AP Physics C Free-Response Index-started by G. Friedlander

*BB=Black Box problems for Word 2007-8 in single-year files—use multiple-year files

	M1	M2	М3	E1	E2	E3
20 17	Atwood, analyze experiments, modified Atwood	Energy, time of compression, resistive force $F = \beta v^2$, diff.eq.	Cylinder on ramp, energy and projectile, sphere vs. cylinder	$\frac{1}{Perpective View}$ Nonconducting slab: Gauss, then between metal plates, E, ΔV	$\begin{array}{c} \overbrace{k_{1} \\ k_{2} \\ k_{3} \\ k_{4} \\ k_{1} \\ k_{2} \\ k_{3} \\ k_{4} \\ k_{2} \\ k_{3} \\ k_{4} \\ k_{3} \\ k_{4} \\ k_{4}$	B in and near solenoid, Ampere's Law, experimental results to find µ ₀
20 16	Motor Sease Dynamics, friction, experiment, graphing,	Momentum, nonlinear spring, energy, net force	Rotation, circular motion, spring, Angular momentum, vector acceleration	Electric potential, Electric field, and effects	V=IR, resistivity, non-ideal meters	$\begin{array}{c c} & \times & \times & \times & \times \\ & \times & \times & \times & \times \\ & \times & \times$
20 15	Block up & down ramp, kinematics, graphs, friction	Projectile, momentum, energy, pendulum motion	Calculus derive I of rod, energy, graph, experiment	Parallel plate capacitor, Gauss' Law, non-uniform dielectric, potential, energy	Internal resistance, graphing, finding emf and r, maximum I, voltmeters	Perpetite View Magnetic flux, induced emf and I, energy, force and torque
20 14	Non-linear spring energy, graphing	Stat View Energy, Circular motion F, a, v	Projectile, momentum, kinematics, angular momentum	$R_{2} = 50 \Omega$ $R_{3} = 50 \Omega$ R_{1} $R_{3} = 50 \Omega$ R_{1} $R_{2} = 50 \Omega$ R_{1} $R_{2} = 50 \Omega$ R_{1} R_{1} R_{1} R_{1} R_{1} $R_{2} = 50 \Omega$ R_{1}	Motional EMF, current, diff.eq. for speed as a function of time	Charge density of atom, Gauss' Law, graph of E versus r
20 13	Kinematics graphing Spring energy, SHM	$ \begin{array}{c} \xrightarrow{\nu} \\ \xrightarrow{m} \\ \xrightarrow{r_a} \\ \hline \end{array} $ Drag force F _D =kv	Rotational dynamics, energy	Gauss's Law Cylinder E, V	$\begin{array}{c} C \\ \hline \\ R \\ R \\ R \\ C \\ C \\ C \\ C \\ C \\ C \\ C$	Faraday's Law in Loop
20 12	SHM kinematics, w/o and w friction	Design experiment of potential to kinetic energy. Experimental discrepancies.	Skilling Obly Skilling and Rotating Rotating with Skilling Obly Skilling and Rotating Rotating with Skilling Obly Skilling Rotating With Coefficient / Rolling W Slipping	Field, Potential, charge	Experiment: resistivity, RC circuit	Motional EMF
20 11	Launching Projectile Device Projectile	Freefall ride.	Torsional pendulum	Gauss' Law – spheres and shells	9.0V SOUT	Ampere's Law

