doppler effects, 1269, 1267
Relativistic kinetic energy, 1263
relativistic kinetic energy, 1267
Relativistic momentum, 1257
relativistic momentum, 1267
relativistic velocity addition, 1253, 1267
Relativity, 14
relativity, 29, 125, 128, 1239, 1267
Renewable forms of energy, 298
renewable forms of energy, 302
resistance, 874, 901, 914, 951
resistivity, 878, 902
resistor, 914, 945, 951
resonance, 698, 712

resonant, 1075, 1093
resonant frequency, 1053, 1057
resonate, 698, 712
Rest energy, 1259
rest energy, 1267
rest mass, 1257, 1267
restoring force, 675, 712
resultant, 101, 128
resultant vector, 101, 128
retinex, 1177
retinex theory of color vision, 1165,
1177
retinexes, 1165
reverse dialysis, 518, 519
Reverse osmosis, 518
reverse osmosis, 519
reversible process, 633, 661
Reynolds number, 512, 519
right hand rule 1, 975
right hand rule 1 (RHR-1), 1000
right hand rule 2, 989
right hand rule 2 (RHR-2), 1000
right-hand rule, 423, 425
RLC circuit, 1093
rms current, 888, 902
rms voltage, 888, 902
rods and cones, 1162, 1177
roentgen equivalent man, 1429
roentgen equivalent man (rem), 1454
rotation angle, 221, 250
rotational inertia, 401, 425
rotational kinetic energy, 405, 425
Rydberg constant, 1328, 1333, 1365

S
saturation, 561, 565
scalar, 37, 83, 106, 128, 830, 856
Schwarzschild radius, 1511, 1525
scientific method, 12, 29
scintillators, 1384, 1412
screening, 799, 806
second, 16, 29
second law of motion, 317, 344
second law of thermodynamics, 635,
636, 640, 661
second law of thermodynamics stated
in terms of entropy, 661
second postulate of special relativity,
1240, 1268
Self-inductance, 1042
self-inductance, 1057
semipermeable, 517, 519, 895, 902
series, 915, 951
shear deformation, 209, 212
shell, 1359, 1365
shielding, 1432, 1454
shock hazard, 890, 902, 1036, 1057
short circuit, 891, 902
shunt resistance, 940, 951
SI unit of torque, 361
SI units, 15, 29
SI units of torque, 380
sievert, 1430, 1454
significant figures, 25, 29
simple circuit, 875, 902
Simple Harmonic Motion, 681
simple harmonic motion, 712
simple harmonic oscillator, 681, 712
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simple pendulum, 686, 712
simplified theory of color vision, 1163,
1177
single-photon-emission computed
tomography (SPECT), 1454
single-photon-emission computed
tomography(SPECT), 1427
slope, 75, 83
solenoid, 992, 1000
Solid-state radiation detectors, 1385
solid-state radiation detectors, 1412
sonic boom, 739, 762
sound, 724, 762
sound intensity level, 733, 762
sound pressure level, 735, 762
south magnetic pole, 967, 1000
space quantization, 1351, 1365
special relativity, 1268
special relativity., 1239
specific gravity, 461, 478
specific heat, 579, 607
speed of light, 1093
spin projection quantum number, 1355,
1365
spin quantum number, 1355, 1365
spontaneous symmetry breaking, 1509,
1525
stable equilibrium, 365, 380
Standard Model, 1490
standard model, 1493
standing wave, 705, 1075, 1093
static electricity, 806
static equilibrium, 358, 368, 380
static friction, 192, 212
statistical analysis, 658, 661
Stefan-Boltzmann law of radiation, 603,
607
step-down transformer, 1034, 1057
step-up transformer, 1034, 1057
Stimulated emission, 1343
stimulated emission, 1365
Stokes' law, 202, 212
strain, 208, 212
strange, 1481, 1493
strangeness, 1478, 1493
stress, 208, 212
sublimation, 558, 566, 607
Sublimation, 589
subshell, 1359, 1365
Superconductors, 1521, 1525
supercriticality, 1447, 1454
superforce, 1508, 1525
superposition, 704, 712
Superstring theory, 1491, 1515, 1525
superstring theory, 1493
surface tension, 465, 478
synchrotron, 1472, 1493
synchrotron radiation, 1472, 1493
system, 146, 179
systolic pressure, 455, 478
Systolic pressure, 474

