Mechanics Exam: Topics on the exam Units 1-5: Kinematics, Newton's Laws of Motion, Work, Power, Energy, Systems of particles & Linear Momentum, Rotation || Topics NOT on the exam Units 6 & 7: Oscillation and Gravitation E & M Exam: Topics on the exam Units 1-3: Electrostatics, Conductors, Capacitors, Dielectrics, Electric Circuits || Topics NOT on the exam Units 4-5: Magnetic Fields, Electromagnetism | | M1 | M2 | M3 | E1 | E2 | E3 | |-----------------|---|---|--|---|---|--| | 20
19
-1- | Experiment $v = A(1 - e^{Bt})$ Find $y(t)$, $F(t)$ | Note: Figure not drown to scale. Reversed Ballistic pendulum. Verical circle energy, force; projectie motion | Driven platform rotation, inelastic rotational collision, experiment, error being off-axis | Py y=c Linear Gauss's Law, integrating Coulomb's Law | Two Battery Circuit; write Kirchoff's Laws, RC & L/R final state | Axis of Solenoid P Solenoid P Solenoid Alway View Solenoid, Alway View Law, Experiment to find resistance, Faraday's Law | | 20
19
-2- | Atwood on incline, NSL, energy, friction | Vertical rocket launch with <i>a=K-Lt</i> ² . Impulse, energy, <i>v-t</i> graph of whole flight | Experiment to find b in I=bMR². Not lose contact at top of loop. Graph h vs. b | RC circuit; find steady state, write diff.eq., sketch current in R after switch is opened | Spherical Gauss's
Law, non-uniform
distribution; E, V,
speed of proton | B force on moving charge, mass/charge ratio experiment | | 20
18 | Exper., Kinematics, exp. error | t ₀ = 3.00 m/s Force t = 130 N/m V = 0 | $\lambda = \left(\frac{2M}{\ell^2}\right)x$ $x = 0$ $x = L$ Integrate to find I , rotational impulse, F.B.D. on ramp, energy | Platic Sphere Shell Sphere Shell Spherical Gauss's Law. E and V | Experiment to find K, RC Circuit, exp. error | Ampere's Lew, add B vectors, B effect on top wire, Faraday's Law, | | 20
17 | Atwood machine (reg. and modified) experiment, graphing | Energy conversions, $F=\beta N^2$ diff. eq., graphs | Rotational energy, projectile, c.f. cyliner and sphere | Gauss's Law on charged slab, add plates top & bottom, potential | RC circuit, graphs, half-life, energy | Ampere's Lw experiment, experimental errors and difficulties | | 20
16 | Dynamics, friction, experiment, graphing, | Momentum, nonlinear spring, energy, net force | Rotation, circular motion, spring, Angular momentum, vector acceleration | Electric potential,
Electric field, and
effects | V=IR, resistivity, non-ideal meters | \times | | 20
15 | Block up & down ramp, kinematics, graphs, friction | Projectile, momentum, energy, pendulum motion | Calculus derive I of rod, energy, graph, experiment | Parallel plate capacitor, Gauss' Law, non-uniform dielectric, potential, energy | Internal resistance, graphing, finding emf and r, maximum I, voltmeters | Magnetic hux, induced emrand I, energy, force and torque | | | M1 | M2 | M3 | E1 | E2 | E3 | |-----------------|--|---|--|---|--|--| | | | | | | | | | 20
14 | Non-linear spring energy, graphing, experiment | Energy, Circular motion F, a, v | Projectile,
momentum,
kinematics, angular
momentum | $\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $ | Motional EMF, current, diff.eq. for speed as a function of time | Charge density of atom, Gauss' Law, graph of E versus r | | 20
