Mechanics Exam: Topics on the exam Units 1-5: Kinematics, Newton's Laws of Motion, Work, Power, Energy, Systems of particles & Linear Momentum, Rotation || Topics NOT on the exam Units 6 & 7: Oscillation and Gravitation

E & M Exam: Topics on the exam Units 1-3: Electrostatics, Conductors, Capacitors, Dielectrics, Electric Circuits || Topics NOT on the exam Units 4-5: Magnetic Fields, Electromagnetism

	M1	M2	M3	E1	E2	E3
20 19 -1-	Experiment $v = A(1 - e^{Bt})$ Find $y(t)$, $F(t)$	Note: Figure not drown to scale. Reversed Ballistic pendulum. Verical circle energy, force; projectie motion	Driven platform rotation, inelastic rotational collision, experiment, error being off-axis	Py y=c Linear Gauss's Law, integrating Coulomb's Law	Two Battery Circuit; write Kirchoff's Laws, RC & L/R final state	Axis of Solenoid P Solenoid P Solenoid Alway View Solenoid, Alway View Law, Experiment to find resistance, Faraday's Law
20 19 -2-	Atwood on incline, NSL, energy, friction	Vertical rocket launch with <i>a=K-Lt</i> ² . Impulse, energy, <i>v-t</i> graph of whole flight	Experiment to find b in I=bMR². Not lose contact at top of loop. Graph h vs. b	RC circuit; find steady state, write diff.eq., sketch current in R after switch is opened	Spherical Gauss's Law, non-uniform distribution; E, V, speed of proton	B force on moving charge, mass/charge ratio experiment
20 18	Exper., Kinematics, exp. error	t ₀ = 3.00 m/s Force t = 130 N/m V = 0	$\lambda = \left(\frac{2M}{\ell^2}\right)x$ $x = 0$ $x = L$ Integrate to find I , rotational impulse, F.B.D. on ramp, energy	Platic Sphere Shell Sphere Shell Spherical Gauss's Law. E and V	Experiment to find K, RC Circuit, exp. error	Ampere's Lew, add B vectors, B effect on top wire, Faraday's Law,
20 17	Atwood machine (reg. and modified) experiment, graphing	Energy conversions, $F=\beta N^2$ diff. eq., graphs	Rotational energy, projectile, c.f. cyliner and sphere	Gauss's Law on charged slab, add plates top & bottom, potential	RC circuit, graphs, half-life, energy	Ampere's Lw experiment, experimental errors and difficulties
20 16	Dynamics, friction, experiment, graphing,	Momentum, nonlinear spring, energy, net force	Rotation, circular motion, spring, Angular momentum, vector acceleration	Electric potential, Electric field, and effects	V=IR, resistivity, non-ideal meters	\times
20 15	Block up & down ramp, kinematics, graphs, friction	Projectile, momentum, energy, pendulum motion	Calculus derive I of rod, energy, graph, experiment	Parallel plate capacitor, Gauss' Law, non-uniform dielectric, potential, energy	Internal resistance, graphing, finding emf and r, maximum I, voltmeters	Magnetic hux, induced emrand I, energy, force and torque

