AP ${ }^{\circledR}$ Physics C: Mechanics 2012 Free-Response Questions

Abstract

About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of more than 5,900 of the world's leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success - including the SAT ${ }^{\circ}$ and the Advanced Placement Program. The organization also serves the education community through research and advocacy on behalf of students, educators, and schools.

© 2012 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service and inspiring minds are trademarks owned by the College Board. All other products and services may be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.org. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.org/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

TABLE OF INFORMATION DEVELOPED FOR 2012

CONSTANTS AND CONVERSION FACTORS

CONSTANTS AND CONVERSION FACTORS							
Proton mass, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$ Neutron mass, $m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$ Electron mass, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$ Avogadro's number, $N_{0}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$ Universal gas constant, $\quad R=8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ Boltzmann's constant, $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$			Electron charge magnitude,$\quad e=1.60 \times 10^{-19} \mathrm{C}$ 1 electron volt, $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$ Speed of light, $\quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\begin{array}{r}\text { Universal gravitational } \\ \text { constant, }\end{array} \quad G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$ Acceleration due to gravity at Earth's surface, $\quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$				
1 unified atomic mass unit, 1 u $=1.66 \times 10^{-27} \mathrm{~kg}=931 \mathrm{MeV} / \mathrm{c}^{2}$ Planck's constant, h $=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$ $h c$ $=1.99 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~m}=1.24 \times 10^{3} \mathrm{eV} \cdot \mathrm{nm}$ Vacuum permittivity, ϵ_{0} $=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$ Coulomb's law constant, $k=1 / 4 \pi \epsilon_{0}$ $=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$ Vacuum permeability, μ_{0} $=4 \pi \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A}$ Magnetic constant, $k^{\prime}=\mu_{0} / 4 \pi$ $=1 \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A}$ 1 atmosphere pressure, 1 atm $=1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.0 \times 10^{5} \mathrm{~Pa}$							
UNIT SYMBOLS	meter, m kilogram, kg second, s ampere, A kelvin, K	mole, hertz, newton, pascal, joule,	$\begin{gathered} \hline \mathrm{mol} \\ \mathrm{~Hz} \\ \mathrm{~N} \\ \mathrm{~Pa} \\ \mathrm{~J} \\ \hline \end{gathered}$	watt, coulomb, volt, ohm, henry,	W C V H	farad, tesla, degree Celsius, electron-volt	F T ${ }^{\circ} \mathrm{C}$ eV

PREFIXES		
Factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2} / 2$	4/5	$\sqrt{3} / 2$	1
$\cos \theta$	1	$\sqrt{3} / 2$	4/5	$\sqrt{2} / 2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3} / 3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.
I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
II. The direction of any electric current is the direction of flow of positive charge (conventional current).
III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.