13 | Kinematics graphing
Spring energy, SHM,
experiment | $ \begin{array}{c c} & \xrightarrow{b} \\ \hline & m & \xrightarrow{F_A} \\ \hline & Drag force F_D=kv \end{array} $ | Rotational dynamics, energy | Gauss's Law Cylinder
E, V | $ \begin{array}{c c} C \\ R \\ R \\ S \\ B \\ R \\ R \\ C C$ | ## 1.5c +466 | | 20
12 | SHM kinematics, w/o and w friction | Design experiment of potential to kinetic energy. Experimental discrepancies. | Stating Only Shaling and Rousing Rousing with the Community of Communi | Field, Potential, charge | Experiment: resistivity, RC circuit | Motional EMF | | 20
11 | Launching Projectile Impulse-momentum | Freefall ride. | Torsional pendulum, experiment | Gauss' Law – spheres
and shells | 20 ν 25 ωΓ 3.0 II
RC – LC circuits | Ampere's Law | | 20
10 | Coffee filter lab | Rotation | Mechanics | Field and Potential | AOQ 10 pF SopF 20 Q RC circuit | Lightbulb a direction EM induction | | 20
09 | Potential energy function and graphs | Physical pendulum, experiment | Modified Atwood's machine | $v_{(r)} = \frac{Q_0}{4\pi\epsilon_0 R} \left[-2 + 3 \left(\frac{r}{R} \right)^2 \right] \text{ for } r < R$ $v_{(r)} = \frac{Q_0}{4\pi\epsilon_0 r} \text{ for } r > R$ Continuous charge distribution | Circuit, Hall effect | Faraday's Law - | | 20
08 | Inclined plane
F=kv | Finges 2 2.0 kg 10.50 kg Torque - strut | Hooke's Law – Force
and Energy,
experiment | Gauss' Law | $\varepsilon_{=1500} = \underbrace{\sum_{\substack{k_1 = 300\Omega \\ k_2 = 300\Omega \\ k_3 = 100\Omega}}_{k_1} \underbrace{\xi_{k_1} = 130\Omega}_{k_3}$ Circuits – RC, LC, RR | Biot-Savart Law | | 20
07 | Inear dynamics | Orbital mechanics
Mars Surveyor | Mechanical Energy
Conservation; spring,
experiment | $\varepsilon = \frac{\text{Switch}}{\text{RC circuit}} C = 4000 \mu\text{F}$ | Gauss' Law | ************************************** | | 20
06*
BB | Block, Mg = 0.50 kg Slab, Mg = 1.0 kg Linear dynamics | Non-linear spring,
data analysis,
GRAPH, energy
conservation | Rot'l kinematics, projectile | Electrostatics – field and potential | e c c c c s, | Spring, B force on a current loop, induction | | | M1 | M2 | M3 | E1 | E2 | E3 | |-----------------|--|--|--|--|--|---| | 20
05*
BB | Motion w/ air
resistance, GRAPH | Moons of Saturn:
Data analysis,
GRAPH | Rotational dynamics | Field diagram & potential | $ \begin{array}{c c} \hline \varepsilon & & & & \\ \hline \varepsilon & & & & \\ \hline LR circuit \end{array} $ | Hall probe, solenoid, experiment, GRAPH | | 20
04*
BB | Energy, inelastic collision, projectile | Rot'l dynamics, experiment | Physical pendulum | E Field & potential –
Gauss' Law | RC Circuit | Flux, induction | | 20
03*
BB | Work, energy & power | Spring, SHM, inelastic collision | Catapult, projectiles, experiment | ;
E Field – Gauss' Law | RC circuit | Induction | | 20
02*
BB | $v = \frac{8}{1 + 5t}$ Collision and calculus kinematics | Energy: grav., rot., spring | $U(x) = \frac{4.0}{2.0 + x},$ Graphical U vs x, F=-dU/dx, exper. | E field, potential, F, energy | RC circuit, experiment | Flux and Induction, energy dissipated | | 20
01 | mass and force
sensor - imp-
momentum, acc | Gravity, satellite motion. | angular motion, rot inertia | fields, potential, thunder | res of capacitors, dielect. | mag field of wire, forces. | | 20