	M1	M2	М3	E1	E2	E3
20 10	Coffee filter lab	Rotation	Mechanics	Field and Potential	RC circuit	Lightbulb (resistance R)
20 09	Potential energy function and graphs	Physical pendulum	Modified Atwood's machine	$\begin{split} v(r) &= \frac{Q_0}{4\pi a_0 K} \left[-2 + 3 \left(\frac{r}{K} \right)^2 \right] \text{ for } r < R \\ v(r) &= \frac{Q_0}{4\pi a_0 r} \text{ for } r > R \\ \textbf{Continuous charge} \\ \textbf{distribution} \end{split}$	oov	Faraday's Law - circuits
20 08	Inclined plane F=kv	Henge 2.2.kg 0.50 kg Torque - strut	Hooke's Law – Force and Energy	Gauss' Law	$\varepsilon_{=1500} v = \frac{\varepsilon_{n_{1}} - 300}{\varepsilon_{n_{1}} + 3000} = \varepsilon_{n_{1}} + 1000}$ Circuits – RC, LC, RR	Biot-Savart Law
20 07	^{F1} θ Linear dynamics	Orbital mechanics Mars Surveyor	Mechanical Energy Conservation; spring	$\varepsilon = C = 4000 \mu F$	Gauss' Law	Faraday's Law
20 06 *B B	Block, Mg = 0.50 kg Slab, Mg = 1.0 kg International of the state of	Non-linear spring, data analysis, GRAPH, energy conservation	Rot'l kinematics, projectile	Electrostatics – field and potential	e	Spring, B force on a current loop, induction
20 05 *B B	Motion w/ air resistance, GRAPH	Moons of Saturn: Data analysis, GRAPH	Rotational dynamics	Field diagram & potential	$z = \begin{bmatrix} s & m_1 & m_2 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	Hall probe, solenoid, experiment, GRAPH
20 04 *B B	Energy, inelastic collision, projectile	Rot'l dynamics, experiment	Pivot	E Field & potential – Gauss' Law	RC Circuit	Flux, induction
20 03 *B B	Work, energy & power	Spring, SHM, inelastic collision	Catapult, projectiles, experiment	; E Field – Gauss' Law	RC circuit	Induction
20 02 *B B	$v = \frac{8}{1+5t}$ Collision and calculus kinematics	Energy: grav., rot., spring	$U(x) = \frac{4.0}{2.0 + x},$ Graphical U vs x, F=- dU/dx, exper.	E field, potential, F, energy	RC circuit, experiment	Flux and Induction, energy dissipated

	M1	M2	М3	E1	E2	E3
20 01	mass and force sensor - imp- momentum, acc	Gravity, satellite motion.	angular motion, rot inertia	fields, potential, thunder	res of capacitors, dielect.	mag field of wire, forces.
20 00	Lab, pendulum, find g, elevator.	Ball falling thru resistive medium, F = -bv², energy	F=ma, angular motion	LR - RC circuits	fields and potential	Gauss and Ampere
19 99	Lab - ballistic pendulum	Hole through earth - SHM	Rotational Eq, Energy	Spherical Capacitor	Induction	E field, potential, static ch
19 98	lab data for air track collision.	inelastic coll, linear and ang mom. C of M motion.	two body motion, friction, force diagrams	Coulomb, F=qE, forces.	Circuit, RC, LR	Motional Emf, bar sliding down incline, term vel.
19 97	non-linear spring, lab question	inelastic momentum - calculus treatment	sphere on incline, acceleration, energy	graphical analysis of circuit - experimental battery	electric fields and forces – flux	B field of long wire, flux, motional emf.
19 96	Lab question – vibrations - Gravitation	forklift - eqns of motion, friction	Mom of inertia of rod, hoop. Rota	Concentric spheres - E field, V	RC Circuit	Faraday's law, Solenoid
19 95	Impulse, momentum, projectile.	Potential energy function	grav, orbits, ang momentum, moment of Inertia.	Nonconductor field and potential	Capacitors, RC Circuit	Air track - Motional Emf, Lenz' Law
19 94	Cons of En and mom, spring	rolling w/o slipping, cons of energy on an incline.	orbits, cons of energy and ang mom.	E field, potential - ring and part of ring.	Motional Emf, energy conservation	Coaxial cable, Amperes law for B field.
19 93	En in a spring, friction, cons of en.	resistive medium, equations of motion.	torque, angular acceleration.	non conductor - Gauss' law. conductor, Ampere's law	Faraday's law, magnetic forces, induced I.	Mass Spectrometer.

