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Conceptual Questions 

10.1.  Kinetic energy depends on speed. Potential energy depends on position. 

10.2.  No, kinetic energy can never be negative. Kinetic energy is energy of motion. Motion may stop, but it can’t be 
negative. Speed has no direction and cannot be negative. Yes, gravitational potential energy can be negative. Poten-
tial energy depends upon position, which can be positive or negative. 

10.3.  We must calculate the new kinetic energy and compare it to the original value. Originally, 21
2

K mv= .  With a 

velocity of 3v, 2 21 1(3 ) 9 9
2 2

K m v mv K⎛ ⎞′ = = = .⎜ ⎟
⎝ ⎠

 The kinetic energy increases by a factor of 9. 

10.4.  We have 
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10.5.  Conservation of energy tells us that i f ,U K=  since the car starts at rest. Originally, this means that in rolling 
down a track of height h, 

2
0

1
2

mgh mv=  

To go twice as fast at the bottom, we must find the height h′  such that 

2
0

2
0

1 (2 )
2
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2

mgh m v

mgh mv

′ =

⎛ ⎞⇒ ′ = .⎜ ⎟
⎝ ⎠

 

So 4h h′ = .  You must increase the track height by a factor of 4. 
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10.6.  a b cv v v= = .  They each start with the same kinetic energy and they each have the same change in potential 
energy, so they end with the same kinetic energy and, thus, the same speed. 

10.7.  a b cv v v= = .  The balls start off with the same kinetic energy and have the same change in potential energy, so 
their final kinetic energy is the same. 

10.8.  (a)  We identify the equilibrium position e 10 cms = .  At 11 cm,s =  e 11 cm 10 cm 1 cm,s s sΔ = − = − =  and 

sp (1 cm)F F k s k= = − Δ = − .  To get sp 3 ,F F=  we must have 3 ( ) ,F k s ′= − Δ  which means ( ) 3 cms ′Δ = .  So the 
spring must have length 10 cm 3 cm 13 cm+ = .  
(b)  Note that the direction of the force is reversed when the spring is compressed. 
To get sp 2 ,F F= −  we must have 2 ( ) ,F k s ′− = − Δ  which means ( ) 2 cms ′Δ = − .  So the spring must have length 
10 cm 2 cm 8 cm.− =  

10.9.  Note that Carlos takes the place of the wall, and that the force on the spring is still 200 N. The spring still 
stretches 20 cm. 

10.10.  s d s c s b s a( ) ( ) ( ) ( )U U U U> > = . 2
s

1 ( )
2

U k s= Δ . Increasing the stretch by a factor of 2 increases the stored 

energy by a factor of 4. Doubling k doubles the stored energy. 

10.11.  The original spring stores energy 21 (1 0 cm)
2

U k= . .  For a spring with spring constant 2 ,k k′ =  

2 21 1( ) (2 )( )
2 2

U k s k s′ = ′ Δ = Δ  

If ,U U′ =  then 

2 21 1(1 0 cm) (2 )( )
2 2

1 cm 0 71 cm
2

k k s

s

. = Δ

⇒ Δ = = .
 

10.12.  Energy conservation tells us that the initial potential energy stored in the spring is equal to the final kinetic 
energy of the ball. 

2 2
0

1 1( )
2 2

k s mvΔ =  

When the spring is compressed twice as far, 
2 2

0
1 1(2 ) (2 )
2 2

k s m vΔ =  

So the ball speed increases by a factor of 2. 

10.13.  (a)  At 6 mx =  the particle has the most kinetic energy. The kinetic energy is the difference between the 
total energy (TE) and potential energy (PE) curves. At 3 mx =  the particle’s speed is locally a maximum, but is not 
as fast as at 6 mx = .  
(b)  The turning points for the particle with total energy (TE) shown are at 2 mx =  and 8 mx = .  
(c)  The particle could remain at rest in stable equilibrium at 3 mx =  and 6 mx = .  The particle could also remain at 
rest in unstable equilibrium at 1 mx =  and 4 mx = .  

10.14.  The problem can be divided into three parts: (1) from when the first ball is released and to just before it hits 
the stationary ball, (2) the two balls collide, and (3) the two balls swing up together just after the collision to their 
highest point. Energy is conserved in parts (1) and (3) as the balls swing like pendulums, but during the collision in 
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part (2) momentum is conserved but energy is not. So both energy and momentum conservation are each separately 
used as you work through each part of the problem. 

Exercises and Problems 

Section 10.2 Kinetic Energy and Gravitational Potential Energy 

10.1.  Model:  We will use the particle model for the bullet (B) and the running student (S). 
Visualize: 
 

 
 

Solve:  For the bullet, 
2 2

B B B
1 1 (0 010 kg)(500 m/s) 1250 J
2 2

K m v= = . =  

For the running student, 
2 2

S S S
1 1 (75 kg)(5 5 m/s) 206 J
2 2

K m v= = . =  

Thus, the bullet has the larger kinetic energy. 
Assess:  Kinetic energy depends not only on mass but also on the square of the velocity. The above calculation shows 
this dependence. Although the mass of the bullet is 7500 times smaller than the mass of the student, its speed is more 
than 90 times larger. 

10.2.  Model:  Model the hiker as a particle. 
Visualize: 
 

 
 

The origin of the coordinate system chosen for this problem is at sea level so that the hiker’s position in Death Valley 
is 0 8 5 my = − . .  
Solve:  The hiker’s change in potential energy from the bottom of Death Valley to the top of Mt. Whitney is 

gf gi f i f i

2 6

( )

(65 kg)(9 8 m/s )[4420 m ( 85 m)] 2 9 10  J

U U U mgy mgy mg y yΔ = − = − = −

= .  − − = . ×
 

Assess:  Note that UΔ  is independent of the origin of the coordinate system. 
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10.3.  Model:  Model the compact car (C) and the truck (T) as particles. 
Visualize: 
 

 

 

Solve:  For the kinetic energy of the compact car and the kinetic energy of the truck to be equal, 

2 2 T
C T C C T T C T

C

1 1 20,000 kg (25 km/h) 112 km/h
2 2 1000 kg

mK K m v m v v v
m

= ⇒ = ⇒ = =  =   

Assess:  A smaller mass needs a greater velocity for its kinetic energy to be the same as that of a larger mass. 

10.4.  Model:  Model the car (C) as a particle. This is an example of free fall, and therefore the sum of kinetic and 
potential energy does not change as the car falls. 
Visualize: 
 

 
 

Solve:  (a)  The kinetic energy of the car is 
2 2 5

C C C
1 1 (1500 kg)(30 m/s) 6 75 10  J
2 2

K m v= = = . ×  

The car’s kinetic energy is 56 8 10  J. × .  
(b)  Let us relabel CK  as fK  and place our coordinate system at f 0y =  m so that the car’s potential energy gfU  is 

zero, its velocity is f ,v  and its kinetic energy is fK .  At position i ,y  i i0 m/s or 0 J,v K= =  and the only energy the 
car has is gi iU mgy= .  Since the sum gK U+  is unchanged by motion, f gf i giK U K U+ = + . This means 

f f i i f i i
5

f i
i 2

0

( ) (6.75 10 J 0 J) 46 m
(1500 kg)(9.8 m/s )

K mgy K mgy K K mgy

K Ky
mg

+ = + ⇒ + = +

− × −
⇒ = = =

 

(c)  From part (b), 
2 21 1 2 2
f if i f i2 2

i
( ) ( )

2
mv mvK K v vy

mg mg g
−− −= = =  

Free fall does not depend upon the mass. 

10.5.  Model:  This is a case of free fall, so the sum of the kinetic and gravitational potential energy does not change 
as the ball rises and falls. 
Visualize: 
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The figure shows a ball’s before-and-after pictorial representation for the three situations in parts (a), (b), and (c). 
Solve:  The quantity gK U+  is the same during free fall: f gf i giK U K U+ = + . We have 

(a)  2 2
1 1 0 0

2 2 2 2 2
1 0 1

1 1
2 2

( )/2 [(10 m/s) (0 m/s) ]/(2 9 8 m/s ) 5 10 m

mv mgy mv mgy

y v v g

+ = +

⇒ = − = − × . = .
 

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. 

(b)  2 2
2 2 0 0

1 1
2 2

mv mgy mv mgy+ = +  

Since 2 0 0,y y= =  we get for the magnitudes 2 0 10 m/s.v v= =  

2 2 2 2 2 2
3 3 0 0 3 3 0 0 3 0 0 3

2 2 2 2 2
3

1 1 2 2 2 ( )
2 2

(10 m/s) 2(9.8 m/s )[0 m ( 20 m)] 492 m /s

mv mgy mv mgy v gy v gy v v g y y

v

+ = + ⇒ + = + ⇒ = + −

⇒ = + − − =

(c)
 

This means the magnitude of 3v  is equal to 22 m/s. 
Assess:  Note that the ball’s speed as it passes the window on its way down is the same as the speed with which it 
was tossed up, but in the opposite direction. 

10.6.  Model:  This is a problem of free fall. The sum of the kinetic and gravitational potential energy for the ball, 
considered as a particle, does not change during its motion. 
Visualize: 
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The figure shows the ball’s before-and-after pictorial representation for the two situations described in parts (a) and (b). 
Solve:  The quantity gK U+  is the same during free fall. Thus, f gf i giK U K U+ = + .  

(a)  2 2 2 2
1 1 0 0 0 1 1 0

2 2 2 2 2
0 0

1 1 2 ( )
2 2

(0 m/s) 2(9 8 m/s )(10 m 1 5 m) 166 6 m /s 12 9 m/s 13 m/s

mv mgy mv mgy v v g y y

v v

+ = + ⇒ = + −

⇒ = + . − . = .  ⇒ = . ≈
 

(b)  2 2 2 2
2 2 0 0 2 0 0 2

2 2 2 2
2 2

1 1 2 ( )
2 2

166 6 m /s 2(9 8 m/s )(1 5 m 0 m) 14 m/s

mv mgy mv mgy v v g y y

v v

+ = + ⇒ = + −

⇒ = . + . . − ⇒ =
 

Assess:  An increase in speed from 12.9 m/s to 14.0 m/s as the ball falls through a distance of 1.5 m is reasonable. 
Also, note that mass does not appear in the calculations that involve free fall. 

10.7.  Model:  Model the mother and the son as particles. 
Visualize:  mother son4m m= .  
Solve:  The energy conservation equation mother sonK K=  is 

2 2 2 2 son
mother mother son son son mother son son

mother

1 1 (4 ) 2 0
2 2

vm v m v m v m v
v

= ⇒ = ⇒ = .  

Assess:  The result son mother2 ,v v=  combined with the fact that 1
son mother4 ,m m=  is a consequence of the way kinetic 

energy is defined: It is directly proportional to the mass and to the square of the speed. 

Section 10.3 A Closer Look at Gravitational Potential Energy 

10.8.  Model:  Model the skateboarder as a particle. Assuming that the track offers no rolling friction, the sum of the 
skateboarder’s kinetic and gravitational potential energy does not change during his rolling motion. 
Visualize: 
  

 
 

The vertical displacement of the skateboarder is equal to the radius of the track. 
Solve:  The quantity gK U+  is the same at the upper edge of the quarter-pipe track as it was at the bottom. The en-

ergy conservation equation f gf i giK U K U+ = +  is 

2 2 2 2
f f i i i f f i

2 2 2 2 2
i i

1 1 2 ( )
2 2

(0 m/s) 2(9 8 m/s )(3 0 m 0 m) 58 8 m /s 7 7 m/s

mv mgy mv mgy v v g y y

v v

+ = + ⇒ = + −

= + . . − = . ⇒ = .
 

Assess:  Note that we did not need to know the skateboarder’s mass, as is the case with free-fall motion. 

10.9.  Model:  Model the puck as a particle. Since the ramp is frictionless, the sum of the puck’s kinetic and gravita-
tional potential energy does not change during its sliding motion. 
Visualize: 
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Solve:  The quantity gK U+  is the same at the top of the ramp as it was at the bottom. The energy conservation 

equation f gf i giK U K U+ = +  is 

2 2 2 2
f f i i i f f i

2 2 2 2 2
i i

1 1 2 ( )
2 2

(0 m/s) 2(9 8 m/s )(1 03 m 0 m) 20 2 m /s 4 5 m/s

mv mgy mv mgy v v g y y

v v

+ = + ⇒ = + −

⇒ = + . . − = . ⇒ = .
 

Assess:  An initial push with a speed of 4.5 m/s 10≈  mph to cover a distance of 3.0 m up a 20°  ramp seems reason-
able. 

10.10.  Model:  In the absence of frictional and air-drag effects, the sum of the kinetic and gravitational potential 
energy does not change as the pendulum swings from one side to the other. 
Visualize: 
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The figure shows the pendulum’s before-and-after pictorial representation for the two situations described in parts (a) 
and (b). 
Solve:  (a)  The quantity gK U+  is the same at the lowest point of the trajectory as it was at the highest point. Thus, 

1 g1 0 g0  meansK U K U+ = +  

2 2 2 2
1 1 0 0 1 1 0 0

2 2
1 0 1 0

1 1 2 2
2 2

2 (0 m) (0 m/s) 2 2

mv mgy mv mgy v gy v gy

v g gy v gy

+ = + ⇒ + = +

⇒ + = + ⇒ =
 

From the pictorial representation, we find that 0 cos30y L L= − °.  Thus, 
2

1 2 (1 cos30 ) 2(9 8 m/s )(0 75 m)(1 cos30 ) 1 403 m/sv gL= − ° = . . − ° = .  
The speed at the lowest point is 1.4 m/s.  
(b)  Since the quantity gK U+  does not change, 2 2 1 1  We haveg gK U K U+ = + .  