00 | Lab, pendulum, find g, elevator, experiment. | Ball falling thru
resistive medium,
F = -bv², energy | F=ma, angular motion | LR - RC circuits | fields and potential | Gauss and Ampere | | 19
99 | Lab - ballistic
pendulum,
experiment | Hole through earth -
SHM | Rotational Eq,
Energy | Spherical Capacitor | Induction | E field, potential, static ch | | 19
98 | lab data for air track collision. | inelastic coll, linear and ang mom. C of M motion. | two body motion,
friction, force
diagrams | Coulomb, F=qE, forces. | Circuit, RC, LR | Motional Emf, bar
sliding down incline,
term vel. | | 19
97 | non-linear spring, lab
question | inelastic momentum -
calculus treatment | sphere on incline, acceleration, energy | graphical analysis of
circuit - experimental
battery | electric fields and forces – flux | B field of long wire, flux, motional emf. | | 19
96 | Lab question –
vibrations -
Gravitation | forklift - eqns of motion, friction | Mom of inertia of rod, hoop. Rota | Concentric spheres -
E field, V | RC Circuit | Faraday's law,
Solenoid | | | M1 | M2 | M3 | E1 | E2 | E3 | |----------|---|---|--|---|---|---| | 19
95 | Impulse, momentum, projectile. | Potential energy function | grav, orbits, ang
momentum, moment
of Inertia. | Nonconductor field and potential | Capacitors, RC
Circuit | Air track - Motional
Emf, Lenz' Law | | 19
94 | Cons of En and mom, spring | rolling w/o slipping, cons of energy on an incline. | orbits, cons of energy and ang mom. | E field, potential - ring and part of ring. | Motional Emf, energy conservation | Coaxial cable,
Amperes law for B
field. | | 19
93 | En in a spring, friction, cons of en. | resistive medium, equations of motion. | torque, angular acceleration. | non conductor -
Gauss' law.
conductor, Ampere's
law | Faraday's law,
magnetic forces,
induced I. | Mass Spectrometer. | | 19
92 | Energy, cons of mom, inelastic | Rotation, I, torque, energy | Orbits, cons of En and ang mom. | Charge dist in a
sphere, find total
charge, field with
Gauss' Law. | RC circuit | B field of wire, flux
through loop,
Faraday's law | | 19
91 | Ballistic pend - cons
of En and Mom -
Vertical Circle | Rotation, torque | Spring, cons of mom and en, elastic collision | field and potential of point charges | LR circuit | Faraday's law, resisting medium | | 19
90 | F = -kv, eqns of motion. | motion on incline, box and sphere. energy. | vertical spring, oscillation, energy | conc spheres, Gauss'
Law, fields | Mass spectrometer | Falling through B field, induction, term velocity. | | 19
89 | Energy cons, critical speed, vert circle | several bodies,
heavy pulley, acc | vert spring, SHM. | Two charges, E and potential | Motional Emf, induced current | RC circuit. | | 19
88 | car on banked curve | springs in parallel,
work = area in F vs d | Angular motion, torque, acceleration | conc shells, Gauss' law, potential, Capacit. | Circuit, with C.
Energy dissipated. | Solenoid, Amp law, flux induced Emf. | | 19
87 | Centrip forces on a swing | Potential Energy function. F = -dU/dr | Cons of linear and ang momentum | Charge dist thru a
sphere, Gauss' law,
potential | Flux, Faraday's law,
induced I, energy
dissipated | LR Circuit. | | 19
86 | platform acc upward.