MECHANICS

$v=v_{0}+a t$	$\begin{aligned} & a=\text { acceleration } \\ & F=\text { force } \end{aligned}$
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$	$\begin{aligned} & f=\text { frequency } \\ & h=\text { height } \end{aligned}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	$\begin{aligned} & I=\text { rotational inertia } \\ & J=\text { impulse } \end{aligned}$
$\sum \mathbf{F}=\mathbf{F}_{\text {net }}=m \mathbf{a}$	$\begin{aligned} & K=\text { kinetic energy } \\ & k=\text { spring constant } \end{aligned}$
$\mathbf{F}=\frac{d \mathbf{p}}{d t}$	$\begin{aligned} \ell & =\text { length } \\ L & =\text { angular momentum } \\ m & =\text { mass } \end{aligned}$
$\mathbf{J}=\int \mathbf{F} d t=\Delta \mathbf{p}$	$\begin{aligned} & N=\text { normal force } \\ & P=\text { power } \end{aligned}$
$\mathbf{p}=m \mathbf{v}$	$\begin{aligned} p & =\text { momentum } \\ r & =\text { radius or distance } \end{aligned}$
$F_{\text {fric }} \leq \mu N$	$\begin{aligned} \mathbf{r} & =\text { position vector } \\ T & =\text { period } \end{aligned}$
$W=\int \mathbf{F} \cdot d \mathbf{r}$	$\begin{aligned} & t=\text { time } \\ & U=\text { potential energy } \end{aligned}$
$K=\frac{1}{2} m v^{2}$	$\begin{aligned} v & =\text { velocity or speed } \\ W & =\text { work done on a system } \\ x & =\text { position } \end{aligned}$
$P=\frac{d W}{d t}$	$\begin{aligned} & \mu=\text { coefficient of friction } \\ & \theta=\text { angle } \end{aligned}$
$P=\mathbf{F} \cdot \mathbf{v}$	$\begin{aligned} & \tau=\text { torque } \\ & \omega=\text { angular speed } \end{aligned}$
$\Delta U_{g}=m g h$	$\begin{aligned} & \alpha=\text { angular acceleration } \\ & \phi=\text { phase angle } \end{aligned}$
$a_{c}=\frac{v^{2}}{r}=\omega^{2} r$	$\mathbf{F}_{s}=-k \mathbf{x}$
$\tau=\mathbf{r} \times \mathbf{F}$ $\sum \tau=\tau_{\text {net }}=I \boldsymbol{\alpha}$	$U_{S}=\frac{1}{2} k x^{2}$
$\begin{aligned} & I=\int r^{2} d m=\sum m r^{2} \\ & \mathbf{r}_{c m}=\sum m \mathbf{r} / \sum m \end{aligned}$	$\begin{aligned} & x=x_{\max } \cos (\omega t+\phi) \\ & T=\frac{2 \pi}{\omega}=\frac{1}{f} \end{aligned}$
$v=r \omega$	$T_{s}=2 \pi \sqrt{\frac{m}{k}}$

$\mathbf{L}=\mathbf{r} \times \mathbf{p}=I \boldsymbol{\omega}$
$K=\frac{1}{2} I \omega^{2}$
$\omega=\omega_{0}+\alpha t$
$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$

ELECTRICITY AND MAGNETISM

$$
\begin{aligned}
& F=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \\
& \mathbf{E}=\frac{\mathbf{F}}{q} \\
& \oint \mathbf{E} \cdot d \mathbf{A}=\frac{Q}{\epsilon_{0}} \\
& E=-\frac{d V}{d r} \\
& V=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}} \\
& U_{E}=q V=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r} \\
& C=\frac{Q}{V}
\end{aligned}
$$

$$
C=\frac{\kappa \epsilon_{0} A}{d}
$$

$$
C_{p}=\sum_{i} C_{i}
$$

$$
\frac{1}{C_{s}}=\sum_{i} \frac{1}{C_{i}}
$$

$$
I=\frac{d Q}{d t}
$$

$$
U_{c}=\frac{1}{2} Q V=\frac{1}{2} C V^{2}
$$

$$
R=\frac{\rho \ell}{A}
$$

$$
\mathbf{E}=\rho \mathbf{J}
$$

$$
I=N e v_{d} A
$$

$$
V=I R
$$

$$
R_{s}=\sum_{i} R_{i}
$$

$$
\frac{1}{R_{p}}=\sum_{i} \frac{1}{R_{i}}
$$

$$
P=I V
$$

$A=$ area
$B=$ magnetic field
$C=$ capacitance
$d=$ distance
$E=$ electric field
$\boldsymbol{\mathcal { E }}=\mathrm{emf}$
$F=$ force
$I=$ current
$J=$ current density
$L=$ inductance
$\ell=$ length
$n=$ number of loops of wire per unit length
$N=$ number of charge carriers per unit volume
$P=$ power
$Q=$ charge
$q=$ point charge
$R=$ resistance
$r=$ distance
$t=$ time
$U=$ potential or stored energy
$V=$ electric potential
$v=$ velocity or speed
$\rho=$ resistivity
$\phi_{m}=$ magnetic flux
$\kappa=$ dielectric constant
$\oint \mathbf{B} \cdot d \boldsymbol{\ell}=\mu_{0} I$
$d \mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \ell \times \mathbf{r}}{r^{3}}$
$\mathbf{F}=\int I d \ell \times \mathbf{B}$
$B_{s}=\mu_{0} n I$
$\phi_{m}=\int \mathbf{B} \cdot d \mathbf{A}$
$\boldsymbol{\varepsilon}=\oint \mathbf{E} \cdot d \boldsymbol{\ell}=-\frac{d \phi_{m}}{d t}$
$\varepsilon=-L \frac{d I}{d t}$
$U_{L}=\frac{1}{2} L I^{2}$

$$
\mathbf{F}_{M}=q \mathbf{v} \times \mathbf{B}
$$

2012 AP ${ }^{\circledR}$ PHYSICS C: MECHANICS FREE-RESPONSE OUESTIONS

PHYSICS C: MECHANICS
SECTION II
Time- $\mathbf{4 5}$ minutes

3 Questions

Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in this booklet in the spaces provided after each part.