	M1	M2	M3	E1	E2	E3
20 14	Non-linear spring energy, graphing, experiment	Energy, Circular motion F, a, v	Projectile, momentum, kinematics, angular momentum	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Motional EMF, current, diff.eq. for speed as a function of time	Charge density of atom, Gauss' Law, graph of E versus r
20 13	Kinematics graphing Spring energy, SHM, experiment	$ \begin{array}{c c} & \xrightarrow{b} \\ \hline & m & \xrightarrow{F_A} \\ \hline & Drag force F_D=kv \end{array} $	Rotational dynamics, energy	Gauss's Law Cylinder E, V	$ \begin{array}{c c} C \\ R \\ R \\ S \\ B \\ R \\ R \\ C \\ C$	## 1.5c +466
20 12	SHM kinematics, w/o and w friction	Design experiment of potential to kinetic energy. Experimental discrepancies.	Stating Only Shaling and Rousing Rousing with the Community of the Communi	Field, Potential, charge	Experiment: resistivity, RC circuit	Motional EMF
20 11	Launching Projectile Impulse-momentum	Freefall ride.	Torsional pendulum, experiment	Gauss' Law – spheres and shells	20 ν 25 ωΓ 3.0 II RC – LC circuits	Ampere's Law
20 10	Coffee filter lab	Rotation	Mechanics	Field and Potential	AOQ 10 pF SopF 20 Q RC circuit	Lightbulb a direction Lightbulb a direction Lightbulb a direction Lightbulb a direction Lightbulb a direction EM induction
20 09	Potential energy function and graphs	Physical pendulum, experiment	Modified Atwood's machine	$v_{(r)} = \frac{Q_0}{4\pi\epsilon_0 R} \left[-2 + 3 \left(\frac{r}{R} \right)^2 \right] \text{ for } r < R$ $v_{(r)} = \frac{Q_0}{4\pi\epsilon_0 r} \text{ for } r > R$ Continuous charge distribution	Circuit, Hall effect	Faraday's Law -
20 08	Inclined plane F=kv	Finges 2 2.0 kg 10.50 kg Torque - strut	Hooke's Law – Force and Energy, experiment	Gauss' Law	$\varepsilon_{=1500} = \underbrace{\sum_{\substack{k_1 = 300\Omega \\ k_2 = 300\Omega \\ k_3 = 100\Omega}}_{k_1} \underbrace{\xi_{k_1} = 130\Omega}_{k_3}$ Circuits – RC, LC, RR	Biot-Savart Law
20 07	Inear dynamics	Orbital mechanics Mars Surveyor	Mechanical Energy Conservation; spring, experiment	$\varepsilon = \frac{\text{Switch}}{\text{RC circuit}} C = 4000 \mu\text{F}$	Gauss' Law	**************************************
20 06* BB	Block, Mg = 0.50 kg Slab, Mg = 1.0 kg Linear dynamics	Non-linear spring, data analysis, GRAPH, energy conservation	Rot'l kinematics, projectile	Electrostatics – field and potential	e c c c c s,	Spring, B force on a current loop, induction

	M1	M2	M3	E1	E2	E3
20 05* BB	Motion w/ air resistance, GRAPH	Moons of Saturn: Data analysis, GRAPH	Rotational dynamics	Field diagram & potential	$ \begin{array}{c c} \hline \varepsilon & & & & \\ \hline \varepsilon & & & & \\ \hline LR circuit \end{array} $	Hall probe, solenoid, experiment, GRAPH
20 04* BB	Energy, inelastic collision, projectile	Rot'l dynamics, experiment	Physical pendulum	E Field & potential – Gauss' Law	RC Circuit	Flux, induction
20 03* BB	Work, energy & power	Spring, SHM, inelastic collision	Catapult, projectiles, experiment	; E Field – Gauss' Law	RC circuit	Induction
20 02* BB	$v = \frac{8}{1 + 5t}$ Collision and calculus kinematics	Energy: grav., rot., spring	$U(x) = \frac{4.0}{2.0 + x},$ Graphical U vs x, F=-dU/dx, exper.	E field, potential, F, energy	RC circuit, experiment	Flux and Induction, energy dissipated
20 01	mass and force sensor - imp- momentum, acc	Gravity, satellite motion.	angular motion, rot inertia	fields, potential, thunder	res of capacitors, dielect.	mag field of wire, forces.
20 00	Lab, pendulum, find g, elevator, experiment.	Ball falling thru resistive medium, F = -bv², energy	F=ma, angular motion	LR - RC circuits	fields and potential	Gauss and Ampere
19 99	Lab - ballistic pendulum, experiment	Hole through earth - SHM	Rotational Eq, Energy	Spherical Capacitor	Induction	E field, potential, static ch
19 98	lab data for air track collision.	inelastic coll, linear and ang mom. C of M motion.	two body motion, friction, force diagrams	Coulomb, F=qE, forces.	Circuit, RC, LR	Motional Emf, bar sliding down incline, term vel.
19 97	non-linear spring, lab question	inelastic momentum - calculus treatment	sphere on incline, acceleration, energy	graphical analysis of circuit - experimental battery	electric fields and forces – flux	B field of long wire, flux, motional emf.
19 96	Lab question – vibrations - Gravitation	forklift - eqns of motion, friction	Mom of inertia of rod, hoop. Rota	Concentric spheres - E field, V	RC Circuit	Faraday's law, Solenoid