2 2 2 2
2 2 1 1 2 1 2

2 2 2
2

1 1 ( )/2
2 2

[(1 403 m/s) (0 m/s) ]/(2 9 8 m/s ) 0 100 m

mv mgy mv mgy y v v g

y

+ = + ⇒ = −

⇒ = . − × . = .
 

Since 2 cos ,y L L θ= −  we obtain 

12 (0 75 m) (0 10 m)cos 0 8667 cos (0 8667) 30
(0 75 m)

L y
L

θ θ −− . − .= = = . ⇒ = . = °
.

 

That is, the pendulum swings to the other side by 30°.  
Assess:  The swing angle is the same on either side of the rest position. This result is a consequence of the fact that 
the sum of the kinetic and gravitational potential energy does not change. This is shown as well in the energy bar 
chart in the figure. 

10.11.  Model:  Model the child and swing as a particle, and assume the chain to be massless. In the absence of fric-
tional and air-drag effects, the sum of the kinetic and gravitational potential energy does not change during the 
swing’s motion. 
Visualize: 
 

 
 

Solve:  The quantity gK U+  is the same at the highest point of the swing as it is at the lowest point. That is, 

0 g0 1 g1K U K U+ = + . It is clear from this equation that maximum kinetic energy occurs where the gravitational po-
tential energy is the least. This is the case at the lowest position of the swing. At this position, the speed of the swing 
and child will also be maximum. The above equation is 

2 2 2 2
0 0 1 1 1 0 0 1

2 2
1 0 1 0

1 1 2 ( )
2 2

(0 m/s) 2 ( 0 m) 2

mv mgy mv mgy v v g y y

v g y v gy

+ = + ⇒ = + −

⇒ = + − ⇒ =
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We see from the pictorial representation that 
0

2
1 0

cos45 (3 0 m) (3 0 m)cos45 0 879 m

2 2(9 8 m/s )(0 879 m) 4 2 m/s

y L L

v gy

= − ° = . − . ° = .

⇒ = = . . = .
 

Assess:  We did not need to know the swing’s or the child’s mass. Also, a maximum speed of 4.2 m/s is reasonable. 

10.12.  Model:  Model the car as a particle with zero rolling friction and no air resistance. The sum of the kinetic 
and gravitational potential energy, therefore, does not change during the car’s motion. 
Visualize: 
 

 
 

Solve:  The initial energy of the car is  
2 2 2 5

0 g0 0 0
1 1 (1500 kg)(10 0 m/s) (1500 kg)(9 8 m/s )(10 m) 2 22 10  J
2 2

K U mv mgy+ = + = . + . = . ×  

The car increases its height to 15 m at the gas station. The conservation of energy equation 0 g0 1 g1K U K U+ = +  is 

5 2 5 2 2
1 1 1

1

1 12 22 10  J 2 22 10  J (1500 kg) (1500 kg)(9 8 m/s )(15 m)
2 2

1 4 m/s

mv mgy v

v

. × = + ⇒ . × = + .

⇒ = .
 

Assess:  A lower speed at the gas station is reasonable because the car has decreased its kinetic energy and increased 
its potential energy compared to its starting values. 

Section 10.4 Restoring Forces and Hooke’s Law 
10.13.  Model:  Assume that the spring is ideal and obeys Hooke’s law. 
Visualize:  According to Hooke’s law, the spring force acting on a mass (m) attached to the end of a spring is given 
as sp ,F k x= Δ  where xΔ  is the change in length of the spring. If the mass m is at rest, then spF  is also equal to the 

gravitational force GF mg= .  
Solve:  spWe have F k x mg= Δ = .  We want a 0.100 kg mass to give 0 010 mxΔ = . .  This means 

/ (0 100 kg)(9 8 N/m)/(0 010 m) 98 N/mk mg x= Δ = . . . =  

10.14.  Model:  Assume an ideal spring that obeys Hooke’s law. 
Visualize: 
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Solve:  (a)  The spring force on the 2.0 kg mass is spF k y= − Δ .  Notice that yΔ  is negative, so spF  is positive. This 
force is equal to mg, because the 2.0 kg mass is at rest. We have k y mg− Δ = . Solving for k: 

2( / ) (2 0 kg)(9 8 m/s )/( 0 15 m ( 0 10 m)) 392 N/mk mg y= − Δ = − . . − . − − . =  

The spring constant is 23 9 10  N/m. × .  
(b)  Again using :k y mg− Δ =  

2

e e

/ (3 0 kg)(9 8 m/s )/(392 N/m)
0 075 m 0 075 m 0 10 m 0 075 m 0 175 m 17 5 cm

y mg k
y y y y

Δ = − = − . .
′ − = − . ⇒ ′ = − . = − . − . = − . = − .

 

The length of the spring is 17.5 cm when a mass of 3.0 kg is attached to the spring. The position of the end of the 
spring is negative because it is below the origin, but length must be a positive number. 

10.15.  Model:  Model the student (S) as a particle and the spring as obeying Hooke’s law. 
Visualize: 
 

 
 

Solve:  According to Newton’s second law the force on the student is 
on S spring on S G

2 2
spring on S G

( )

(60 kg)(9 8 m/s 3 0 m/s ) 768 N

y y

y y

F F F ma

F F ma mg ma

Σ = − =

⇒ = + = + = .  + . =
 

Since spring on S S on spring , 768 N This means (768 N)/(2500 N/m) 0 31 mF F k y k y y= = Δ Δ = .  Δ = = . .  

10.16.  Model:  Assume the spring is ideal and obeys Hooke’s law. 
Visualize:  The stretch produced by hanging mass m  is 1 0.L L−  
Solve:  For a hanging mass of m  

1 0 1 0( )L L L L= + −  
If we double the hanging mass to 2 ,m  then 

2 0 1 02( )L L L L= + −  
and, indeed, for any mass ,nm  

0 1 0( )nL L n L L= + −  
In particular for 3m  

3 0 1 0 0 13( ) 2 3L L L L L L= + − = − +  
Assess:  Even though one term is negative the answer won’t be because 1 0.L L>  

10.17.  Model:  Assume that the spring is ideal and obeys Hooke’s law. We also model the 5.0 kg mass as a particle. 
Visualize:  We will use the subscript s for the scale and sp for the spring. 
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Solve:  (a)  The scale reads the upward force s on mF  that it applies to the mass. Newton’s second law gives 
2

on m s on m G s on m G( ) 0 (5 0 kg)(9 8 m/s ) 49 NyF F F F F mg= − = ⇒ = = = . . =∑  

(b)  In this case, the force is 
on m s on m sp G( ) 0 20 N 0

( 20 N)/ (49 N 20 N)/0 02 m 1450 N/m
yF F F F k y mg

k mg y

= + − = ⇒ + Δ − =

⇒ = − Δ = − . =
∑  

The spring constant for the lower spring is 31 45 10  N/m. × .  
(c)  In this case, the force is  

on m sp G( ) 0 0

/ (49 N)/(1450 N/m) 0 0338 m 3 4 cm
yF F F k y mg

y mg k

= − = ⇒ Δ − =

⇒ Δ = = = . = .  
∑  

Section 10.5 Elastic Potential Energy 

10.18.  Model:  Assume an ideal spring that obeys Hooke’s law. 
Solve:  The elastic potential energy of a spring is defined as 21

s 2 ( ) ,U k s= Δ  where sΔ  is the magnitude of the 

stretching or compression relative to the unstretched or uncompressed length. s 0UΔ = when the spring is at its equi-
librium length and 0sΔ = .  sWe have 200 J and 1000 N/mU k= = .  Solving for :sΔ  

s2 / 2(200 J)/1000 N/m 0 632 ms U kΔ = = = .  

10.19.  Model:  Assume the spring is ideal and obeys Hooke’s law. Then the potential energy of a stretched spring is 
2

sp
1 ( ) .
2

U k s= Δ  

Visualize:  Use ratios to solve this problem. Use primed variables for the new situation with the spring stretched 
three times as far. 
Solve: 

2 21 1
sp 22 2

2 21 1
sp 2 2

( ) (3 )
3 9

( ) ( )

U k s k s
U k s k s

′ Δ ′ Δ
= = = =

Δ Δ
 

sp sp9 9(2 0 J) 18 JU U′ = = . =  

Assess:  The stored energy scales with the square of the spring stretch. 
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10.20.  Model:  Assume an ideal spring that obeys Hooke’s law. There is no friction, so the mechanical energy 
sK U+  is conserved. Also model the book as a particle. 

Visualize: 
 

 
 

The figure shows a before-and-after pictorial representation. The compressed spring will push on the book until the 
spring has returned to its equilibrium length. We put the origin of our coordinate system at the equilibrium position 
of the free end of the spring. The energy bar chart shows that the potential energy of the compressed spring is entirely 
transformed into the kinetic energy of the book. 
Solve:  The conservation of energy equation 2 s2 1 s1K U K U+ = +  is 

2 2 2 2
2 2 e 1 1 e

1 1 1 1( ) ( )
2 2 2 2

mv k x x mv k x x+ − = + −  

Using 2 e 0 mx x= =  and 1 0 m/s,v =  this simplifies to 
2 2

2 2 1
2 1 2

1 1 (1250 N/m)(0 040 m)( 0 m) 2 0 m/s
2 2 (0 500 kg)

kxmv k x v
m

.= − ⇒ = = = .
.

 

Assess:  This problem cannot be solved using constant-acceleration kinematic equations. The acceleration is not a 
constant in this problem, since the spring force, given as s ,F k x= − Δ  is directly proportional to xΔ  or e| |x x− .  

10.21.  Model:  Assume an ideal spring that obeys Hooke’s law. Since there is no friction, the mechanical energy 
sK U+  is conserved. Also, model the block as a particle. 

Visualize: 
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The figure shows a before-and-after pictorial representation. We have put the origin of our coordinate system at the 
equilibrium position of the free end of the spring. This gives us 1 e 0 cmx x= =  and 2 2 0 cmx = . .  
Solve:  The conservation of energy equation 2 s2 1 s1K U K U+ = +  is 

2 2 2 2
2 2 e 1 1 e

1 1 1 1( ) ( )
2 2 2 2

mv k x x mv k x x+ − = + −  

Using 2 1 e 2 e0 m/s, 0 m, and 0 020 m,v x x x x= = = − = .  we get 

2 2
2 e 1 2 e 1

1 1( ) ( )
2 2

mk x x mv x x x v
k

− = ⇒ Δ = − =  

That is, the compression is directly proportional to the velocity 1v .  When the block collides with the spring with 
twice the earlier velocity 1(2 ),v  the compression will also be doubled to 2 e2( ) 2(2 0 cm) 4 0 cmx x− = . = . .  
Assess:  This problem shows the power of using energy conservation over using Newton’s laws in solving problems 
involving nonconstant acceleration. 

10.22.  Model:  Model the grocery cart as a particle and the spring as an ideal that obeys Hooke’s law. We will also 
assume zero rolling friction during the compression of the spring, so that mechanical energy is conserved. 
Visualize: 
 

 
 

The figure shows a before-and-after pictorial representation. The “before” situation is when the cart hits the spring in 
its equilibrium position. We put the origin of our coordinate system at this equilibrium position of the free end of the 
spring. This gives 1 e 2 e0 and ( ) 60 cmx x x x= = − = .  
Solve:  The conservation of energy equation 2 s2 1 s1K U K U+ = +  is 

2 2 2 2
2 2 e 1 1 e

1 1 1 1( ) ( )
2 2 2 2

mv k x x mv k x x+ − = + −  

Using 2 2 e 1 e0 m/s, ( ) 0 60 m, and 0 mv x x x x= − = . = =  gives: 

2 2
2 e 1 1 2 e

1 1 250 N/m( ) ( ) (0 60 m) 3 0 m/s
2 2 10 kg

kk x x mv v x x
m

− = ⇒ = − = . = .  

10.23.  Model:  Assume an ideal spring that obeys Hooke’s law. There is no friction, and thus the mechanical en-
ergy s gK U U+ + is conserved. 
Visualize: 
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We place the origin of our coordinate system at the spring’s compressed position 1 0y = .  The rock leaves the spring 
with velocity 2v  as the spring reaches its equilibrium position. 
Solve:  (a)  The conservation of mechanical energy equation is 

2 2 2 2
2 s2 g2 1 s1 g1 2 2 e 2 1 1 e 1

1 1 1( ) ( )
2 2 2

K U U K U U mv k y y mgy mv k y y mgy1+ + = + + + − + = + − +
2

 

Using 2 e 1 1,  0 m, and 0 m/s,y y y v= = =  this simplifies to 

2 2
2 2 1 e

2 2 2
2 2

1 10 J J ( ) 0
2 2

1 1(0.400 kg) (0.400 kg)(9.8 m/s )(0.30 m) (1000 N/m)(0.30 m) 14.8 m/s
2 2

mv mgy k y y

v v

+ + = 0 + − +

+ = ⇒ =
 

(b)  Let us use the conservation of mechanical energy equation once again to find the highest position 3( )y  of the 
rock where its speed 3( )v  is zero: 

2 2
3 g3 2 g2 3 3 2 2

2 2
2 2

3 2 2 3 2 2

1 1
2 2

1 (14 8 m/s)0 ( ) ( ) 11 2 m
2 2 2(9 8 m/s )

K U K U mv mgy mv mgy

vg y y v y y
g

+ = + ⇒ + = +

.
⇒ + − = ⇒ − = = = .

.

 

If we assume the spring’s length to be 0.5 m, then the distance between ground and fruit is 11 2 m 0 5 m 11 7 m. + . = . .  
This is much smaller than the distance of 15 m between fruit and ground. So, the rock does not reach the fruit, and 
the contestants go hungry. 

