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Conceptual Questions 

11.1.  There is not enough information to tell. The lost potential energy and the work done by the environment could 
increase the kinetic energy or it is possible that all the work and energy are converted to thermal energy. 

11.2.  There is not enough information to tell. The work done could cause some or all of the potential energy change 
or some of the work could be converted to thermal energy. Without more information, it is impossible to say whether 
a kinetic energy change is present.  

11.3.  The system is doing work on the environment. The total mechanical energy of the system is lower.  

11.4.  The ball’s kinetic energy is equal to the work done on it by gravity. Since work is force ×  distance, the kinetic 
energy of the ball increases by equal amounts in equal distance intervals. 

11.5.  No work was done by gravity. g gW m y= − Δ .  Here, 0yΔ = .  Any work done during a downward part of the 
motion was undone during the upward parts. 

11.6.  The kinetic energies are equal. Equal forces are applied over equal displacements so that the same work is done 
on each. Thus, the change in kinetic energy is the same. Because i 0,K =  fK KΔ = .  (The plastic will be moving 10 
times faster, however.) 

11.7.  The work is the same in both cases, since the work done against gravity is ,gm y− Δ  and ,yΔ  the change in 
height, is the same in both cases.  

11.8.  (a) No, the rate of change of potential energy with respect to position will be zero at that point, but the value 
of the potential energy is not known without specifying it at some reference point.  
(b) No, the zero point for the potential energy is arbitrary. There will be a force present if the rate of change of the 
potential energy with position is nonzero. 

11.9.  The kinetic energy was dissipated as thermal energy by friction between the tires and the road and in the 
brakes. 

11.10.  Gravitational potential energy is transformed into thermal energy. There is no change in the kinetic energy. 
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11.11.  (a) Push a puck with force F across a frictionless level surface. With the puck as the system, 
extW F x K= Δ = Δ .  The gravitational potential energy does not change because 0yΔ = .  Since the surface is 

frictionless, th 0EΔ = .  
(b) Push a box across a rough level surface at constant speed. The system is the box. Again, 0,yΔ =  but now 

0,KΔ =  and friction dissipates the external work done by the push as thermal energy.  

11.12.  Power is energy per time. The energy required to lift a beam a height yΔ  is the same as the change in 

gravitational potential energy of the beam. Power W mg yP
t t

Δ= = .
Δ Δ

 So doubling yΔ  and halving tΔ  requires a 

different power (2 ) 4 4
( /2)

mg y mg yP P
t t

Δ Δ′ = = = .
Δ Δ

 The power must be increased by a factor of 4. 

Exercises and Problems 

Section 11.2  Work and Kinetic Energy 

Section 11.3  Calculating and Using Work 

11.1.  Solve:  (a) (3)(2) 4 6 18x x y yA B A B A B⋅ = + = + ( )(− ) = − .   

(b) (3)(6) 2 4 10x x y yA B A B A B⋅ = + = + (− )( ) = .  

11.2.  Solve:  (a) (4)( 2) ( 2)( 3) 2x x y yA B A B A B⋅ = + = − + − − = − .   

(b) ( 4)(2) (2)(4) 0x x y yA B A B A B⋅ = + = − + = .  

11.3.  Solve:  (a) The length of A  is 2 2(3) 4 25 5A A A A= = ⋅ = +( ) = = . The length of B  is 2 2(2) ( 6)B = + − =  

40 2 10= .  Using the answer 18A B⋅ = −  from Ex 11.1(a), 

1

cos

18 (5)(2 10)cos

cos ( 18/ 40) 125

A B AB

−

⋅ =

− =

= − = °

α
α

α

 

(b) The length of A  is 2 2(3) 2 13A A A A= = ⋅ = + (− ) = .  The length of B  is 2 2(6) 4 52 2 13B = + ( ) = = .  

Using the answer 10A B⋅ =  from Ex 11.1(b), 

1

cos

10 ( 13)(2 13)cos

cos (10/26) 67

A B AB

−

⋅ =

=

= = °

α
α

α

 

11.4.  Solve:  (a) The length of A  is 2 2(4) 2 20A A A A= = ⋅ = +(− ) = . The length of B  is 2 2( 2) 3B = − + (− ) =  

13.  Using the answer 2A B⋅ = −  from EX11.2(a), 

1

cos

2 ( 20)( 13)cos

cos ( 2/ 260) 97

A B AB

−

⋅ =

− =

= − = °

α
α

α

 

(b) From EX11.2(b), 0A B⋅ = .  Thus  
cos 0

90
=
= °

α
α
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11.5.  Visualize:  Please refer to Figure EX11.5. 
Solve:   (a) cos (5)(3)cos40 11A B AB⋅ = = ° = .α  

