
Rotational Motion – Part II

AP Physics C



Torque
So far we have analyzed translational motion in terms of its angular 

quantities. But we have really only focused on the kinematics and 
energy. We have yet to add dynamics (Newton's Laws) to the 
equation..

Since Newton's Laws governs 

how forces act on an object we 

need to look at how force is 

applied under angular 

conditions.

TORQUE is the ANGULAR 

counterpart to FORCE.

Torque is defined as the Force that is applied TANGENT to the circle rotating 

around a specific point of rotation.



Torque
TWO THINGS NEED TO BE

UNDERSTOOD:

1) The displacement from a point of

rotation is necessary. Can you

unscrew a bolt without a wrench?

Maybe but it isn't easy. That extra

distance AWAY from the point of 

rotation gives you the extra leverage 

you need.

THUS we call this distance the 

LEVER (EFFORT) ARM (r) .

2) The Force MUST be perpendicular to the displacement. Therefore, 

if the force is at an angle, sinθθθθ is needed to meet the perpendicular 
requirement.



Torque is a CROSS PRODUCT

If the force is truly perpendicular, then the sine of 90 degrees will equal to 1. 

When the force is applied, the bolt itself moves in or out of the page. In other 

words, the FORCE and DISPLACEMENT (lever arm) are in the X/Y plane, 

but the actual displacement  of the BOLT is on the "Z“ axis. 

We therefore have what is called, CROSS PRODUCT.

�Counterclockwise rotation is considered to be POSITIVE and OUT OF 

THE PAGE

�Clockwise rotation is considered to be NEGATIVE and INTO THE 

PAGE.



Static Equilibrium
According to Newton's first 

law, if an object is at rest it 

can be said to be in a state 
of static equilibrium. In other 

words, all of the FORCES 

cancel out to that the net 

force is equal to zero. Since 

torque is the angular 
analog to force we can 

say that if a system is at 

rest, all of the TORQUES 

cancel out.

r1 r2



Static Equilibrium Example

21

21

190sin,90,sin

grmgrm

rFrF

Fr

mouseeleph

mouseeleph

cwccw

=

=

=

===

∑ ∑ττ

θθτ

r1 r2

Suppose a 4600 kg elephant were 

placed on a see-saw with a 0.025 kg 

mouse. The elephant is placed 10 

meters from the point of rotation. How 

far from the point of rotation would the 

mouse need to be placed so that the 

system exists in a state of static 

equilibrium?
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1.84 x 106 m  or 1433 miles

(certainly not practical)



What did we forget to include in the last 

example? r1 r2

THE PLANK ITSELF!

If the lever itself has mass, 

you must include it in the 

calculations. It’s force( or 

weight in this case) will act at 

the rods CENTER OF MASS. 

If the plank was uniform and 

its COM was in the middle 

the equation would have 

looked like this.  

COMplank
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Not in static equilibrium?
If an object is NOT at equilibrium, then it must be 

accelerating. It is then looked at according to 
Newton’s Second Law.

Under translational conditions a NET FORCE 

produces an ACCELERATION.

Under Angular Conditions a NET TORQUE 

produces an ANGULAR ACCELERATION.

This NEW equation for TORQUE is the 

Rotational Analog to Newton's second Law.



Example
Consider a beam of Length L, mass m, and moment of inertia 

(COM) of 1/2mL2. It is pinned to a hinge on one end.

Determine the beam's angular acceleration.

Let’s first look at the beam’s F.B.D.

There are always vertical and horizontal 

forces on the pinned end against the 

hinge holding it to the wall. However, 

those forces ACT at the point of 

rotation. 
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Example

mg

Consider a beam of Length L, mass m, and moment of inertia (COM) of 

1/12mL2. It is pinned to a hinge on one end.

Determine the beam's angular acceleration.
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In this case, it was the vertical component of the weight that was 

perpendicular to the lever arm. Also, we had to use the parallel axis 
theorem to determine the moment of inertia about the END of the 
beam.
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Example Consider a hanging mass wrapped around a

MASSIVE pulley. The hanging mass has

weight, mg, the mass of the pulley is mp, the

radius is R, and the moment of inertia about its

center of mass Icm = 1/2mpR
2. (assuming the

pulley is a uniform disk). Determine the

acceleration of the hanging mass.

Let’s first look at the F.B.D.s for both 

the pulley and hanging mass
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Example cont’
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Example
A trickier problem: Calculate the acceleration of the

system:

Assume m1 is more massive than m2

What you have to understand is that when the 

PULLEY is massive you cannot assume the tension 

is the same on both sides.

Let’s first look at the F.B.D.s for both 

the pulley and the hanging masses.
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Example cont’
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Example
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Example Consider a ball rolling down a ramp. Calculate the 

translational acceleration of the ball's center of 

mass as the ball rolls down. Find the angular 

acceleration as well. Assume the ball is a solid 

sphere.

Let’s first look at the ball’s F.B.D
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The key word here is “rolling”. Up to 

this point we have always dealt with 

objects sliding down inclined planes. 

The term “rolling” tells us that 

FRICTION is causing the object to 

rotate (by applying a torque to the 

ball).



Example cont’
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Angular Momentum
Translational momentum is defined as inertia in 

motion. It too has an angular counterpart.

As you can see we substituted our new angular

variables for the translational ones.

We can look at this another way using 

the IMPULSE-MOMENTUM theorem

Setting Impulse equal to the change in 

momentum
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Or we could look at this from the point of view of torque and its direct 

relationship with angular momentum.



2 ways to find the angular momentum

Rotational relationship
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Translational relationship

mass

In the case for a mass moving in a circle.

In both cases the angular 

momentum is the same.



Angular Momentum is also conserved
Here is what this says: IF THE NET TORQUE is equal 

to ZERO the CHANGE ANGULAR MOMENTUM is 

equal to ZERO and thus the ANGULAR MOMENTUM 
is CONSERVED.

Here is a common example. An ice skater begins a 

spin with his arms out. His angular velocity at the 
beginning of the spin is 2.0 rad/s and his moment 
of inertia is 6 kgm2. As the spin proceeds he pulls 
in his arms decreasing his moment of inertia to 4.5 

kgm2. What is the angular velocity after pulling in 
his arms?
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2.67 rad/s



Don’t forget

Just like TORQUE, angular 

momentum is a cross 

product. That means the 
direction is always on a 

separate axis from the 2 

variables you are crossing. 

In other words, if you cross 

2 variables in the X/Y plane 
the cross product’s direction 

will be on the “Z” axis



Some interesting Calculus relationships
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More interesting calculus relationships
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