10.24.  Model:  Model the jet plane as a particle, and the spring as an ideal that obeys Hooke’s law. We will also 
assume zero rolling friction during the stretching of the spring, so that mechanical energy is conserved. 
Visualize: 
 

 
 

The figure shows a before-and-after pictorial representation. The “before” situation occurs just as the jet plane lands on 
the aircraft carrier and the spring is in its equilibrium position. We put the origin of our coordinate system at the right 
free end of the spring. This gives 1 e 0 mx x= = .  Since the spring stretches 30 m to stop the plane, 2 e 30 mx x− = .  
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Solve:  The conservation of energy equation 2 s2 1 s1K U K U+ = +  for the spring-jet plane system is 

2 2 2 2
2 2 e 1 1 e

1 1 1 1( ) ( )
2 2 2 2

mv k x x mv k x x+ − = + −  

Using 2 1 e 2 e0 m/s, 0 m, and 30 m yieldsv x x x x=  = = − =  

2 2
2 e 1 1 2 1

1 1 60,000 N/m( ) ( ) (30 m) 60 m/s
2 2 15,000 kg

kk x x mv v x x
m

− = ⇒ = − = =  

Assess:  A landing speed of 60 m/s or 120≈  mph is reasonable. 

Section 10.6 Energy Diagrams 
10.25.  Model:  For an energy diagram, the sum of the kinetic and potential energy is a constant. 
Visualize: 
 

 
 

The particle is released from rest at 1 0 mx = . .  That is, 0K = at 1 0 mx = . .  Since the total energy is given by 
,E K U= +  we can draw a horizontal total energy (TE) line through the point of intersection of the potential energy 

curve (PE) and the 1 0 mx = .  line. The distance from the PE curve to the TE line is the particle’s kinetic energy. 
These values are transformed as the position changes, causing the particle to speed up or slow down, but the sum 
K U+  does not change. 
Solve:  (a)  We have 4 0 JE = .  and this energy is a constant. For 1 0, 4 0 Jx U< .  > .  and, therefore, K must be nega-
tive to keep E the same (note that  or 4 0 J )K E U K U= − = . − .  Since negative kinetic energy is unphysical, the par-
ticle cannot move to the left. That is, the particle will move to the right of 1 0 mx = . .  
(b)  The expression for the kinetic energy is E U− .  This means the particle has maximum speed or maximum kinetic 
energy when U is minimum. This happens at 4 0 mx = . .  Thus, 

2
max min max max

1 2(3 0 J) 8 0 J(4 0 J) (1 0 J) 3 0 J      3 0 J 17 3 m/s
2 0 020 kg

K E U mv v
m
. .= − = . − . = . = . ⇒ = = = .

.
 

The particle possesses this speed at 4 0 mx = . .  
(c)  The total energy (TE) line intersects the potential energy (PE) curve at 1 0 mx = .  and 6 0 mx = . .  These are the 
turning points of the motion. 

10.26.  Model:  For an energy diagram, the sum of the kinetic and potential energy is a constant. 
Visualize: 
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The particle with a mass of 500 g is released from rest at A. That is, 0K = at A. Since 0 J ,E K U U= + = +  we can 
draw a horizontal TE line through 5 0 JU = . .  The distance from the PE curve to the TE line is the particle’s kinetic 
energy. These values are transformed as the position changes, causing the particle to speed up or slow down, but the 
sum K U+  does not change. 
Solve:  The kinetic energy is given by ,E U−  so we have 

21 2( )/
2

mv E U v E U m= − ⇒ = −  

Using B C D2 0 J, 3 0 J, and 0 J,U U U= . = . =  we get 

B C

D

2(5 0 J 2 0 J)/0 500 kg 3 5 m/s 2(5 0 J 3 0 J)/0 500 kg 2 8 m/s

2(5 0 J 0 J)/0 500 kg 4 5 m/s

v v

v

= . − . . = .       = . − . . = .

= . − . = .
 

10.27.  Model:  For an energy diagram, the sum of the kinetic and potential energy is a constant. 
Visualize: 
 

 
 

For the speed of the particle at A that is needed to reach B to be a minimum, the particle’s kinetic energy as it reaches 
the top must be zero. Similarly, the minimum speed at B for the particle to reach A obtains when the particle just 
makes it to the top with zero kinetic energy. 
Solve:  (a) The energy equation A A top topK U K U+ = +  is 

2
A A top

A top A

1 0 J
2

2( )/ 2(5.0 J 2.0 J)/0.100 kg 7.7 m/s

mv U U

v U U m

+ = +

⇒ = − = − =
 

(b)  To go from point B to point A, B B top topK U K U+ = + is 

2
B B top

B top B

1 0 J
2

2( )/ 2(5 0 J 0 J)/0 100 kg 10 0 m/s

mv U U

v U U m

+ = +

⇒ = − = . − . = .
 

Assess:  The particle requires a higher kinetic energy to reach A from B than to reach B from A. 

10.28.  Model:  For an energy diagram, the sum of the kinetic and potential energy is a constant. 
Visualize: 
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Since the particle oscillates between 2.0 mmx =  and 8.0 mm,x =  the speed of the particle is zero at these points. That 
is, for these values of x, 5 0 J,E U= = . which defines the total energy (TE) line. The distance from the potential  
energy (PE) curve to the TE line is the particle’s kinetic energy. These values are transformed as the position 
changes, but the sum K U+  does not change. 
Solve:  The equation for total energy E U K= +  means ,K E U= −  so that K is maximum when U is minimum. We 
have 

2
max max min

max min

1 5 0 J
2

2(5 0 J )/ 2(5 0 J 1 0 J)/0 0020 kg 63 m/s

K mv U

v U m

= = . −

⇒ = . − = . − . . =
 

Section 10.7 Elastic Collisions 

10.29.  Model:  We assume this is a one-dimensional collision that obeys the conservation laws of momentum and 
mechanical energy. 
Visualize: 
 

 
 

Note that momentum conservation alone is not sufficient to solve this problem because the two final velocities f 1( )xv  
and f 2( )xv  are unknowns and cannot be determined from one equation. 
Solve:  1 i 1 2 i 2 1 f 1 2 f 2

2 2 2 2
1 i 1 2 i 2 1 f 1 2 f 2

Momentum conservation: ( ) ( ) ( ) ( )
1 1 1 1Energy conservation: ( ) ( ) ( ) ( )
2 2 2 2

x x x x

x x x x

m v m v m v m v

m v m v m v m v

+ = +

+ = +
 

These two equations can be solved for f 1( )xv  and f 2( ) ,xv as shown by Equations 10.39 through 10.43, to give 

1 2
f 1 i 1

1 2

1
f 2 i 1

1 2

50 g 20 g( ) ( ) (2 0 m/s) 0 86 m/s
50 g 20 g

2 2(50 g)( ) ( ) (2 0 m/s) 2 9 m/s
50 g 20 g

x x

x x

m mv v
m m

mv v
m m

− −= = . = .
+ +

= = . = .
+ +

 

Assess:  These velocities are of a reasonable magnitude. Since both these velocities are positive, both balls move 
along the +x-direction. 

10.30.  Model:  This is a case of a perfectly elastic collision between a proton and a carbon atom. The collision 
obeys the momentum as well as the energy conservation law. 
Visualize: 
 

 
 

Solve:  P i P C i C P f P C f C

2 2 2 2
P i P C i C P f P C f C

Momentum conservation: ( ) ( ) ( ) ( )
1 1 1 1Energy conservation: ( ) ( ) ( ) ( )
2 2 2 2

x x x x

x x x x

m v m v m v m v

m v m v m v m v

+ = +

+ = +
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These two equations can be solved, as described in the text through Equations 10.38 to 10.42: 
7 7P C P P

f P P C i P
P C P P

7 6P P
f C i P

P C P P

12( ) ( ) (2 0 10  m/s) 1 69 10  m/s
12

2 2( ) ( ) (2 0 10  m/s) 3 1 10  m/s
12

x x

x x

m m m mv m m v
m m m m

m mv v
m m m m

⎛ ⎞− −= + = . × = − . ×⎜ ⎟+ +⎝ ⎠
⎛ ⎞

= = . × = . ×⎜ ⎟+ +⎝ ⎠

 

After the elastic collision the proton rebounds at 71 69 10  m/s. ×  and the carbon atom moves forward at 
63 08 10  m/s. × .  

10.31.  Model:  In this case of a one-dimensional collision, the momentum conservation law is obeyed whether the 
collision is perfectly elastic or perfectly inelastic.  Assume ball 1 is initially moving right, in the positive direction. 
Visualize: 
 

 
 

Solve:  In the case of a perfectly elastic collision, the two velocities f 1( )xv  and f 2( )xv can be determined by combin-
ing the conservation equations of momentum and mechanical energy. By contrast, a perfectly inelastic collision in-
volves only one final velocity fxv  and can be determined from just the momentum conservation equation. 
(a)  1 i 1 2 i 2 1 f 1 2 f 2

2 2 2 2
1 i 1 2 i 2 1 f 1 2 f 2

Momentum conservation: ( ) ( ) ( ) ( )
1 1 1 1Energy conservation: ( ) ( ) ( ) ( )
2 2 2 2

x x x x

x x x x

m v m v m v m v

m v m v m v m v

+ = +

+ = +
 

These two equations can be solved as shown in Equations 10.38 through 10.42: 

1 2
f 1 i 1

1 2

1
f 2 i 1

1 2

(100 g) (300 g)( ) ( ) (10 m/s) 5 0 m/s
(100 g) (300 g)

2 2(100 g)( ) ( ) (10 m/s) 5 0 m/s
(100 g) (300 g)

x x

x x

m mv v
m m

mv v
m m

− −= = = − .
+ +

= = = + .
+ +

 

(b)  For the inelastic collision, both balls travel with the same final speed fxv .  The momentum conservation equation 

f i  isx xp p=  

1 2 f 1 i 1 2 i 2

f

( ) ( ) ( )

100 g (10 m/s) 0 m/s 2 5 m/s
100 g 300 g

x x x

x

m m v m v m v

v

+ = +

⎛ ⎞
⇒ = + = .⎜ ⎟+⎝ ⎠

 

Assess:  In the case of the perfectly elastic collision, the two balls bounce off each other with a speed of 5.0 m/s. In 
the case of the perfectly inelastic collision, the balls stick together and move together at 2.5 m/s. 

10.32.  Model:  This is the case of a perfectly inelastic collision. Momentum is conserved because no external force 
acts on the system (clay brick)+ .  We also represent our system as a particle. 
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Visualize: 
 

 
 

Solve:  (a)  The conservation of momentum equation f ix xp p=  is 

1 2 f 1 i 1 2 i 2( ) ( ) ( )x x xm m v m v m v+ = +  
Using i 1 0 i 2( )  and ( ) 0,x xv v v= =  we get 

1
f i 1 i 1 i 1 0

1 2

0 050 kg( ) ( ) 0 0476( ) 0 0476
(1 0 kg 0 050 kg)x x x x

mv v v v v
m m

.= = = . = .  
+ . + .

 

The brick is moving with speed 00 048v. .  
(b)  The initial and final kinetic energies are given by 

2 2 2 2 2
i 1 i 1 2 i 2 0 0

2 2 2 2
f 1 2 f 0 0

1 1 1 1( ) ( ) (0 050 kg) (1 0 kg)(0 m/s) (0 025 kg)
2 2 2 2
1 1( ) (1 0 kg 0 050 kg)(0 0476) 0 00119
2 2

x x

x

K m v m v v v

K m m v v v

= + = . + . = .

= + = . + . . = .  
 

The percent of energy lost 
i f

i

0 00119100% 1 100% 95%
0 025

K K
K

⎛ ⎞− .⎛ ⎞= × = − × =⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

Exercises and Problems 

10.33.  Model:  We will take the system to be the person plus the earth.  
Visualize:  When a person drops from a certain height, the initial potential energy is transformed to kinetic energy. 
When the person hits the ground, if they land rigidly upright, we assume that all of this energy is transformed into 
elastic potential energy of the compressed leg bones. The maximum energy that can be absorbed by the leg bones is 
200 J; this limits the maximum height. 
Solve:  (a)  The initial potential energy can be at most 200 J, so the height h of the jump is limited by 200 Jmgh =  
For 60 kg,m =  this limits the height to 

2200 J/mg 200 J/(60 kg)(9 8 m/s ) 0 34 mh = = . = .  
(b)  If some of the energy is transformed to other forms than elastic energy in the bones, the initial height can be 
greater. If a person flexes her legs on landing, some energy is transformed to thermal energy. This allows for a 
greater initial height. 
Assess:  There are other tissues in the body with elastic properties that will absorb energy as well, so this limit is 
quite conservative. 

10.34.  Model:  Model your vehicle as a particle. Assume zero rolling friction, so that the sum of your kinetic and 
gravitational potential energy does not change as the vehicle coasts down the hill. 
Visualize: 
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The figure shows a before-and-after pictorial representation. Note that neither the shape of the hill nor the angle of 
the downward slope is given, since these are not needed to solve the problem. All we need is the change in potential 
energy as you and your vehicle descend to the bottom of the hill. Also note that 

35 km/hr (35,000 m/3600 s) 9 722 m/s= = .  
Solve:  Using f 0y =  and the equation i gi f gfK U K U+ = +  we get 

2 2 2 2
i i f f i i f

2 2 2
f i i

1 1 2
2 2

2 (9 722 m/s) 2(9 8 m/s )(15 m) 19 7 m/s 71 km/h

mv mgy mv mgy v gy v

v v gy

+ = + ⇒ + =

⇒ = + = . + . = . =
 

You are driving over the speed limit. Yes, you will get a ticket. 
Assess:  A speed of 19.7 m/s or 71 km/h at the bottom of the hill, when your speed at the top of the hill was 35 km/s, 
is reasonable. From the energy bar chart, we see that the initial potential energy is completely transformed into the 
final kinetic energy. 