	M1	M2	M3	E1	E2	E3
19 95	Impulse, momentum, projectile.	Potential energy function	grav, orbits, ang momentum, moment of Inertia.	Nonconductor field and potential	Capacitors, RC Circuit	Air track - Motional Emf, Lenz' Law
19 94	Cons of En and mom, spring	rolling w/o slipping, cons of energy on an incline.	orbits, cons of energy and ang mom.	E field, potential - ring and part of ring.	Motional Emf, energy conservation	Coaxial cable, Amperes law for B field.
19 93	En in a spring, friction, cons of en.	resistive medium, equations of motion.	torque, angular acceleration.	non conductor - Gauss' law. conductor, Ampere's law	Faraday's law, magnetic forces, induced I.	Mass Spectrometer.
19 92	Energy, cons of mom, inelastic	Rotation, I, torque, energy	Orbits, cons of En and ang mom.	Charge dist in a sphere, find total charge, field with Gauss' Law.	RC circuit	B field of wire, flux through loop, Faraday's law
19 91	Ballistic pend - cons of En and Mom - Vertical Circle	Rotation, torque	Spring, cons of mom and en, elastic collision	field and potential of point charges	LR circuit	Faraday's law, resisting medium
19 90	F = -kv, eqns of motion.	motion on incline, box and sphere. energy.	vertical spring, oscillation, energy	conc spheres, Gauss' Law, fields	Mass spectrometer	Falling through B field, induction, term velocity.
19 89	Energy cons, critical speed, vert circle	several bodies, heavy pulley, acc	vert spring, SHM.	Two charges, E and potential	Motional Emf, induced current	RC circuit.
19 88	car on banked curve	springs in parallel, work = area in F vs d	Angular motion, torque, acceleration	conc shells, Gauss' law, potential, Capacit.	Circuit, with C. Energy dissipated.	Solenoid, Amp law, flux induced Emf.
19 87	Centrip forces on a swing	Potential Energy function. F = -dU/dr	Cons of linear and ang momentum	Charge dist thru a sphere, Gauss' law, potential	Flux, Faraday's law, induced I, energy dissipated	LR Circuit.
19 86	platform acc upward. Power	sphere on incline, I, acceleration.	- F = -kx³. Non linear spring, SHM	Equipotentials and fields, work	Circuit, add C, add L.	Long wire B, flux thru nearby loop, induced I

	M1	M2	M3	E1	E2	E3
19 85	Projectile, cons of momentum	spring on an incline, energy cons	Atwoods mach, eqns of motion.	coax cylinders, Gauss' law, cylindrical capacitor	Circuits, RC	Faraday's law, induced Emf, E.
19 84	Centripetal motion, force diagram	Orbits, mom cons, energy.	falling through a resisting medium, F = -kmv	E and B forces on moving charge.	Gauss' Law betw parallel plates.	motional Emf bar decelerates. Power
19 83	proj motion in a plane	rotation, acceleration	skier on snowball	conc shells, Gauss' Law, potential	RC circuit	Superimposed B fields from wires.
19 82	spring on incline, En cons	one dimensional motion of car with friction, slowing.	torque, I, rotation equations	point charge, field, potential, flux	B for long wire, flux thru loop nearby	R-L circuit
19 81	Incline, trans eq, friction	Energy on a swing	Cons of linear and ang momentum.	Gauss' Law, spherical capac., dielectrics	Elec and B field of a ring of charge	Faradays Law, induced Emf, I, power
19 80	spring, SHM	Momentum & En Conservation	Rotation w/o slipping, eqns of motion	E and V for thin, bent rod.	Gauss' Law E between plates, Capacitance	Faraday's Law, induced Emf and E
19 79	Projectile, en cons, mom cons.	Ferry, cons of momentum, impulse	torque, ang mom, SHM w spring during rotation	conc shells, Gauss' law, E vs r, V vs r	non-cond slab, E field, cond slab, B field.	Equinat l l(expa) time in the interval line in the
19 78	circular, work	linear and ang mom	torque, ang mom, SHM w spring	E,B forces on elect, V and vector v	Faraday's, Lenz's Law, energy	Gauss E&V, C, U _c ,
19 77	F = -kv, work	Rotation, "walk the dog" yo-yo trick	Binary stars M, 2M	E and V for on axis of ring	Gauss's law on resistor	B force, torque
19 76	circ motion, , friction, tangential a, kinematics	rotation,	energy, momentum	Gauss E and V	minney minney minney x minney x x x x x x x x x x x x x	Mass spectrometer

	M1	M2	M3	E1	E2	E3
19 75	falling through a resisting medium F = -kv Graph drawing	Cons of L	Calculus, force, work done lifting chain		ε τ τ c, τ c, Equilibrium Capac.	Induction in square due to dl/dt in wire
19 74	circ motion, energy, force, tangential a	rotation, change μ	energy, momentum, SHM	Gauss E and V	Parallel plate capacitor, E, Q, C, copper insert	Biot-Savart, Induced emf
19 73	Two block system w/ friction	Work-energy theorem	Angular mechanics	Parallel plate capacitor	Magnetic effects	Motional emf

The following are from the "Practice Exams"—the questions themselves are only available on the Audit site.*

They should not be shared electronically (whether email, direct file transfer, or through a website), even to other physics teachers, and Even in printed form, should not leave your classroom.