Power | sphere on incline, I, acceleration. | - F = -kx³. Non linear spring, SHM | Equipotentials and fields, work | Circuit, add C, add L. | Long wire B, flux thru nearby loop, induced I | | | M1 | M2 | M3 | E1 | E2 | E3 | |----------|---|---|--|---|--|--| | 19
85 | Projectile, cons of momentum | spring on an incline,
energy cons | Atwoods mach, eqns of motion. | coax cylinders, Gauss'
law, cylindrical
capacitor | Circuits, RC | Faraday's law, induced Emf, E. | | 19
84 | Centripetal motion, force diagram | Orbits, mom cons, energy. | falling through a
resisting medium,
F = -kmv | E and B forces on moving charge. | Gauss' Law betw parallel plates. | motional Emf bar decelerates. Power | | 19
83 | proj motion in a plane | rotation, acceleration | skier on snowball | conc shells, Gauss'
Law, potential | RC circuit | Superimposed B fields from wires. | | 19
82 | spring on incline, En cons | one dimensional
motion of car with
friction, slowing. | torque, I, rotation
equations | point charge, field,
potential, flux | B for long wire, flux thru loop nearby | R-L circuit | | 19
81 | Incline, trans eq, friction | Energy on a swing | Cons of linear and ang momentum. | Gauss' Law, spherical capac., dielectrics | Elec and B field of a ring of charge | Faradays Law, induced Emf, I, power | | 19
80 | spring, SHM | Momentum & En
Conservation | Rotation w/o
slipping, eqns of
motion | E and V for thin, bent rod. | Gauss' Law E
between plates,
Capacitance | Faraday's Law, induced Emf and E | | 19
79 | Projectile, en cons, mom cons. | Ferry, cons of momentum, impulse | torque, ang
mom, SHM w
spring during
rotation | conc shells, Gauss'
law, E vs r, V vs r | non-cond slab, E
field, cond slab, B
field. | Equinat l l(expa) time in the interval line | | 19
78 | circular, work | linear and ang mom | torque, ang mom,
SHM w spring | E,B forces on elect, V and vector v | Faraday's, Lenz's
Law, energy | Gauss E&V,
C, U _c , | | 19
77 | F = -kv, work | Rotation, "walk the dog" yo-yo trick | Binary stars M, 2M | E and V for on axis of ring | Gauss's law on resistor | B force, torque | | 19
76 | circ motion, , friction, tangential a, kinematics | rotation, | energy, momentum | Gauss E and V | minney minney minney x minney x x x x x x x x x x x x x | Mass spectrometer | | | M1 | M2 | M3 | E1 | E2 | E3 | |----------|---|---------------------|--|--------------------------|--|--| | 19
75 | falling through a
resisting medium
F = -kv
Graph drawing | Cons of L | Calculus, force, work done lifting chain | | ε τ τ c, τ c, Equilibrium Capac. | Induction in square due to dl/dt in wire | | 19
74 | circ motion, energy, force, tangential a | rotation, change μ | energy,
momentum,
SHM | Gauss E and V | Parallel plate capacitor, E, Q, C, copper insert | Biot-Savart, Induced emf | | 19
73 | Two block system w/ friction | Work-energy theorem | Angular
mechanics | Parallel plate capacitor | Magnetic effects | Motional emf | The following are from the "Practice Exams"—the questions themselves are only available on the Audit site.* They should not be shared electronically (whether email, direct file transfer, or through a website), even to other physics teachers, and Even in printed form, should not leave your classroom. * = The 2012 exam has been released from these restrictions, not that it matters for the FR. | | M1 | M2 | M3 | E1 | E2 | E3 | |----------|---|--|--|---|--|--| | 20