	M1	M2	М3	E1	E2	E3
19 92	Energy, cons of mom, inelastic	Rotation, I, torque, energy	Orbits, cons of En and ang mom.	Charge dist in a sphere, find total charge, field with Gauss' Law.	RC circuit	B field of wire, flux through loop, Faraday's law
19 91	Ballistic pend - cons of En and Mom - Vertical Circle	Rotation, torque	Spring, cons of mom and en, elastic collision	field and potential of point charges	LR circuit	Faraday's law, resisting medium
19 90	F = -kv, eqns of motion.	motion on incline, box and sphere. energy.	vertical spring, oscillation, energy	conc spheres, Gauss' Law, fields	Mass spectrometer	Falling through B field, induction, term velocity.
19 89	Energy cons, critical speed, vert circle	several bodies, heavy pulley, acc	vert spring, SHM.	Two charges, E and potential	Motional Emf, induced current	RC circuit.
19 88	car on banked curve	springs in parallel, work = area in F vs d	Angular motion, torque, acceleration	conc shells, Gauss' law, potential, Capacit.	Circuit, with C. Energy dissipated.	Solenoid, Amp law, flux induced Emf.
19 87	Centrip forces on a swing	Potential Energy function. F = -dU/dr	Cons of linear and ang momentum	Charge dist thru a sphere, Gauss' law, potential	Flux, Faraday's law, induced I, energy dissipated	LR Circuit.
19 86	platform acc upward. Power	sphere on incline, I, acceleration.	- F = -kx ³ . Non linear spring, SHM	Equipotentials and fields, work	Circuit, add C, add L.	Long wire B, flux thru nearby loop, induced I
19 85	Projectile, cons of momentum	spring on an incline, energy cons	Atwoods mach, eqns of motion.	coax cylinders, Gauss' law, cylindrical capacitor	Circuits, RC	Faraday's law, induced Emf, E.
19 84	Centripetal motion, force diagram	Orbits, mom cons, energy.	falling through a resisting medium, F = -kmv	E and B forces on moving charge.	Gauss' Law betw parallel plates.	motional Emf bar decelerates. Power

	M1	M2	М3	E1	E2	E3
19 83	proj motion in a plane	rotation, acceleration	skier on snowball	conc shells, Gauss' Law, potential	RC circuit	[®] ⊢ ["] → " Superimposed B fields from wires.
19 82	spring on incline, En cons	one dimensional motion of car with friction, slowing.	torque, I, rotation equations	point charge, field, potential, flux	B for long wire, flux thru loop nearby	R-L circuit
19 81	Incline, trans eq, friction	Energy on a swing	Cons of linear and ang momentum.	Gauss' Law, spherical capac., dielectrics	Elec and B field of a ring of charge	Faradays Law, induced Emf, I, power
19 80	spring, SHM	Momentum & En Conservation	Rotation w/o slipping, eqns of motion	E and V for thin, bent rod.	Gauss' Law E between plates, Capacitance	Faraday's Law, induced Emf and E
19 79	Projectile, en cons, mom cons.	Ferry, cons of momentum, impulse	torque, ang mom, SHM w spring during rotation	conc shells, Gauss' law, E vs r, V vs r	non-cond slab, E field, cond slab, B field.	Eprimat I E(et µa) t→1 B fields and forces on particles. hand rules.
19 78	circular, work	linear and ang mom	torque, ang mom, SHM w spring	E,B forces on elect, V and vector v	Faraday's, Lenz's Law, energy	Gauss E&V, C, U _c ,
19 77	F = -kv, work	Rotation, "walk the dog" yo-yo trick	(Mental Mental M	E and V for on axis of ring	Gauss's law on resistor	B force, torque
19 76	circ motion, , friction, tangential a, kinematics	rotation,	mmmm → mmmm → mmmmm → mmmmmm → mmmmmmmm	Gauss E and V	x x x x x x x x x x x x x x x x x x x	Mass spectrometer
19 75	falling through a resisting medium F = -kv Graph drawing	Cons of L	Calculus, force, work done lifting chain	Coulomb U,F, Work	Equilibrium Capac.	Induction in square due to dl/dt in wire
19 74	circ motion, energy, force, tangential a	rotation, change µ	energy, momentu m, SHM	Gauss E and V	Parallel plate capacitor, E, Q, C, copper insert	Biot-Savart, Induced emf

	M1	M2	М3	E1	E2	E3
19 73	Two block system w/	Work-energy theorem	Angular mechanics	Parallel plate capacitor	Magnetic effects	Motional emf