10.35.  Model:  This is case of free fall, so the sum of the kinetic and gravitational potential energy does not change 
as the cannon ball falls. 
Visualize: 
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The figure shows a before-and-after pictorial representation. To express the gravitational potential energy, we put the 
origin of our coordinate system on the ground below the fortress. 
Solve:  Using f 0y =  and the equation i gi f gfK U K U+ = +  we get 

2 2 2 2
i i f f i i f

2 2 2
f i i

1 1 2
2 2

2 (80 m/s) 2(9 8 m/s )(10 m) 81 m/s

mv mgy mv mgy v gy v

v v gy

+ = + ⇒ + =

= + = + . =
 

Assess:  Note that we did not need to use the tilt angle of the cannon, because kinetic energy is a scalar. Also note 
that using the energy conservation equation, we can find only the magnitude of the final velocity, not the direction of 
the velocity vector. 

10.36.  Model: Assume the spring is ideal and obeys Hooke’s law. Then the potential energy of a stretched spring is 
2

sp
1 ( ) .
2

U k s= Δ  

Visualize:  The kinetic energy at the beginning is zero, and it is also zero at maximum height, so the spring potential 
energy at the beginning equals the gravitational potential energy at maximum height. We are given 950N/m.k =  
Solve: 

2
i f

1( ) ( ) ( )
2s gU U k s mgy= ⇒ Δ =  

Putting this in y mx b= +  form 2( )
2

ky s
mg

= Δ  leads us to believe that a graph of y  vs. 2( )sΔ  would produce a 

straight line whose slope is /2k mg  and whose intercept is zero. 
 

 
 

The spreadsheet tells us the fit is very good and that the slope is 1746 5m .−.  

1
1 2 1

950 N/m746 5 m 0 065 kg 65 g
2 2 (746 5 m ) 2(9 8 m/s )(746 5 m )

k km
mg g

−
− −= . ⇒ = = = . =

. . .
 

Assess:  65 g seems reasonable, and we were happy to get a very small intercept on our best-fit line. 

10.37.  Model:  For the ice cube sliding around the inside of a smooth pipe, the sum of the kinetic and gravitational 
potential energy does not change. 
Visualize: 
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We use a coordinate system with the origin at the bottom of the pipe, that is, 1 0.y =  The radius R of the pipe is  
10 cm, and therefore top 2 2 0.20 m.y y R= = =  At an arbitrary angle ,θ  measured counterclockwise from the bottom 
of the circle, cos .y R R θ= −  
Solve:  (a)  The energy conservation equation 2 g2 1 g1K U K U+ = +  is 

2 2
2 2 1 1

2 2 2
2 1 1 2

1 1
2 2

2 ( ) (3 0 m/s) 2(9 8 m/s )(0 m 0 20 m) 2 25 m/s 2 3 m/s

mv mgy mv mgy

v v g y y

⇒ + = +

⇒ = + − = . + . − . = . ≈ .  
 

(b)  Expressing the energy conservation equation as a function of :θ  

2 2
g 1 g1 1

2 2
1 1

1 1( ) ( ) ( ) ( ) 0 J
2 2

( ) 2 ( ) 2 (1 cos )

K U K U mv mgy mv

v v gy v gR

θ θ θ θ

θ θ θ

+ = + ⇒ + = +

⇒ = − = − −
 

Using 2
1 3 0 m/s, 9 8 m/s ,v g= .  = .  and 0 10 m,R = .  we get ( ) 9 1 96(1 cos )v θ θ= − . − (m/s) 

Assess:  Beginning with a speed of 3.0 m/s at the bottom, the marble’s potential energy increases and kinetic energy 
decreases as it gets toward the top of the circle. At the top, its speed is 2.25 m/s. This is reasonable since some of the 
kinetic energy has been transformed into the marble’s potential energy. 

10.38.  Model:  Assume that the rubber band behaves similar to a spring. Also, model the rock as a particle. 
Visualize: 
 

 
 

Solve:  (a)  The rubber band is stretched to the left since a positive spring force on the rock due to the rubber band 
results from a negative displacement of the rock. That is, sp( ) ,xF kx= − where x is the rock’s displacement from the 

equilibrium position due to the spring force spF .  
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(b) Since the spF  versus x graph is linear with a negative slope and can be expressed as sp ,F kx= −  the rubber band 
obeys Hooke’s law. 
(c) From the graph, sp 20 N for 10 cm.F xΔ = Δ =  Thus, 

sp 220 N 200 N/m 2.0 10 N/m
0.10 m

F
k

x

Δ
= = = = ×

Δ
 

(d)  The conservation of energy equation f sf i siK U K U+ = +  for the rock is  

2 2 2 2 2 2 2 2
f f i i f i

f i

1 1 1 1 1 1 1 1(0 m) (0 m/s)
2 2 2 2 2 2 2 2

200 N/m (0 30 m) 19 m/s
0 050 kg

mv kx mv kx mv k m kx

kv x
m

+ = + ⇒ + = +

= = . =
.

 

Assess:  Note that ix  is ,xΔ  which is the displacement relative to the equilibrium position, and fx  is the equilibrium 
position of the rubber band, which is equal to zero. 

10.39.  Model:  We will assume the knee extensor tendon behaves according to Hooke’s Law and stretches in a 
straight line.  
Visiualize:  The elastic energy stored in a spring is given by 21

s 2 ( ) .U k s= Δ  

Solve:  For athletes, 
2 21

s,athlete 2
1( ) (33,000 N/m)(0 041 m) 27 7 J
2

U k s= Δ = . = .  

For non-athletes, 

2 21
s,non athlete 2

1( ) (33,000 N/m)(0 033 m) 18 0 J
2

U k s− = Δ = . = .  

The difference in energy stored between athletes and non-athletes is therefore 9.7 J. 
Assess:  Notice the energy stored by athletes is over 1.5 times the energy stored by non-athletes. 

10.40.  Model:  Model the block as a particle and the springs as ideal springs obeying Hooke’s law. There is no fric-
tion, hence the mechanical energy sK U+  is conserved. 
Visualize: 
 

 
 

Note that f e i e and .x x x x x= − = Δ  The before-and-after pictorial representations show that we put the origin of the 
coordinate system at the equilibrium position of the free end of the springs. 
Solve:  The conservation of energy equation f sf i siK U K U+ = + for the single spring is 

2 2 2 2
f f e i i e

1 1 1 1( ) ( )
2 2 2 2

mv k x x mv k x x+ − = + −  
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Using the value for fv  given in the problem, we get 

2 2 2 2
0 0

1 1 1 10 J 0 J ( ) ( )
2 2 2 2

mv k x mv k x+ = + Δ ⇒ = Δ  

Conservation of energy for the two-spring case: 
2 2 2

f i e i e
1 1 10 J 0 J ( ) ( )
2 2 2

mV k x x k x x+ = + − + −   2 2
f

1 ( )
2

mV k x= Δ  

Using the result of the single-spring case, 
2 2

f 0 f 0
1 2
2

mV mv V v= ⇒ =  

Assess:  The block separates from the spring at the equilibrium position of the spring. 

10.41.  Model:  Model the block as a particle and the springs as ideal springs obeying Hooke’s law. There is no fric-
tion, hence the mechanical energy sK U+  is conserved. 
Visualize: 
 

 
 

The springs in both cases have the same compression xΔ .  We put the origin of the coordinate system at the equilib-
rium position of the free end of the spring for the single-spring case (a), and at the free end of the two connected 
springs for the two-spring case (b). 
Solve:  The conservation of energy for the single-spring case: 

2 2 2 2
f sf i si f f e i i e

1 1 1 1( ) ( )
2 2 2 2

K U K U mv k x x mv k x x+ = + ⇒ + − = + −  

Using f e i f 00 m, 0 m/s, and ,x x v v v= = = =  this equation simplifies to 

2 2
0

1 1 ( )
2 2

mv k x= Δ  

Conservation of energy in the case of the two springs in series, where each spring compresses by /2,xΔ  is  

2 2 2 2
f sf i si f i

1 1 1 10 ( /2) ( /2)
2 2 2 2

K U K U mV mv k x k x+ = + ⇒ + = + Δ + Δ  

Using f e i0 m and 0 m/s,x x v′= = =  we get 

2 2
f

1 1 1 ( )
2 2 2

mV k x⎡ ⎤= Δ⎢ ⎥⎣ ⎦
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Comparing the two results we see that f 0/ 2.V v=  
Assess:  The block pushes on the spring until the spring has returned to its equilibrium length. 

10.42.  Model:  Assume an ideal spring that obeys Hooke’s law. There is no friction, and therefore the mechanical 
energy s gK U U+ +  is conserved.  
Visualize: 
 

 
 

The figure shows a before-and-after pictorial representation. We have chosen to place the origin of the coordinate 
system at the position where the ice cube has compressed the spring 10 cm. That is, 0 0y = .  
Solve:  (a)  The energy conservation equation 2 s2 g2 0 s0 g0K U U K U U+ + = + +  is 

2 2 2 2
2 e e 2 0 e 0

1 1 1 1( ) ( )
2 2 2 2

mv k x x mgy mv k x x mgy+ − + = + − +  

Using 2 0 00 m/s, 0 m, and 0 m/s,v y v=  = =  
2

2
2 e 2

1 ( )( )
2 2

k xmgy k x x y h
mg
Δ= − ⇒ = =  

(b)  Insert the values given 
2 2

2
( ) (25 N/m)(0 10 m) 25 5 cm 26 cm
2 2(0 050 kg)(9 8 m/s )

k xh
mg
Δ .= = = . ≈

. .
 

Assess:  The net effect of the launch is to transform the potential energy stored in the spring into gravitational poten-
tial energy. The block has kinetic energy as it comes off the spring, but we did not need to know this energy to solve 
the problem. The answer is independent of the angle of the slope. 

10.43.  Model:  Model the two packages as particles. Momentum is conserved in both inelastic and elastic colli-
sions. Kinetic energy is conserved only in a perfectly elastic collision. 
Visualize: 
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Solve:  For a package with mass m the conservation of energy equation is 

2 2
1 g1 0 g0 1 1 0 0

1 1( ) ( )
2 2m mK U K U m v mgy m v mgy+ = + ⇒ + = +  

Using 0 1( ) 0 m/s and 0 m,mv y= =  
2 2

1 0 1 0
1 ( ) ( ) 2 2(9 8 m/s )(3 0 m) 7 668 m/s
2 m mm v mgy v gy= ⇒ = = . . = .  

(a)  For the perfectly inelastic collision the conservation of momentum equation is 

f i 2 3 1 1 2( 2 )( ) ( ) (2 )( )x x m m mp p m m v m v m v= ⇒ + = +  

Using 1 2( ) 0 m /s, we getmv =  

2 3 1( ) ( ) /3 2 56 m/sm mv v= = .  

The packages move off together at a speed of 2.6 m/s. 
(b)  For the elastic collision, the mass m package rebounds with velocity 

3 1
2 1( ) ( ) (7.668 m/s) 2.56 m/s
2 3m m

m mv v
m m

−= = − = −
+

 

The negative sign with 3( )mv  shows that the package with mass m rebounds and goes to the position 4.y  We can 
determine 4y  by applying the conservation of energy equation as follows. For a package of mass m: 

2 2
f gf i gi 4 4 3 3

1 1( ) ( )
2 2m mK U K U m v mgy m v mgy+ = + ⇒ + = +  

Using 3 3 4( ) 2 55 m/s, 0 m, and ( ) 0 m/s,m mv y v= − .  = = we get 

2
4 4

1 ( 2 56 m/s) 33 cm
2

mgy m y= − . ⇒ =  

10.44.  Model:  Model the marble and the steel ball as particles. We will assume an elastic collision between the 
marble and the ball, and apply the conservation of momentum and the conservation of energy equations. We will also 
assume zero rolling friction between the marble and the incline. 
Visualize: 
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This is a two-part problem. In the first part, we will apply the conservation of energy equation to find the marble’s 
speed as it exits onto a horizontal surface. We have put the origin of our coordinate system on the horizontal surface 
just where the marble exits the incline. In the second part, we will consider the elastic collision between the marble 
and the steel ball. 
Solve:  The conservation of energy equation 1 g1 0 g0K U K U+ = +  gives us: 

2 2
M 1 M M 1 M 0 M M 0

1 1( ) ( )
2 2

m v m gy m v m gy+ = +  

Using 2
0 M 1 1 M 0 1 M 0

1( ) 0 m/s and 0 m, we get ( ) ( ) 2
2

v y v gy v gy= = = ⇒ = .  When the marble collides with the steel 

ball, the elastic collision gives the ball velocity 
M M

2 S 1 M 0
M S M S

2 2( ) ( ) 2m mv v gy
m m m m

= =
+ +

 

Solving for 0y  gives 
2

M S
0 2 S

M

1 ( ) 0.258 m 25.8 cm
2 2

m my v
g m
⎡ ⎤+= = =⎢ ⎥
⎣ ⎦

 

10.45.  Model:  Assume an ideal spring that obeys Hooke’s law. Since this is a free-fall problem, the mechanical 
energy g sK U U+ +  is conserved. Also, model the safe as a particle. 
Visualize: 
 

 
 

We have chosen to place the origin of our coordinate system at the free end of the spring, which is neither stretched 
nor compressed. The safe gains kinetic energy as it falls. The energy is then converted into elastic potential energy as 
the safe compresses the spring. The only two forces are gravity and the spring force, which are both conservative, so 
energy is conserved throughout the process. This means that the initial energy—as the safe is released—equals the 
final energy—when the safe is at rest and the spring is fully compressed. 
Solve:  The conservation of energy equation 1 g1 s1 0 g0 s0K U U K U U+ + = + +  is 

2 2 2 2
1 1 e 1 e 0 0 e e e

1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

mv mg y y k y y mv mg y y k y y+ − + − = + − + −  
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Using 1 0 0 m/sv v= =  and e 0 m,y =  the above equation simplifies to 

2
1 1 0

1
2

mgy ky mgy+ =  

2
5 50 1

2 2
1

2 ( ) 2(1000 kg)(9 8 m/s )(2 0 m ( 0 50 m)) 1 96 10  N/m 2 0 10  N/m
( 0 50 m)

mg y yk
y

− . . − − .
⇒ = = = . × ≈ . ×

− .
 