* = The 2012 exam has been released from these restrictions, not that it matters for the FR.

	M1	M2	M3	E1	E2	E3
20 18	Impulse-momentum graphs, integration, SPE, experiment, linearize graph	U to v, U to a, U to F(x)	Cylinder Mass = M Radius = R Cylinder on ramp; find $L(h)$, Yo-Yo on ramp: find a , F_f , KE	$R_{i} = 2\Omega$ $R_{i} = \begin{cases} R_{i} = \\ 6\Omega \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ 12\Omega \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ 12\Omega \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ 12\Omega \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$	Coaxial cable, Ampere's Law, Experiment B vs &, error & intercept	$\begin{tabular}{ c c c c c }\hline Top Capacitor Plate & +\sigma \\\hline \hline & & & & & & & \\\hline & & & & & & & \\\hline & & & &$
20 17	Spring equil., energy, inelastic collision, period	SHM equations, graphs, K and U, total energy, two springs, period, added mass	Loop, rolls w/o slipping, FBD, energy, circle, min h, sphere vs loop, projectile	$V(x) = \alpha x^2 + \beta x - \gamma$ Find work on e , derive $E(x)$, sketch a(x), $KE(x)$; add an E(x) then determine ΔV	Design and draw RC circuit with switch, solve with numerical values: q , V , dissipated energy, write diff.eq., and solve for τ .	Faraday's Law w changing B, moving square, find F needed to keep v constant
20 16	FBDs w/frict, find m_H for const. v , find \vec{a} if string is cut, find d_{max}	Spring E , K , U_g , graph of $v(t)$, inelastic collision, impulse	Use calc. to show I , diff.eq. for $\theta(t)$, use diff.eq. to find T , exper. w graph of $T(L)$ to find g	$\lambda = \alpha x$, find Q , E_A , F on proton, graph $a(x)$, $v(x)$, show $E_{\infty} \approx$ as for point charge	Test circuit: find R_0 by graph, RC sketch $I(t)$, given τ , find U , insert dielectric, compare $Q(t)$ w. old	$\varepsilon = 20 \text{V} \qquad \qquad S_1 \\ & S_2 \\ & S_3 \\ & S_1 \\ & S_1 \\ & S_1 \\ & S_2 \\ & S_1 \\ & S_$
20 15	Sports car exper test: graph $v(t)$, find dist. from graph, given $v(t)$ =3 t^2 +7 t , find $a(t)$, $x(t)$, find dist. from t =2 to 8s	Roller coaster, energy, FBD, find where leaves loop, replace block by sphere	FBD on Board, F_{post} , F_{wire} , find I of board-crate system, rot. dynamics, a of left end	sphere between plates: FBD, find Q, experimental design, analysis, difficulties	Find Q_0 on C_1 , diff. eq. for $q_2(t)$, calculate Q 's at equilibrium, energy dissipated, $t_{1/2}$ for larger R	Find dE _y then find total E; Biot-Savart to find B
20 14	Exper. design to find μ_{\square} , work done by friction on incline, effect of increased m	Satellite cicular orbit find v , E_{tot} , work done in boost to double R	Phys. Pendulum: Disk on pivot, I , ω_{max} , diff. eq. for $\theta(t)$, small angle approx. period, double R	RHRs, Ampere's Law, $F=ILB$, experiment I^2 vs. M_{added} to find μ_{θ}	$ \begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$	Spherical Gauss with non-uniform shell. Find Q, E, V
20 13	Fall with air resistance $\mathbf{F} = -bA\mathbf{v}$, v_T , time for v_T /, graphs	Collision; elastic?, KE>Spring U, k , what if $F=-bx^3$	Modified Atwood w/rotation, graph anal. (kin.), <i>I, L,</i> disk to hoop	L/R circuit, experiment to find <i>R</i> values, error due to <i>R</i> _{internal}	Motional emf, Power, F _B , <i>v_T</i> , write diff. eq. for <i>v</i> , add R	Gauss's Law on non- uniform slab, find △V inside
20 12	Same as Operational	Same as Operational	Same as Operational	Same as Operational	Same as Operational	Same as Operational

	M1	M2	M3	E1	E2	E3
20 08	Projectile, inelastic collision, energy, period	Exp. Anal., modified Atwood, kinematics, work two ways,	Rotation without and with slipping	Capacitor, dielectric, removing dielectric, RC derivation	Electron accelerated by V ₀ and E , kinematics, e accelerated by B	Flux, Faraday's Law, power, F _B due to x-and y- B fields