(b) cos (2)(3)cos140 4 6C D CD⋅ = = ° = − . .α  

(c) cos (3)(4)cos90 0E F EF⋅ = = ° .α =  

11.6.  Visualize:  Please refer to Figure EX11.6. 
Solve:   (a) cos (2)(4)cos110 2 7A B AB⋅ = = ° = − . .α  
(b) cos (5)(4)cos180 20C D CD⋅ = = ° = − .α  
(c) cos (4)(3)cos30 10E F EF⋅ = = ° = .α  

11.7.  Solve:  (a) 
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 3 0 6 0 ) (2 0 ) Nm 6 0 12  J 6 0 JW F r i j i i i j i
=⎛ ⎞

⎜ ⎟= ⋅ Δ = − . + . ⋅ . = − . ⋅ + ⋅ = − . .
⎜ ⎟
⎝ ⎠

 

(b) 
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 3 0 6 0 ) (2 0 ) Nm 6 0 12  J 12 JW F r i j j i j j j
=⎛ ⎞

⎜ ⎟= ⋅ Δ = − . + . ⋅ . = − . ⋅ + ⋅ = .
⎜ ⎟
⎝ ⎠

 

11.8.  Solve:  (a) 
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 4 0 6 0 ) ( 3 0 ) Nm 12 18 0  J 12 JW F r i j i i i j i
=⎛ ⎞

⎜ ⎟= ⋅ Δ = − . − .  ⋅ − . = ⋅ + . ⋅ = .
⎜ ⎟
⎝ ⎠

 

(b) ˆ ˆ ˆ ˆ( 4 0 6 0 ) (3 0 2 0 ) Nm 12 12 J 0 JW F r i j i j= ⋅ Δ = − . − . ⋅ . − . = (− + ) = .  

11.9.  Model:  Use the work-kinetic energy theorem to find the net work done on the particle. 

Visualize: 
 

 

Solve:  From the work-kinetic energy theorem, 
22 2 2 2 2

1 0 1 0
1 1 1 1( ) (0 020 kg) (30 m/s) 30 m/s 0J
2 2 2 2

W K mv mv m v v ⎡ ⎤= Δ = − = − = . − (− ) =⎣ ⎦  

Assess:   Negative work is done in slowing down the particle to rest, and an equal amount of positive work is done in 
bringing the particle to the original speed but in the opposite direction. 

11.10.  Model:  Work done by a force F  on a particle is defined as ,W F r= ⋅ Δ  where rΔ  is the particle’s 
displacement. 

Visualize: 
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Solve:  (a) The work done by gravity is 
2

g G ˆ ˆ( ) (2 25 0 75)  Nm (2 0 kg)(9 8 m/s )(1 50 m) J 29 JW F r mgj j= ⋅ Δ = − ⋅ . − . = − . . . = −  

(b) The work done by hand is H hand on bookW F r= ⋅ Δ .  As long as the book does not accelerate,  

hand on book earth on book

2
H

ˆ ˆ( )

ˆ ˆ( ) 2 25 0 75  Nm (2 0 kg)(9 8 m/s )(1 50 m) 29 J

F F mgj mgj

W mgj j

= − = − − =

= ⋅ ( . − . ) = . . . =
 

11.11.  Model:  Model the piano as a particle and use ,W F r= ⋅ Δ  where W is the work done by the force F  
through the displacement rΔ .  

Visualize: 
 

 
 

Solve:  For the force G :F  
2 4

G ( ) ( )cos(0 ) (255 kg)(9 81 m/s )(5 00 m)(1.00) 1.25 10  JgW F r F r F r= ⋅ Δ = ⋅ Δ = ⋅ Δ ° = . . = ×  

For the tension 1 :T  
3

1 1( )( )cos(150 ) 1830 N 5 00 m 0 8660 7 92 10 JW T r T r= ⋅ Δ = Δ ° = ( )( . )(− . ) = − . ×  

For the tension 2 :T  
3

2 2( )( )cos(135 ) 1295 N 5 00 m 0 7071 4 58 10 JW T r T r= ⋅ Δ = Δ ° = ( )( . )(− . ) = − . ×  

Assess:   Note that the displacement rΔ  in all the above cases is directed downwards along ĵ− .   

11.12.  Model:  Model the crate as a particle and use ,W F r= ⋅ Δ  where W is the work done by a force F  on a 
particle and rΔ  is the particle’s displacement. 

Visualize: 
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Solve:  For the force k :f  

k k ( )cos(180 ) 660 N 3 0 m 1 0 2 0 kJW f r f r= ⋅ Δ = Δ ° = ( )( . )(− . ) = − .  