Assess:  By equating energy at these two points, we do not need to find how fast the safe was moving when it hit the spring. 

10.46.  Model:  Assume an ideal spring that obeys Hooke’s law. There is no friction and hence the mechanical en-
ergy f 1( ) 1 2 m/s 1 0 m/s 0 2 m/sxv = − . + . = − .  is conserved. 
Visualize: 
 

 
 

Solve:  (a)  When releasing the block suddenly, 2 s2 g2 1 s1 g1K U U K U U+ + = + +  

2 2 2 2
2 2 e 2 1 1 e 1

1 1 1 1( ) ( )
2 2 2 2

mv k y y mgy mv k y y mgy+ − + = + − +  

Using 2 10 m/s, 0 m/s,v v= =  and 1 e,y y=  we get 

2 2
2 1 2 1 2 1 1 2

2 2
1 2 1 2 1 2

10 J (490 N/m)( ) 0 J 0 J (245 N/m)( ) ( )
2

(245 N/m)( ) (5 0 kg)(9 8 m/s )( ) ( ) 0 20 m

y y mgy mgy y y mg y y

y y y y y y

+ − + = + + ⇒ − = −

⇒ − = . . − ⇒ − = .
 

(b)  When lowering the block gently until it rests on the spring, the block reaches a point of static equilibrium. 
2

net
(5 0 kg)(9 8 m/s )0 0 10 m

490 N/m
mgF k y mg y
k

. .= Δ − = ⇒ Δ = = = .  

(c)  In part (b), at a point 0.10 m down, the forces balance. But in part (a) the block has kinetic energy as it reaches 0.10 m. 
So the block continues on past the equilibrium point until all the gravitational potential energy is stored in the spring. 

10.47.  Model:  Assume an ideal spring that obeys Hooke’s law. Also assume zero rolling friction between the roller 
coaster and the track, and a particle model for the roller coaster. Since no friction is involved, the mechanical energy 

s gK U U+ +  is conserved. 
Visualize: 
 

 
We have chosen to place the origin of the coordinate system on the end of the spring that is compressed and touches 
the roller coaster car. 
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Solve:  (a)  The energy conservation equation for the car going to the top of the hill is 
2 2 2 2

2 g2 s2 0 g0 s0 2 2 e e 0 0 0 e
1 1 1 1( ) ( )
2 2 2 2

K U U K U U mv mgy k x x mv mgy k x x+ + = + +     + + − = + + −  

Noting that 0 2 1 0 e0 m, 0 m/s, 0 m/s, and | | 2 0 m,y v v x x= =  = − = . we obtain 

2
2

2
42

2 2

10 J 0 J 0 J 0 J (2 0 m)
2

2 2(400 kg)(9 8 m/s )(10 m) 1 96 10  N/m
(2 0 m) (2 0 m)

mgy k

mgyk

+ + = + + .

.
⇒ = = = . ×

. .

 

We now increase this value for k by 10% for safety, giving a value of 4 42 156 10  N/m 2 2 10  N/m. × ≈ . × .  
(b)  The energy conservation equation 3 g3 s3 0 g0 s0K U U K U U+ + = + +  is 

2 2 2 2
3 3 e e 0 0 0 e

1 1 1 1( ) ( )
2 2 2 2

mv mgy k x x mv mgy k x x+ + − = + + −  

Using 3 0 0 0 e5 0 m, 0 m/s, 0 m, and | | 2 0 m, we gety v y x x= − . = = − = .  

2 2
3 0 e

2 2 4 2
3

3

1 1( 5 0 m) 0 J 0 J 0 J ( )
2 2

1 1(400 kg) (400 kg)(9 8 m/s )(5 0 m) (2 156 10  N/m)(2 0 m)
2 2

17 7 m/s 18 m/s

mv mg k x x

v

v

+ − . + = + + −

− . . = . × .

⇒ = . ≈

 

10.48.  Model:  Since there is no friction, the sum of the kinetic and gravitational potential energy does not change. 
Model Julie as a particle. 
Visualize: 
 

 
 

We place the coordinate system at the bottom of the ramp directly below Julie’s starting position. From geometry, 
Julie launches off the end of the ramp at a 30º angle. 

Solve:  Energy conservation: 1 g1 0 g0K U K U+ = + 2 2
1 1 0 0

1 1
2 2

mv mgy mv mgy⇒ + = +  

Using 0 0 10 m/s, 25 m, and 3 m,v y y= = =  the above equation simplifies to 

2 2
1 1 0 1 0 1

1 2 ( ) 2(9 8 m/s )(25 m 3 m) 20 77 m/s
2

mv mgy mgy v g y y+ = ⇒ = − = . − = .  

We can now use kinematic equations to find the touchdown point from the base of the ramp. First we’ll consider the 
vertical motion: 

2 2 2
2 1 1 2 1 2 1 1 2 1 2 1

2
2 1 2 12 2

1 1( ) ( ) 0 m 3 m ( sin30°)( ) ( 9.8 m/s )( )
2 2

20.77 m/s sin30° (3 m)( ) ( ) 0
(4.9 m/s ) (4.9 m/s )

y yy y v t t a t t v t t t t

t t t t

= + − + − = + − + − −

( )
⇒ − − − − =
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2 2
2 1 2 1 2 1( ) (2.119 s)( ) (0.6122 s ) ( ) 2.377 st t t t t t− − − − = 0⇒ − =  

For the horizontal motion: 
2

2 1 1 2 1 2 1
1( ) ( )
2x xx x v t t a t t= + − + −  

2 1 1 2 1( cos30 )( ) 0 m (20 77 m/s)(cos30 )(2 377 s) 43 mx x v t t− = ° − + = . ° . =  

Assess:  Note that we did not have to make use of the information about the circular arc at the bottom that carries 
Julie through a 90°  turn. 

10.49.  Model:  We assume the spring to be ideal and to obey Hooke’s law. We also treat the block (B) and the ball 
(b) as particles. In the case of an elastic collision, both the momentum and kinetic energy equations apply. On the 
other hand, for a perfectly inelastic collision only the equation of momentum conservation is valid. 
Visualize: 
 

 
 

Place the origin of the coordinate system on the block that is attached to one end of the spring. The before-and-after 
pictorial representations of the elastic and perfectly inelastic collision are shown in figures (a) and (b), respectively. 
Solve:  (a)  For an elastic collision, the ball’s rebound velocity is 

b B
f b i b

b B

80 g( ) ( ) (5 0 m/s) 3 33 m/s
120 g

m mv v
m m

− −= = . = − .
+

 

The ball’s speed is 3.3 m/s. 
(b)  An elastic collision gives the block speed 

B
f B i b

b B

2 40 g( ) ( ) (5 0 m/s) 1 667 m/s
120 g

mv v
m m

= = . = .
+

 

To find the maximum compression of the spring, we use the conservation equation of mechanical energy for the 
block + spring system. 1 s1 0 s0That is :K U K U+ = +  

2 2 2 2 2 2
B f B 1 0 B f B 0 0 1 0 B f B

1 1 1 1( ) ( ) ( ) ( ) 0 ( ) ( ) 0
2 2 2 2

m v k x x m v k x x k x x m v′ + − = + −      + − = +  

2
1 0( ) (0 100 kg)(1 667 m/s) /(20 N/m) 11 8 cmx x− = . . = .  
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(c)  Momentum conservation f ip p=  for the perfectly inelastic collision means  

B B f b i b B i B

f f

( ) ( ) ( )
(0 100 kg 0 020 kg) (0 020 kg)(5 0 m/s) 0 m/v 0 833 m/s

m m v m v m v
v v

+ = +
. + . = . . + ⇒ = .

 

The maximum compression in this case can now be obtained using the conservation of energy equation 
1 s1 0 s0:K U K U+ = +  

2 2
B b f

B b
f

0 J (1/2) ( ) (1/2)( ) 0 J

0 120 kg (0 833 m/s) 0 0645 m 6 5 cm
20 N/m

k x m m v

m mx v
k

+ Δ = + +

+ .
⇒ Δ = = . = . = .

 

10.50.  Model:  Assume an ideal spring that obeys Hooke’s law. We treat the bullet and the block in the particle 
model. For a perfectly inelastic collision, the momentum is conserved. Furthermore, since there is no friction, the 
mechanical energy of the system (bullet block spring)+ +  is conserved. 
Visualize: 
 

 
 

We place the origin of our coordinate system at the end of the spring that is not anchored to the wall. 
Solve:  (a)  Momentum conservation for perfectly inelastic collision states f ip p= .  This means 

f i m i M f B f B( ) ( ) ( ) ( ) 0 kg m/s mm M v m v M v m M v mv v v
m M

⎛ ⎞+ = + ⇒ + = + ⇒ = ⎜ ⎟+⎝ ⎠
 

where we have used Bv  for the initial speed of the bullet. The mechanical energy conservation equation 

1 s1 e seK U K U+ = +  as the bullet embedded block compresses the spring is: 

2 2 2 2
1 e f e e

2 2
2 2

B B 2

1 1 1 1( ) ( ) ( )( ) ( )
2 2 2 2

1 1 ( )0 J ( ) 0 J
2 2

fm v k x x m M v k x x

m m M kdkd m M v v
m M m

′ + − = + + −

+⎛ ⎞+ = + + ⇒ =⎜ ⎟+⎝ ⎠

 

(b)  Using the above formula with 5 0 g, 2 0 kg, 50 N/m,m M k= . = . =  and 10 cm,d =  

2 2 2
B (0 0050 kg 2 0 kg)(50 N/m)(0 10 m) /(0 0050) 2 0 10  m/sv = . + . . . = . ×  

(c)  The fraction of energy lost is 
2 2 2 2B f

f
2 BB

1 1 ( )
2 2 1 11

2
0 0050 kg1 1 0 9975

(0 0050 kg 2 0 kg)

mv m M v vm M m M m
m v m m Mmv

m
m M

− + ⎛ ⎞+ + ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠

.= − = − = .
+ . + .

 

That is, during the perfectly inelastic collision 99.75% of the bullet’s energy is lost. The energy is dissipated inside 
the block. Although it is common to say, “The energy is lost to heat,” in the next chapter we’ll see that it is more 
accurate to say, “The energy is transformed to thermal energy.” 



10-32   Chapter 10 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

10.51.  Model:  Assume an ideal spring that obeys Hooke’s law. There is no friction, hence the mechanical energy 
g sK U U+ +  is conserved. 

Visualize: 
 

 
 

We have chosen to place the origin of the coordinate system on the free end of the spring that is neither stretched nor 
compressed, that is, at the equilibrium position of the end of the unstretched spring. The bullet’s mass is m and the 
block’s mass is M. 
Solve:  (a)  The energy conservation equation 2 s2 g2 1 s1 g1K U U K U U+ + = + +  becomes 

2 2 2 2
2 2 e 2 e 1 1 e 1 e

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

m M v k y y m M g y y m M v k y y m M g y y+ + − + + − = + + − − + −  

Noting 2 0 m/s,v =  we can rewrite the above equation as 
2 2 2

2 2 1 1 1( ) 2( ) ( ) ( ) ( )k y m M g y y m M v k yΔ + + Δ + Δ = + + Δ  

Let us express 1v  in terms of the bullet’s initial speed Bv  by using the momentum conservation equation f ip p=  
which is 1 B block( )m M v mv Mv+ = + .  Since block 0 m/s,v =  we have 

1 B
mv v

m M
⎛ ⎞= ⎜ ⎟+⎝ ⎠

 

We can also find the magnitude of 1y  from the equilibrium condition 1 e( )k y y Mg− = .  

1
Mgy
k

Δ =  

With these substitutions for 1v  and 1,yΔ  the energy conservation equation simplifies to 
22 2

2 B
2 1 2

2 2 2
2 2
B 1 2 22 2

( ) 2( ) ( )
( )

( )2 ( ) ( )

m v Mgk y m M g y y k
m M k

m M m M M g m Mv g y y k y
m km m

⎛ ⎞Δ + + Δ + Δ = + ⎜ ⎟+ ⎝ ⎠

+ + +⎛ ⎞ ⎛ ⎞⇒ = Δ + Δ − + Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

We still need to include the spring’s maximum compression (d) into this equation. We assume that 1 2,d y y= Δ + Δ  
that is, maximum compression is measured from the initial position 1( )y  of the block. Thus, using 2 1y d yΔ = − Δ =  
( / ),d Mg k−  we have 

1/22 2 2
2

B 2 22 ( / )m M m M M g m Mv gd k d Mg k
m km m

⎡ ⎤+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

(b)  Using 0 010 kg, 2 0 kg, 50 N/m,m M k= . = . =  and 0 45 m,d = .  
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2 2
2 2 2 2
B

2 2
2

B

2.010 kg 2.0 kg2 (9.8 m/s )(0.45 m) (2.010 kg) (9.8 m/s ) /(50 N/m)
0.010 kg 0.010 kg

1(50 N/m)(2.010 kg) [0.45 m (2.0 kg) (9.8 m/s ) /50 N/m]
(0.010 kg)

453 m/s

v

v

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+ − ×

⇒ =

 

The bullet has a speed of 24 5 10  m/s. × .  
Assess:  This is a reasonable speed for the bullet. 