Mech. 1.
Experiment 1. A block of mass 0.30 kg is placed on a frictionless table and is attached to one end of a horizontal spring of spring constant k, as shown above. The other end of the spring is attached to a fixed wall. The block is set into oscillatory motion by stretching the spring and releasing the block from rest at time $t=0$. A motion detector is used to record the position of the block as it oscillates. The resulting graph of velocity v versus time t is shown below. The positive direction for all quantities is to the right.

(a) Determine the equation for $v(t)$, including numerical values for all constants.
(b) Given that the equilibrium position is at $x=0$, determine the equation for $x(t)$, including numerical values for all constants.
(c) Calculate the value of k.

2012 AP ${ }^{\circledR}$ PHYSICS C: MECHANICS FREE-RESPONSE QUESTIONS

Experiment 2. The block and spring arrangement is now placed on a rough surface, as shown below. The block is displaced so that the spring is compressed a distance d and released from rest.

(d) On the dots below that represent the block, draw and label the forces (not components) that act on the block when the spring is compressed a distance $x=d / 2$ and the block is moving in the direction indicated below each dot.

Toward the equilibrium position

Away from the equilibrium position
(e) Draw a sketch of v versus t in this case. Assume that there is a negligible change in the period and that the positive direction is still to the right.

2012 AP ${ }^{\circledR}$ PHYSICS C: MECHANICS FREE-RESPONSE QUESTIONS

Mech. 2.
You are to perform an experiment investigating the conservation of mechanical energy involving a transformation from initial gravitational potential energy to translational kinetic energy.
(a) You are given the equipment listed below, all the supports required to hold the equipment, and a lab table. On the list below, indicate each piece of equipment you would use by checking the line next to each item.
___ Track \qquad Meterstick
Electronic balance
\qquad Stopwatch
(b) Outline a procedure for performing the experiment. Include a diagram of your experimental setup. Label the equipment in your diagram. Also include a description of the measurements you would make and a symbol for each measurement.
(c) Give a detailed account of the calculations of gravitational potential energy and translational kinetic energy both before and after the transformation, in terms of the quantities measured in part (b).
(d) After your first trial, your calculations show that the energy increased during the experiment. Assuming you made no mathematical errors, give a reasonable explanation for this result.
(e) On all other trials, your calculations show that the energy decreased during the experiment. Assuming you made no mathematical errors, give a reasonable physical explanation for the fact that the average energy you determined decreased. Include references to conservative and nonconservative forces, as appropriate.

2012 AP ${ }^{\circledR}$ PHYSICS C: MECHANICS FREE-RESPONSE OUESTIONS

Mech. 3.
A ring of mass M, radius R, and rotational inertia $M R^{2}$ is initially sliding on a frictionless surface at constant velocity v_{0} to the right, as shown above. At time $t=0$ it encounters a surface with coefficient of friction μ and begins sliding and rotating. After traveling a distance L, the ring begins rolling without sliding. Express all answers to the following in terms of M, R, v_{0}, μ, and fundamental constants, as appropriate.
(a) Starting from Newton's second law in either translational or rotational form, as appropriate, derive a differential equation that can be used to solve for the magnitude of the following as the ring is sliding and rotating.
i. The linear velocity v of the ring as a function of time t
ii. The angular velocity ω of the ring as a function of time t
(b) Derive an expression for the magnitude of the following as the ring is sliding and rotating.
i. The linear velocity v of the ring as a function of time t
ii. The angular velocity ω of the ring as a function of time t
(c) Derive an expression for the time it takes the ring to travel the distance L.
(d) Derive an expression for the magnitude of the velocity of the ring immediately after it has traveled the distance L.
(e) Derive an expression for the distance L.

STOP
 END OF EXAM