T
tagged, 1425, 1455
tail, 100, 128
tangential acceleration, 392, 425
tau family number, 1493
Television, 1081

Temperature, 530
temperature, 566
temperature coefficient of resistivity,
880, 902
tensile strength, 205, 212
tension, 161, 179
terminal speed, 514, 519
terminal voltage, 926, 951
tesla, 975, 1000
test charge , 792, 806
the second law of thermodynamics
stated in terms of entropy, 652
theory, 11, 29
theory of quark confinement, 1487,
1493
therapeutic ratio, 1435, 1455
thermal agitation, 1082, 1093
thermal conductivity, 593, 607
thermal energy, 282, 287, 302, 552,
566
thermal equilibrium, 536, 566
thermal expansion, 537, 566
thermal hazard, 890, 902, 1036, 1057
Thermal stress, 541
thermal stress, 566
thin film interference, 1208, 1225
thin lens, 1125
thin lens equations, 1128
thought experiment, 1509, 1525
three-wire system, 1036, 1057
thrust, 154, 180, 179
timbre, 750, 762
time, 39, 83
Time dilation, 1242
time dilation, 1268
TOE epoch, 1508, 1525
tone, 750, 762
top, 1486, 1493
Torque, 360
torque, 380, 400, 425
Total energy , 1259
total energy, 1268
total internal reflection, 1112
trajectory, 113, 128
transformer, 1057
transformer equation, 1034, 1058
Transformers, 1032
transverse wave, 702, 712, 1075, 1093
triple point, 559, 566
Tunneling, 1409
tunneling, 1412
turbulence, 504, 519
TV, 1093
twin paradox, 1268

U
ultra high frequency, 1081
ultra-high frequency (UHF), 1093
ultracentrifuge, 227, 250
ultrasound, 749, 762
Ultraviolet (UV) microscopes, 1222
ultraviolet (UV) microscopes, 1225
Ultraviolet radiation, 1287
ultraviolet radiation, 1307
ultraviolet radiation (UV), 1085, 1093
uncertainty, 23, 29
uncertainty in energy, 1303, 1307
uncertainty in momentum, 1301, 1307

uncertainty in position, 1301, 1307
uncertainty in time, 1303, 1307
under damping, 712
underdamped, 695
uniform circular motion, 250
units, 15, 29
unpolarized, 1213, 1225
unstable equilibrium, 365, 380
up, 1481, 1493
useful work, 296, 302

V
Van de Graaff, 1472, 1493
Van de Graaff generator, 806
Van de Graaff generators, 801
vapor, 559, 566
Vapor pressure, 560
vapor pressure, 566
vector, 37, 83, 99, 128, 806, 830, 856
vector addition, 122, 128, 796, 806
vectors, 97, 794
velocity, 122, 128
vertically polarized, 1213, 1225
very high frequency, 1081
very high frequency (VHF), 1093
virtual image, 1130, 1143
virtual particles, 1467, 1494
viscosity, 506, 519
viscous drag, 513, 519
Visible light, 1084
visible light, 1093, 1288, 1307
voltage, 824, 915, 951
voltage drop, 915, 951
voltmeter, 951
Voltmeters, 938

W
watt, 292, 302
wave, 700, 712
wave velocity, 700, 712
wavelength, 701, 712, 1074, 1093
wavelength in a medium, 1187, 1225
weakly interacting massive particles,
1518
weight, 149, 179
Weight, 157
Wheatstone bridge, 944, 951
WIMPs, 1518, 1525
work, 263, 302
work-energy theorem, 268, 302, 406,
427, 425

X
x ray, 1307
x rays, 1285, 1365
X rays, 1334
X-ray, 1088, 1093
x-ray diffraction, 1338, 1365
xerography, 801, 806

Y
y-intercept, 75, 83

Z
z-component of spin angular
momentum, 1365
z-component of the angular
momentum, 1365
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-component of spin angular

momentum, 1355
-component of the angular

momentum, 1353
Zeeman effect, 1350, 1365
zeroth law of thermodynamics, 536,
566
zircon, 1143
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