10.52.  Model:  The track is frictionless. 
Visualize:  cv Rg=  
Solve:  (a) First use conservation of momentum during the collision, then conservation of energy as the combined 
block goes to the top of the loop. 

i fp p∑ = ∑  

tot0 ( )mmv m M v+ = +  

totm
m Mv v

m
+=  

Now use the conservation of energy. totv  is the speed of the combined block just after the collision. 

i i f fU K U K+ = +  

2 2
tot c

1 10 ( ) ( ) (2 ) ( )( )
2 2

m M v m M g R m M v+ + = + + +  

Cancel ( )m M+ and replace cv  with .Rg  
2
tot tot4 5 5v Rg Rg Rg v Rg= + = ⇒ =  

tot 5m
m M m Mv v Rg

m m
+ += =  

(b) First use conservation of momentum and kinetic energy during the collision, then conservation of mechanical 
energy as the big block goes to the top of the loop. Call the speed of M just after the elastic collision V and the speed 
of m just after the collision .mv′  

i fp p∑ = ∑  
We drop the vectors because this is one-dimensional motion, but v′  may be negative. 

0mmv mv MV′+ = +  

m
Mv v V
m

′= +  

Now use the conservation of energy as the block goes to the top of the loop. 
i i f fU K U K+ = +  

( )22 2 21 1 1 10 (2 )
2 2 2 2m mmv MV Mg R mv M Rg′ ′+ + = + +  

Subtract 21
2 mmv′  from both sides, cancel M, and solve for V. 

4 5V Rg Rg Rg= + =  
Now go back to the conservation of kinetic energy in the elastic collision. 

i fK K∑ = ∑  

2 2 21 1 1
2 2 2m mmv mv MV′= +  

Cancel 
1
2  and divide by m. 

2 2 5m m
Mv v Rg
m

′= +  
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Find 2
mv′  from the momentum equation. 

2
2 5m m

M Mv v V Rg
m m

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

2
2 2 2 5m m m

M M Mv v v V V Rg
m m m

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 

Subtract 2
mv  from both sides, cancel ,M

m
 and solve for .mv  

1 1 5 1 1 15 5 5
2 2 2 2 25m

M Rg M m Mv V Rg Rg Rg
m m mRg

+= + = + =  

Assess:  We expected the initial speed needed to be greater for the inelastic case because kinetic energy isn’t con-
served in the collision. 

10.53.  Model:  This is a two-part problem. In the first part, we will find the critical velocity for the block to go over 
the top of the loop without falling off. Since there is no friction, the sum of the kinetic and gravitational potential 
energy is conserved during the block’s motion. We will use this conservation equation in the second part to find the 
minimum height the block must start from to make it around the loop. 
Visualize: 
 

 
 

We place the origin of our coordinate system directly below the block’s starting position on the frictionless track. 
Solve:  The free-body diagram on the block implies 

2
c

G
mvF n

R
+ =  

For the block to just stay on track, 0n = . Thus the critical velocity cv  is 
2

2c
G c

mvF mg v gR
R

= = ⇒ =  

The block needs kinetic energy 21 1
c2 2mv mgR=  to go over the top of the loop. We can now use the conservation of 

mechanical energy equation to find the minimum height h. 
2 2

f gf i gi f f i i
1 1
2 2

K U K U mv mgy mv mgy+ = + ⇒ + = +  

Using f c f i, 2 , 0 m/s,v v gR y R v= = =  = and i ,y h=  we obtain 
1 (2 ) 0 2 5
2

gR g R gh h R+ = + ⇒ = .  

10.54.  Model:  Model Lisa (L) and the bobsled (B) as particles. We will assume the ramp to be frictionless, so that 
the mechanical energy of the system (Lisa bobsled spring)+ +  is conserved. Furthermore, during the collision, as 
Lisa leaps onto the bobsled, the momentum of the Lisa bobsled+  system is conserved. We will also assume the 
spring to be an ideal one that obeys Hooke’s law. 
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Visualize: 
 

 
 

We place the origin of our coordinate system directly below the bobsled’s initial position. 
Solve:  (a)  Momentum conservation in Lisa’s collision with bobsled states 1 0,p p=  or 

L B 1 L 0 L B 0 B L B 1 L 0 L

L
1 0 L

L B

( ) ( ) ( ) ( ) ( ) 0

40 kg( ) (12 m/s) 8 0 m/s
40 kg 20 kg

m m v m v m v m m v m v

mv v
m m

+ = + ⇒ + = +

⎛ ⎞ ⎛ ⎞
⇒ = = = .⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

The energy conservation equation: 2 s2 g2 1 s1 g1K U U K U U+ + = + +  is 

2 2 2 2
L B 2 2 e L B 2 L B 1 e e L B 1

1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

m m v k x x m m gy m m v k x x m m gy+ + − + + = + + − + +  

Using 2 2 1 10 m/s, 2000 N/m, 0 m, (50 m)sin20 17 1 m, 8 0 m/s,v k y y v= = = = ° = . = .  and L B( ) 60 kg,m m =  we get 

2 2 2
2 e

1 10 J (2000 N/m)( ) 0 J (60 kg)(8 0 m/s) 0 J (60 kg)(9 8 m/s )(17 1 m)
2 2

x x+ − + = . + + . .  

2 eSolving this equation yields ( ) 3 5 mx x− = . .  
(b)  As long as the ice is slippery enough to be considered frictionless, we know from conservation of mechanical 
energy that the speed at the bottom depends only on the vertical descent yΔ .  Only the ramp’s height h is important, 
not its shape or angle. 

10.55.  Model:  We can divide this problem into two parts. First, we have an elastic collision between the 20 g ball 
(m) and the 100 g ball (M). Second, the 100 g ball swings up as a pendulum. 
Visualize: 
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The figure shows three distinct moments of time: the time before the collision, the time after the collision but before 
the two balls move, and the time the 100 g ball reaches its highest point. We place the origin of our coordinate sys-
tem on the 100 g ball when it is hanging motionless. 
Solve:  For a perfectly elastic collision, the ball moves forward with speed 

1 0 0
2 1( ) ( ) ( )

3
m

M m m
m M

mv v v
m m

= =
+

 

In the second part, the sum of the kinetic and gravitational potential energy is conserved as the 100 g ball swings up 
after the collision. That is, 2 g2 1 g1K U K U+ = + . We have 

2 2
2 2 1 1

1 1( ) ( )
2 2M MM v Mgy M v Mgy+ = +  

Using 0
2 1 1 2

( )( ) 0 J, ( ) , 0 m, and  cos ,
3

m
M M

vv v y y L L θ=  =  = = − the energy equation simplifies to 

2
0

2
0

1 ( )( cos )
2 9

( ) 18 g (1 cos ) 18(9 8 m/s )(1 0 m)(1 cos50 ) 7 9 m/s

m

m

vg L L

v L

θ

θ

− =

⇒ = − = .  . − ° = .

 

10.56.  Model:  Model the balls as particles. We will use the Galilean transformation of velocities to analyze the 
problem of elastic collisions. We will transform velocities from the lab frame L to a frame M in which one ball is at 
rest. This allows us to apply equations to the case of a perfectly elastic collision in M, find the final velocities of the 
balls in M, and then transform these velocities back to the lab frame L. 
Visualize:  Let M be the frame of the 200 g ball. Denoting masses as 1 100 gm =  and 2 200 g,m =  the initial veloci-
ties in the L frame are i 1L( ) 4 m/sxv =  and i 2L( ) 3 m/sxv = − .  
 

 
 

Figure (a) shows the before-collision situation as seen in frame L, and figure (b) shows the before-collision situation 
as seen in frame M. The after-collision velocities in M are shown in figure (c), and figure (d) indicates velocities in L 
after they have been transformed to frame L from M. 
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Solve:  (a)  In the L frame, i 1L( ) 4 m/sxv = and i 2L( ) 3 m/sxv = − .  M is the reference frame of the 200 g ball, so 

ML( ) 3 m/sxv = − .  The velocities of the two balls in this frame can be obtained using the Galilean transformation of 
velocities OM OL LM( ) ( ) ( )x x xv v v= + . So, 

i 1M i 1L i ML( ) ( ) ( ) 4 m/s ( 3 m/s) 7 m/sx x xv v v= − = − − =     i 2M i 2L i ML( ) ( ) ( ) 3 m/s ( 3 m/s) 0 m/sx x xv v v= − = − − − =  
Figure (b) shows the “before” situation, where ball 2 is at rest. 
Now we can use Equations 10.42 to find the after-collision velocities in frame M: 

1 2
f 1M i 1M

1 2

1
f 2M i 1M

1 2

100 g 200 g 7( ) ( ) (7 m/s)  m/s
100 g 200 g 3

2 2(100) g 14( ) ( ) (7 m/s)  m/s
100 g 200 g 3

x x

x x

m mv v
m m

mv v
m m

− −= = = −
+ +

= = =
+ +

 

Finally, we need to apply the reverse Galilean transformation OM OL LM( ) ( ) ( )x x xv v v= +  with the same LM( ) ,xv  to 
transform the after-collision velocities back to the lab frame S: 

f 1L f 1M ML

f 2L f 2M ML

7( ) ( ) ( ) m/s 3 m/s 5 33 m/s
3
14( ) ( ) ( ) m/s 3 m/s 1 67 m/s
3

x x x

x x x

v v v

v v v

= + = − − = − .

= + = − = .
 

Figure (d) shows the “after” situation in the lab frame. The 100 g ball is moving left at 5.3 m/s; the 200 g ball is mov-
ing right at 1.7 m/s. 
(b)  The momentum conservation equation f ix xp p=  for a perfectly inelastic collision is  

1 2 f 1 i 1 2 i 2

f f

( ) ( ) ( )
(0 100 kg 0 200 kg) (0 100 kg)(4 0 m/s) (0 200 kg)( 3 0 m/s) 0 667 m/s

x x x

x x

m m v m v m v
v v

+ = +
. + .  = . . + . − . ⇒ = − .

 

Both balls are moving left at 0.67 m/s. 

10.57.  Model:  Model the balls as particles. We will use the Galilean transformation of velocities (Equation 10.43) 
to analyze the problem of elastic collisions. We will transform velocities from the lab frame L to a frame M in which 
one ball is at rest. This allows us to apply Equations 10.43 to a perfectly elastic collision in M. After finding the final 
velocities of the balls in M, we can then transform these velocities back to the lab frame L. 
Visualize:  Let M be the frame of the 400 g ball. Denoting masses as 1 100 gm =  and 2 400 g,m =  the initial veloci-
ties in the S frame are i 1L( ) 4 0 m/sxv = + .  and i 2L( ) 1 0 m/sxv = + . .  
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Figures (a) and (b) show the before-collision situations in frames L and M, respectively. The after-collision velocities 
in M are shown in figure (c). Figure (d) indicates velocities in L after they have been transformed to L from M. 
Solve:  In frame L, i 1L( ) 4 0 m/sxv = . and i 2L( ) 1 0 m/sxv = . .  Because M is the reference frame of the 400 g ball, 

ML( ) 1 0 m/sxv = . . The velocities of the two balls in this frame can be obtained using the Galilean transformation of 
velocities OM OL ML( ) ( ) ( ) .x x xv v v= −  So, 

i 1M i 1L ML( ) ( ) ( ) 4 0 m/s 1 0 m/s 3 0 m/sx x xv v v= − = . − . = .     i 2M i 2L ML( ) ( ) ( ) 1 0 m/s 1 0 m/s 0 m/sx x xv v v= − = . − . =  

Figure (b) shows the “before” situation in frame M where the ball 2 is at rest. 
Now we can use Equations 10.43 to find the after-collision velocities in frame M. 

1 2
f 1M i 1M

1 2

1
f 2M i 1M

1 2

100 g 400 g( ) ( ) (3 0 m/s) 1 80 m/s
100 g 400 g

2 2(100 g)( ) ( ) (3 0 m/s) 1 20 m/s
100 g 400 g

x x

x x

m mv v
m m

mv v
m m

− −= = . = − .
+ +

= = . = .
+ +

 

Finally, we need to apply the reverse Galilean transformation OM OL LM( ) ( ) ( )x x xv v v= +  with the same LM( ) ,xv  to 
transform the after-collision velocities back to the lab frame L. 

f 1L f 1M ML

f 2L f 2M ML

( ) ( ) ( ) 1 80 m/s 1 0 m/s 0 80 m/s
( ) ( ) ( ) 1 20 m/s 1 0 m/s 2 20 m/s

x x x

x x x

v v v
v v v

= + = − . + . = − .
= + = . + . = .

 

Figure (d) shows the “after” situation in frame L. The 100 g ball moves left at 0.80 m/s, the 400 g ball right at 2.2 m/s. 
Assess:  The magnitudes of the after-collision velocities are similar to the magnitudes of the before-collision velocities. 

10.58.  Model:  Use the model of the conservation of mechanical energy. 
Visualize: 
 

 
 

Solve:  (a)  The turning points occur where the total energy line crosses the potential energy curve. For 12 J,E =  this 
occurs at the points 1 mx =  and 8 mx = .  
(b)  The equation for kinetic energy K E U= −  gives the distance between the potential energy curve and total en-
ergy line. 4 JU = at 2 m,x =  so 12 J 4 J 8 JK = − = .  The speed corresponding to this kinetic energy is 

2 2(8 J) 5 7 m/s
0 5 kg

Kv
m

= = = .
.

 

(c)  Maximum speed occurs for minimum U. This occurs at 6 mx =  where 0 JU =  and 12 JK = .  The speed at this 
point is 

2 2(12 J) 6.9 m/s
0.500 kg

Kv
m

= = =  

(d) The particle leaves 1 mx =  with 6.3 m/s.v =  It gradually slows down, reaching 4 mx =  with a speed of 4.0 m/s. After 
4 m,x =  it speeds up again, achieving a speed of 6.9 m/s as it crosses 6 mx = .  Then it slows again, coming instantaneously 

to a halt ( 0 m/s)v =  at the 8 mx =  turning point. Now it will reverse direction and move back to the left. 
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(e)  If the particle has 4 JE =  it cannot cross the 8 J potential energy “mountain” in the center. It can either oscillate 
back and forth over the range 1 0 m 2 mx. ≤ ≤  or over the range 5 m 6 7 mx≤ ≤ . .  