18 | Impulse-momentum graphs, integration, SPE, experiment, linearize graph | U to v, U to a, U to F(x) | Cylinder Mass = M Radius = R Cylinder on ramp; find $L(h)$, Yo-Yo on ramp: find a , F_f , KE | $R_{i} = 2\Omega$ $R_{i} = \begin{cases} R_{i} = \\ 6\Omega \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ 12\Omega \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ 12\Omega \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ 12\Omega \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ $R_{i} = \begin{cases} R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \\ R_{i} = \end{cases}$ | Coaxial cable, Ampere's Law, Experiment B vs &, error & intercept | $\begin{tabular}{ c c c c c }\hline Top Capacitor Plate & +\sigma \\\hline \hline & & & & & & & \\\hline & & & & & & & \\\hline & & & &$ | | 20
17 | Spring equil., energy, inelastic collision, period | SHM equations, graphs, K and U, total energy, two springs, period, added mass | Loop, rolls w/o slipping, FBD, energy, circle, min h, sphere vs loop, projectile | $V(x) = \alpha x^2 + \beta x - \gamma$
Find work on e ,
derive $E(x)$, sketch
a(x), $KE(x)$; add an
E(x) then determine
ΔV | Design and draw RC circuit with switch, solve with numerical values: q , V , dissipated energy, write diff.eq., and solve for τ . | Faraday's Law w changing B, moving square, find F needed to keep v constant | | 20
16 | FBDs w/frict, find m_H for const. v , find \vec{a} if string is cut, find d_{max} | Spring E , K , U_g , graph of $v(t)$, inelastic collision, impulse | Use calc. to show I , diff.eq. for $\theta(t)$, use diff.eq. to find T , exper. w graph of $T(L)$ to find g | $\lambda = \alpha x$, find Q , E_A , F on proton, graph $a(x)$, $v(x)$, show $E_{\infty} \approx$ as for point charge | Test circuit: find R_0 by graph, RC sketch $I(t)$, given τ , find U , insert dielectric, compare $Q(t)$ w. old | $\varepsilon = 20 \text{V} \qquad \qquad S_1 \\ & S_2 \\ & S_3 \\ & S_1 \\ & S_1 \\ & S_1 \\ & S_2 \\ & S_1 S_$ | | 20
15 | Sports car exper test: graph $v(t)$, find dist. from graph, given $v(t)$ =3 t^2 +7 t , find $a(t)$, $x(t)$, find dist. from t =2 to 8s | Roller coaster,
energy, FBD, find
where leaves loop,
replace block by
sphere | FBD on Board, F_{post} , F_{wire} , find I of board-crate system, rot. dynamics, a of left end | sphere between plates: FBD, find Q, experimental design, analysis, difficulties | Find Q_0 on C_1 , diff. eq. for $q_2(t)$, calculate Q 's at equilibrium, energy dissipated, $t_{1/2}$ for larger R | Find dE _y then find total E; Biot-Savart to find B | | 20
14 | Exper. design to find μ_{\square} , work done by friction on incline, effect of increased m | Satellite cicular orbit find v , E_{tot} , work done in boost to double R | Phys. Pendulum: Disk on pivot, I , ω_{max} , diff. eq. for $\theta(t)$, small angle approx. period, double R | RHRs, Ampere's Law, $F=ILB$, experiment I^2 vs. M_{added} to find μ_{θ} | $ \begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$ | Spherical Gauss with non-uniform shell. Find Q, E, V | | 20
13 | Fall with air resistance $\mathbf{F} = -bA\mathbf{v}$, v_T , time for v_T /, graphs | Collision; elastic?,
KE>Spring U, k ,
what if $F=-bx^3$ | Modified Atwood w/rotation, graph anal. (kin.), <i>I, L,</i> disk to hoop | L/R circuit, experiment to find <i>R</i> values, error due to <i>R</i> _{internal} | Motional emf, Power, F _B , <i>v_T</i> , write diff. eq. for <i>v</i> , add R | Gauss's Law on non-
uniform slab, find △V
inside | | 20
12 | Same as Operational | | | M1 | M2 | M3 | E1 | E2 | E3 | |----------|---|---|------------------------------------|---|---|--| | 20
08 | Projectile, inelastic collision, energy, period | Exp. Anal., modified Atwood, kinematics, work two ways, | Rotation without and with slipping | Capacitor, dielectric, removing dielectric, RC derivation | Electron accelerated by V ₀ and E , kinematics, e accelerated by B | Flux, Faraday's Law, power, F _B due to x-and y- B fields |