10.59.  Solve:  (a)  The equilibrium positions are located at points where 0dU
dx

= .  

1

10 1 2cos(2 ) cos(2 )
2

1 1cos
2 2

dU x x
dx

x −

= = + ⇒ = −

⎛ ⎞⇒ = −⎜ ⎟
⎝ ⎠

 

Note that 1
2

−  is in radians and x is in meters. The function 1 1cos
2

− ⎛ ⎞−⎜ ⎟
⎝ ⎠

 may have values 2
3
π  and 4

3
π .  Thus there 

are two values of x,  

1 2
2 and  

3 3
x xπ π= =  

within the interval 0 m  mx π≤ ≤ .  
(b)  A point of stable equilibrium corresponds to a local minimum, while a point of unstable equilibrium corresponds 
to a local maximum. Compute the concavity of U(x) at the equilibrium positions to determine their stability. 

2

2 4sin(2 )d U x
dx

= −  

At 1 ,
3

x π=  
2

12
3( ) 4 2 3

2
d U x
dx

⎛ ⎞
= − = − .⎜ ⎟⎜ ⎟

⎝ ⎠
 Since 

2

1 12 ( ) 0,  
3

d U x x
dx

π< =  is a local maximum, so 1 3
x π=  is a point of 

unstable equilibrium. 

At 
2

2 22
2 3,  ( ) 4 2 3
3 2

d Ux x
dx

π ⎛ ⎞
= − = − − = + .⎜ ⎟⎜ ⎟

⎝ ⎠
 Since 

2

22
20,  
3

d U x
dx

π> =  is a local minimum, so 2
2
3

x π=  is a point 

of stable equilibrium. 

10.60.  Model:  The potential energy of two nucleons interacting via the strong force is 
0/

0[1 ]x xU U e−= −  

where x is the distance between the centers of the two nucleons, 15
0 2 0 10 m,x −= . × and 11

0 6 0 10  JU −= . × .  
Visualize:  Nucleons are protons and neutrons, and they are held together in the nucleus by a force called the strong 
force. This force exists between nucleons at very small separations. 
Solve:  (a) 
 

 
 

(b)  For 15 125 0 10 m, 55 1 10 Jx U− −= . × = . × .  This energy is represented by a total energy line. 

(c)  Due to conservation of total energy, the potential energy when 
155 0 10  Jx −= . ×  is transformed into kinetic energy 

until 15twice the radius 1 0 10  mx −= = . × .  At this separation, 1223.6 10 J.u −= × Thus, 

2 2 12 12 81 1 23.6 10  J 55.1 10  J 1.94 10  m/s
2 2

mv mv v− −+ + × = × ⇒ = ×  
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Assess:  A speed of 81.94 10  m/s×  is approximately 0.65 c where c is the speed of light. This speed is understandable 
for the present model. 

10.61.  Model:  Assume /U c x= .  Use conservation of energy. 
Visualize: Measure x from the post. The glider is released from position 1x  with initial speed 1 0.v =  It is repelled by 
the post and speeds up to speed f f at 1.0 m.v x = .  
Solve:  (a) Energy conservation i i f fK U K U+ = +  gives 

2 2
f i

f i

1 1
2 2

c cmv mv
x x

+ = +  

Rearranging and using i 0,v =  

2
f

i f

2 1 2c cv
m x mx

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

If our hypothesis about the potential energy is correct, then a graph of 
2
fv  versus i1/x  should be linear with slope 2c/m 

and y-intercept f2 / .c mx−  If this turns out to be true we can use the slope to determine c. 
 

 
 

The linear fit is seen to be extremely good, so the potential-energy hypothesis is supported. 
(b)  From the slope of the line, 

3 2 30 050 kg(slope) (0 04000 m /s ) 0 0010 J m 1 0 10 J m
2 2
mc −.= × = − . = . = . ×  

The units of J m follow from 
2 21 kg m /s 1 J.=  The same value for c can also be found from the y-intercept. 

Assess:  The units of J m are also seen to be necessary so that c divided by x, a distance of meters, gives an energy. 

10.62.  A 2.5 kg ball is thrown upward at a speed of 4.0 m/s from a height of 82 cm above a vertical spring. When 
the ball comes down it lands on and compresses the spring. If the spring has a spring constant of 600 N/m,k =  by 
how much is it compressed? 
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10.63.  (a)  A 1500 kg auto coasts up a 10.0 m high hill and reaches the top with a speed of 5.0 m/s. What initial 
speed must the auto have had at the bottom of the hill? 
(b)   
 

 
 

We place the origin of our coordinate system at the bottom of the hill. 
(c)  The solution of the equation is i 14 9 m/s 15 m/s.v = . ≈  This is approximately 30 mph and is a reasonable value 
for the speed at the bottom of the hill. 

10.64.  (a)  A spring gun is compressed 15 cm to launch a 200 g ball on a horizontal, frictionless surface. The ball 
has a speed of 2.0 m/s as it loses contact with the spring. Find the spring constant of the gun. 
(b)   
 

 
 

We place the origin of our coordinate system on the free end of the spring in the equilibrium position. Because the 
surface is frictionless, the mechanical energy for the system (ball spring)+  is conserved. 
(c)  The conservation of energy equation is 

f sf i si

2 2 2 2
1

2 2

1 1 1 1(0 m) (0 m/s) ( 0 15 m)
2 2 2 2

(0 200 kg)(2 0 m/s) ( 0 15 m)
36 N/m

K U K U

mv k m k

k
k

+ = +

+ = + − .

. . = − .
=

 

10.65.  (a)  A 100 g lump of clay traveling at 3.0 m/s strikes and sticks to a 200 g lump of clay at rest on a fric-
tionless surface. The combined lumps smash into a horizontal spring with 3 0 N/mk = . .  The other end of the spring is 
firmly anchored to a fixed post on the surface. How far will the spring compress? 
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(b)   
 

 
 

(c)  Solving the conservation of momentum equation we get 1 1 0 m/sxv = . .  Substituting this value into the conserva-
tion of energy equation yields 2 32 cmxΔ = .  

10.66.  (a)  A spring with spring constant 400 N/m is anchored at the bottom of a frictionless 30° incline. A 500 g 
block is pressed against the spring, compressing the spring by 10 cm, then released. What is the speed with which the 
block is launched up the incline? 
(b)  The origin is placed at the end of the uncompressed spring. This is the point from which the block is launched as 
the spring expands. 
 

 
 

(c)  Solving the energy conservation equation, we get f 2 6 m/sv = . .  

10.67.  Model:  Assume an ideal spring that obeys Hooke’s law. There is no friction, so the mechanical energy 
g sK U U+ +  is conserved. 

Visualize: 
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Place the origin of the coordinate system at the end of the unstretched spring, making e 0 my = .  
Solve:  The clay is in static equilibrium while resting in the pan. The net force on it is zero. We can start by using this 
to find the spring constant. 

2

sp G 1 e 1
1

(0 10 kg)(9 8 m/s )( ) 9 8 N/m
0 10 m

mgF F k y y ky mg k
y

. .  = ⇒ − − = − = ⇒ = − = − = .
− .

 

Now apply conservation of energy. Initially, the spring is unstretched and the clay ball is at the ceiling. At the end, 
the spring has maximum stretch and the clay is instantaneously at rest. Thus 

2 2 21 1 1
2 g 2 s 2 0 g 0 s 0 2 2 2 0 02 2 2( ) ( ) ( ) ( ) 0 JK U U K U U mv mgy ky mv mgy+ + = + + ⇒ + + = + +  

Since 0 0 m/sv =  and 2 0 m/s,v =  this equation becomes 

2 2 01
2 2 0 2 22

2
2 2

2 2 0

0 20 0 10 0

mg mgymgy ky mgy y y
k k

y y

+ = ⇒ + − =

+ . − . =
 

The numerical values were found using known values of m, g, k, and 0y .  The two solutions to this quadratic equation 
are 2 0 231 my = .  and 2 0 432 my = − . .  The point we’re looking for is below the origin, so we need the negative root. 
The distance of the pan from the ceiling is 

2| | 50 cm 93 cmL y= + =  

10.68.  Model:  This is a two-part problem. In the first part, we will find the critical velocity for the ball to go over 
the top of the peg without the string going slack. Using the energy conservation equation, we will then obtain the 
gravitational potential energy that gets transformed into the critical kinetic energy of the ball, thus determining the 
angle θ.  
Visualize: 
 

 
 

We place the origin of our coordinate system on the peg. This choice will provide a reference to measure gravita-
tional potential energy. For θ  to be minimum, the ball will just go over the top of the peg. 
Solve:  The two forces in the free-body force diagram provide the centripetal acceleration at the top of the circle. 
Newton’s second law at this point is 

2

G
mvF T

r
+ =  

where T is the tension in the string. The critical speed cv  at which the string goes slack is found when 0T → .  In this case, 
2

2C
C /3mvmg v gr gL

r
= ⇒ = =  

The ball should have kinetic energy at least equal to  
2
C

1 1
2 2 3

Lmv mg ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

for the ball to go over the top of the peg. We will now use the conservation of mechanical energy equation to get the 
minimum angle θ.  The equation for the conservation of energy is 

2 2
f gf i gi f f i i

1 1
2 2

K U K U mv mgy mv mgy+ = + ⇒ + = +  
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Using 21
f c f i C3, , 0, and the above value for  , we getv v y L v v=  =  =  

i i
1
2 3 3 2

L L Lmg mg mgy y+ = ⇒ =  

That is, the ball is a vertical distance 1
2 L  above the peg’s location or a distance of  

2
3 2 6
L L L⎛ ⎞− =⎜ ⎟

⎝ ⎠
 

below the point of suspension of the pendulum, as shown in the figure on the right. Thus, 
/6 1cos 80 4

6
L
L

θ θ= = ⇒ = . °  

10.69.  Model:  Assume an ideal spring that obeys Hooke’s law. The mechanical energy s gK U U+ +  is conserved 
during the launch of the ball. 
Visualize: 
 

 
 

This is a two-part problem. In the first part, we use projectile equations to find the ball’s velocity 2v  as it leaves the 
spring. This will yield the ball’s kinetic energy as it leaves the spring. 
Solve:  Using the equations of kinematics, 

2
3 2 2 3 2 3 2 2 3

2 3 3 2

2
3 2 2 3 2 3 2

2 2
2 3 3

1( ) ( ) 5.0 m 0 m ( cos30°)( 0 s) 0 m
2

( cos30°) 5.0 m (5.0 m/ cos30°)
1( ) ( )
2
11.5 m 0 ( sin30°)( 0 s) (9.8 m/s )( 0 s)
2

x x

y y

x x v t t a t t v t

v t t v

y y v t t a t t

v t t

= + − + − ⇒ = + − +

= ⇒ =

= + − + −

− = + − + −

 

Substituting the value for 3,t  
2

2
2

2 2

5 0 m 5 0 m( 1 5 m) ( sin30 ) (4 9 m/s )
cos30 cos30

v
v v

⎛ ⎞ ⎛ ⎞. .− . = ° − .⎜ ⎟ ⎜ ⎟° °⎝ ⎠ ⎝ ⎠
 

22
2

163 33( 1 5 m) (2 887 m) 6 102 m/sv
v

.
⇒ − . = + . − ⇒ = .  

The conservation of energy equation 2 s2 g2 1 s1 g1K U U K U U+ + = + +  is 

2 2 2 2
2 2 1 1

1 1 1 1(0 m) ( )
2 2 2 2

mv k mgy mv k s mgy+ + = + Δ +  

Using 2 0 m,y =  1 0 m/s,v =  0 20 m,sΔ = .  and 1 ( )sin 30 ,y s g= − Δ °  we get 

2 2 2 2
2 2

2 2 2

1 10 J 0 J 0 J ( ) ( )sin30 ( ) 2 ( )sin30
2 2

(0 20 m) (0 020 kg)(6 102 m/s) 2(0 020 kg)(9 8 m/s )(0 20)(0 5) 19 6 N/m

mv k s mg s s k mv mg s

k k

+ + = + Δ − Δ °     Δ = + Δ °

. = . . + . . . . ⇒ = .
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The final answer rounds to 20 N/m. 
Assess:  Note that 1 ( )sin30y s= − Δ °  is with a minus sign and hence the gravitational potential energy 1mgy  is 

( )sin30mg s− Δ °.  

10.70.  Model:  Choose yourself spring earth+ +  as the system. There are no forces from outside this system, so it 
is an isolated system. The interaction forces within the system are the spring force of the bungee cord and the gravita-
tional force. These are both conservative forces, so mechanical energy is conserved. 
Visualize: 
 

 
 

We can equate the system’s initial energy, as you step off the bridge, to its final energy when you reach the lowest 
point. We do not need to compute your speed at the point where the cord starts to stretch. We do, however, need to 
note that the end of the unstretched cord is at 21

0 1 2s 2 0230 m 70 m, so ( )y y U k y y= − = = − .  Also note that 1s 0,U =  

since the cord is not stretched. The energy conservation equation is 
2

2 2g 2s 1 1g 1s 2 2 0 1
10 J ( ) 0 J 0 J
2

K U U K U U mgy k y y mgy+ + = + + ⇒ + + − = + +  

Multiply out the square of the binomial and rearrange: 
2 2

2 2 0 2 0 1

2 2 21
2 0 2 0 2 2

1 1
2 2

2 22 100 8 980 0

mgy ky ky y ky mgy

mg mgyy y y y y y
k k

+ − + =

⎛ ⎞ ⎛ ⎞⇒ + − + − = − . + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

This is a quadratic equation with roots 89.9 m and 10.9 m. The first is not physically meaningful because it is a 
height above the point where the cord started to stretch. So we find that your distance from the water when the 
bungee cord stops stretching is 10.9 m which is 11 m to two sig figs. 

10.71.  Model:  Assume an ideal spring that obeys Hooke’s law. There is no friction, hence the mechanical energy 
g sK U U+ +  is conserved. 

Visualize: 
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We have chosen to place the origin of the coordinate system at the point of maximum compression. We will use 
lengths along the ramp with the variable s rather than x. 
Solve:  (a)  The conservation of energy equation 2 g2 s2 1 g1 s1K U U K U U+ + = + +  is 

2 2 2 2
2 2 1 1

2 2 2

2 2

1 1 1( ) (0 m)
2 2 2

1 1 1(0 m/s) (0 m) ( ) (0 m/s) (4 0 m )sin30 0 J
2 2 2

1 1(250 N/m)( ) (10 kg)(9 8 m/s )(4 0 m )
2 2

mv mgy k s mv mgy k

m mg k s m mg s

s s

+ + Δ = + +

+ + Δ = + . + Δ ° +

⎛ ⎞Δ = . . + Δ ⎜ ⎟
⎝ ⎠

 

This gives the quadratic equation: 
2 2 2 2(125 N/m)( ) (49 kg m/s ) 196 kg m /s 0
1 46 m and 1 07 m (unphysical)

s s
s
Δ − ⋅ Δ − ⋅ =

⇒ Δ = . − .  
 

The maximum compression is 1.46 m which rounds to 1.5 m. 
(b)  We will now apply the conservation of mechanical energy to a point where the vertical position is y and the 
block’s velocity is v. We place the origin of our coordinate system on the free end of the spring when the spring is 
neither compressed nor stretched. 

2 2 2 2
1 1

2 2

1 1 1 1( ) (0 m)
2 2 2 2

1 1(  sin30 ) ( ) 0 J (4 0 m sin30 ) 0 J
2 2

mv mgy k s mv mgy k

mv mg s k s mg

+ + Δ = + +

+ −Δ ° + Δ = + . ° +
 

2 21 1( ) ( sin30 ) sin30 (4 0 m) 0
2 2

k s mg s mv mgΔ − ° Δ + − ° . =  

To find the compression where v is maximum, take the derivative of this equation with respect to :sΔ  
1 1 2( ) ( sin30 )  2 0 0
2 2

dvk s mg m v
d s

Δ − ° + − =
Δ

 

Since 0 at the maximum, we havedv
d s

=
Δ

 

2( sin30 )/ (10 kg)(9 8 m/s )(0 5)/(250 N/m) 19 6 cms mg kΔ = ° = . . = .  
This is 20 cm to two sig figs. 

10.72.  Model:  Assume an ideal, massless spring that obeys Hooke’s law. Let us also assume that the cannon (C) 
fires balls (B) horizontally and that the spring is directly behind the cannon to absorb all motion. 
Visualize: 
 

 
 

The before-and-after pictorial representation is shown, with the origin of the coordinate system located at the spring’s 
free end when the spring is neither compressed nor stretched. This free end of the spring is just behind the cannon. 
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Solve:  The momentum conservation equation f ix xp p=  is 

B f B C f C B i B C i C( ) ( ) ( ) ( )x x x xm v m v m v m v+ = +  
Since the initial momentum is zero, 

C
f B f C f C f C

B

200 kg( ) ( ) ( ) 20( )
10 kgx x x x

mv v v v
m

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
 

The mechanical energy conservation equation for the cannon spring+  f sf i siK U K U+ = +  is 

2 2 2 2 2
f C i C f C

f C

1 1 1 1 1( ) ( ) ( ) 0 J 0 J ( ) ( )
2 2 2 2 2

(20,000 N/m)( ) (0 50 m) 5 0 m/s
200 kg

x

x

m v k x m v k x m v

kv x
m

+ Δ = + ⇒ + Δ =

⇒ = ± Δ = ± . = ± .
 

To make this velocity physically correct, we retain the minus sign with f C( )xv .  Substituting into the momentum con-
servation equation yields: 

f B( ) 20( 5 0 m/s) 100 m/sxv = − − . =  

10.73.  Model:  This is a collision between two objects, and momentum is conserved in the collision. In addition, 
because the interaction force is a spring force and the surface is frictionless, energy is also conserved. 
Visualize: 
 

 
 

Let part 1 refer to the time before the collision starts, part 2 refer to the instant when the spring is at maximum com-
pression, and part 3 refer to the time after the collision. Notice that just for an instant, when the spring is at maximum 
compression, the two blocks are moving side by side and have equal velocities: A2 B2 2v v v= = .  This is an important 
observation. 
Solve:  First relate part 1 to part 2. Conservation of energy is 

2 2 2 2 2 2
A A1 A A2 B B2 max A B 2 max

1 1 1 1 1 1( ) ( ) ( )
2 2 2 2 2 2

m v m v m v k x m m v k x= + + Δ = + + Δ  

where maxxΔ  is the spring’s compression. gU is not in the equation because there are no elevation changes. Also note 

that 2K  is the sum of the kinetic energies of all moving objects. Both 2v  and maxxΔ  are unknowns. Now add the 
conservation of momentum: 

A A1
A A1 A A2 B B2 A B 2 2

A B
( ) 2 667 m/sm vm v m v m v m m v v

m m
= + = + ⇒ = = .

+
 

Substitute this result for 2v  into the energy equation to find: 

2 2 2
max A A1 A B 2

2 2
A A1 A B 2

max

1 1 1( ) ( )
2 2 2

( ) 0 046 m 4 6 cm

k x m v m m v

m v m m vx
k

Δ = − +

− +
⇒ Δ = = . = .

 

Notice how both conservation laws were needed to solve this problem. 
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(b)  Again, both energy and momentum are conserved between “before” and “after.” Energy is  

2 2 2 2 2
A A1 A A3 B B3 A3 B3

1 1 1 116
2 2 2 2

m v m v m v v v= + ⇒ = +  

The spring is no longer compressed, so the energies are purely kinetic. Momentum is 

A A1 A A3 B B3 A3 B38 2m v m v m v v v= + ⇒ = +  

We have two equations in two unknowns. From the momentum equation, we can write B3 A32(4 )v v= −  and use this 
in the energy equation to obtain: 

2 2 2 2 2
A3 A3 A3 A3 A3 A3

116 4(4 ) 3 16 32 3 16 16 0
2

v v v v v v= + ⋅ − = − + ⇒ − + =  

This is a quadratic equation for A3v  with roots A3 (4 m/s, 1 33 m/s)v = . .  Using B3 A32(4 ),v v= −  these two roots give 

B3 (0 m/s, 5.333 m/s).v =  The first pair of roots corresponds to a “collision” in which A misses B, so each keeps its 
initial speed. That’s not the situation here. We want the second pair of roots, from which we learn that the blocks’ 
speeds after the collision are A3 B31 33 m/s and 5 3 m/sv v= . = . .  

10.74.  Model:  Mechanical energy and momentum are conserved during the expansion of the spring.  
Visualize:  Please refer to Figure CP10.74. 
Solve:  Example 10.8 is a very similar problem, except that the objects are initially at rest. We can use the solution 
from Example 10.8 for this problem in a reference frame S′  in which the two carts are initially at rest, then transform 
the answer to the frame S in which the carts are initially moving. 
Thus in the S′  frame, 

2
1

2
i

fx 2
2

( )( )
(1 )m

m

k xv
m

′ Δ=
+

 

2
f 1 f 2

1
( ) ( )x x

mv v
m

′ ′= −  

Let the 100 g cart be Cart 1 and the 300 g cart be Cart 2. With 120 N/mk =  and i 4 0 cm,xΔ = .  

f 2 f 1( ) 0 40 m/s,  ( ) 1 2 m/sx xv v′ ′= . = − .  
An object at rest in the S′  frame is traveling to the right at 1.0 m/s in the S frame. The equation of transformation is 
therefore 

1 0 m/sx xv v′= + .  
In the S frame, the velocities of the carts are 

f 1( ) 1 2 m/s 1 0 m/s 0 2 m/sxv = − . + . = − .   

f 2( ) 0 40 m/s 1 0 m/s 1 4 m/sxv = . + . = .  
Assess:  Cart 1 is moving slowly to the left while the heavier Cart 2 is moving quickly to the right. 

10.75.  Model:  Model the balls as particles, and assume a perfectly elastic collision. After the collision is over, the 
balls swing out as pendulums. The sum of the kinetic energy and gravitational potential energy does not change as 
the balls swing out. 
Visualize: 
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In the pictorial representation we have identified before-and-after quantities for both the collision and the pendulum 
swing. We have chosen to place the origin of the coordinate system at a point where the two balls at rest barely touch 
each other. 
Solve:  As the ball with mass 1,m  whose string makes an angle ilθ  with the vertical, swings through its equilibrium 
position, it lowers its gravitational energy from 1 0 1 i1( cos )m gy m g L L θ= −  to zero. This change in potential energy 
transforms into a change in kinetic energy. That is, 

2
1 i1 1 1 1 1 1 i1

1( cos ) ( ) ( ) 2 (1 cos )
2

m g L L m v v gLθ θ− = ⇒ = −  

Similarly, 1 2 i2 i1 i2 1 1 1 2( ) 2 (1 cos )  Using 45 , we get ( ) 2 396 m/s ( )v gL v vθ θ θ= − . = = ° = . = .  Both balls are moving at 
the point where they have an elastic collision. Since our analysis of elastic collisions was for a situation in which 
ball 2 is initially at rest, we need to use the Galilean transformation to change to a frame S′ in which ball 2 is at rest. Ball 2 
is at rest in a frame that moves with ball 2, so choose S′ to have 2 396 m/s,V = − .  with the minus sign because this frame 
(like ball 2) is moving to the left. In this frame, ball 1 has velocity 1 1 1 1( ) ( ) 2 396 m/s 2 396 m/s 4 792 m/sv v V′ = − = . + . = .  
and ball 2 is at rest. The elastic collision causes the balls to move with velocities 

1 2
2 1 1 1

1 2

1
2 2 1 1

1 2

1( ) ( ) (4 792 m/s) 1 597 m/s
3

2 2( ) ( ) (2 396 m/s) 3 194 m/s
3

m mv v
m m

mv v
m m

′ ′

′ ′

−= = − . = − .
+

= = . = .
+

 

We can now use v v V= ′ +  to transform these back into the laboratory frame: 

2 1

2 2

( ) 1 597 m/s 2 396 m/s 3 99 m/s
( ) 3 195 m/s 2 396 m/s 0 799 m/s
v
v

= − . − . = − .
= . − . = .

 

Having determined the velocities of the two balls after collision, we will once again use the conservation equation 
f gf i giK U K U+ = +  for each ball to solve for the f1θ  and f 2θ .  

2 2
1 3 1 1 f1 1 2 1

1 1( ) (1 cos ) ( ) 0 J
2 2

m v m gL m vθ+ − = +  

Using 3 1( ) 0,v =  this equation simplifies to  

2 2
f1 f1 f1

1 1(1 cos ) ( 3 99 m/s) cos 1 ( 3 99 m/s) 79 3
2 2

gL
gL

θ θ θ− = − . ⇒ = − − . ⇒ = . °  

The 100 g ball rebounds to 79º. Similarly, for the other ball: 

2 2
2 3 2 2 f 2 2 2 2

1 1( ) (1 cos ) ( ) 0 J
2 2

m v m gL m vθ+ − = +  

Using 3 2( ) 0,v =  this equation becomes 

2
f 2 f 2

1cos 1 (0 799) 14 7
2gL

θ θ⎛ ⎞
= − . ⇒ = . °⎜ ⎟

⎝ ⎠
 

The 200 g ball rebounds to 14.7°. 

10.76.  Model:  Model the sled as a particle. Because there is no friction, the sum of the kinetic and gravitational 
potential energy is conserved during motion. 
Visualize: 
 

kcm
Text Box
4.792 m/s
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Place the origin of the coordinate system at the center of the hemisphere. Then 0y R=  and, from geometry, 

1 cosy R φ= .  
Solve:  The energy conservation equation 1 1 0 0K U K U+ = +  is 

2 2 2
1 1 0 0 1 1

1 1 1 cos 2 (1 cos )
2 2 2

mv mgy mv mgy mv mgR mgR v gRφ φ+ = + ⇒ + = ⇒ = −  

(b)  If the sled is on the hill, it is moving in a circle and the r-component of netF  has to point to the center with mag-

nitude 2
net /F mv R= .  Eventually the speed gets so large that there is not enough force to keep it in a circular trajec-

tory, and that is the point where it flies off the hill. Consider the sled at angle φ.  Establish an r-axis pointing toward 
the center of the circle, as we usually do for circular motion problems. Newton’s second law along this axis requires: 

2

net G

2 2

( ) cos cos

cos cos

r r
mvF F n mg n ma

R
mv vn mg m g

R R

φ φ

φ φ

= − = − = =

⎛ ⎞
⇒ = − = −⎜ ⎟⎜ ⎟

⎝ ⎠

 

The normal force decreases as v increases. But n can’t be negative, so the fastest speed at which the sled stays on the 
hill is the speed maxv  that makes 0n → .  We can see that max cosv gR φ= .  
(c)  We now know the sled’s speed at angle ,φ  and we know the maximum speed it can have while remaining on the 
hill. The angle at which v reaches maxv  is the angle maxφ  at which the sled will fly off the hill. Combining the two 
expressions for 1v  and maxv  gives: 

max max

1
max max

2 (1 cos ) cos 2 (1 cos ) cos
2 2cos cos 48
3 3

gR gR R Rφ φ φ φ

φ φ −

− = ⇒ − =

⎛ ⎞⇒ = ⇒ = = °⎜ ⎟
⎝ ⎠

 