For the tension 1 :T  

1 1( )( )cos(20 ) 600 N 3 0 m 0 9397 1 7 kJ= ⋅ Δ = Δ ° = ( )( . )( . ) = .W T r T r  

For the tension 2 :T  

2 2( )( )cos(30 ) 410 N 3 0 m 0 866 1 1 kJW T r T r= ⋅ Δ = Δ ° = ( )( . )( . ) = .  

Assess:  Negative work done by the force of kinetic friction kf  means that 1.95 kJ of energy has been transferred out 
of the crate. 

11.13.  Model:  Model the 2.0 kg object as a particle, and use the work–kinetic-energy theorem. 
Visualize:  Please refer to Figure EX11.13. For each of the five intervals the velocity-versus-time graph gives the 
initial and final velocities. The mass of the object is 2.0 kg. 
Solve:  According to the work–kinetic-energy theorem: 

2 2 2 21 1 1
f i f i2 2 2

2 21
i f 2

221
i f 2

                                 ( )

Interval AB: 2 m/s, 2 m/s (2.0 kg) ( 2 m/s) 2 m/s 0 J

Interval BC: 2 m/s, 2 m/s (2.0 kg) ( 2 m/s) 2 m/s 0

W K mv mv m v v

v v W

v v W

= Δ = = = −

⎡ ⎤= = − ⇒ = − − ( ) =⎣ ⎦

⎡ ⎤= − = − ⇒ = − − (− ) =⎣ ⎦
2 21

i f 2

2 21
i f 2

 J

Interval CD: 2 m/s, 0 m/s (2.0 kg) (0 m/s) 2 m/s 4 J

Interval DE: 0 m/s, 2 m/s (2.0 kg) (2 m/s) 0 m/s 4 J

v v W

v v W

⎡ ⎤= − = ⇒ = − (− ) = −⎣ ⎦
⎡ ⎤= = ⇒ = − ( ) = +⎣ ⎦

 

Assess:  The work done is zero in intervals AB and BC. In the interval CD DE+  the total work done is zero. It is not 
whether v is positive or negative that counts because 2K v∝ .  What is important is the magnitude of v and how v 
changes. 

Section 11.4  The Work Done by a Variable Force 

11.14.  Model:  Use the definition of work. 
Visualize:  Please refer to Figure EX11.14. 
Solve:  Work is defined as the area under the force-versus-position graph: 

f

i

area under the force curve
s

s
s

W F ds= =Ñ  

1
2

Interval 0 1 m: 4 N 1 m 0 m 4 J
Interval 1 2 m: (4 N)(0 5 m) 4 N 0 5 m 0 J

Interval 2 3 m: ( 4 0 N)(1 m) 2 J

W
W

W

− = ( )( − ) =
− = . + (− )( . ) =

− = − . = −

 

11.15.  Model:  Use the work–kinetic-energy theorem to find velocities. 
Visualize:  Please refer to Figure EX11.15. 
Solve:  The work–kinetic-energy theorem is 

f

i

f

x
2 21 1
f i i f2 2

x
2 2 2 251 1 1
f f2 2 2 2

0 m

2
2 2

f

area under the force curve from  to 

(0.500 kg)(2.0 m/s) 1.0 J  Nm

5 Nm 4.0 m /s
0.500 kg

x
x

x

K mv mv W F dx x x

mv mv F dx x

xv

Δ = − = = =

− = − = =

= +

∫

∫  



11-6   Chapter 11 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

f

f

f

At 1 m: 3 7 m/s
At 2 m: 6 6 m/s
At 3 m: 9 7 m/s

x v
x v
x v

= ⇒ = .
= ⇒ = .
= ⇒ = .

 

11.16.  Model:  Use the work–kinetic-energy theorem. 
Visualize:  Please refer to Figure EX11.16. 
Solve:  The work–kinetc-energy theorem is 

fx
2 2 251 1
f i2 2 2

0 m

2

f

10

20 5 4.0 m/s
2.0 kg

xK mv mv F dx x x

x xv

Δ = − = = −

−= +

∫
 

f

f

At 2 m: 5 m/s
At 4 m: 4 m/s

x v
x v

= ⇒ =
= ⇒ =

 

11.17.  Model:  Use the work–kinetic-energy theorem. 
Visualize:  Please refer to Figure EX11.17.  
Solve:  The work–kinetic-energy theorem is 

f

i

i f

2 21 1 1
f i max2 2 2

 area of the -versus-  graph between  and

( )(2 m)

x

x x
x

K W F dx F x x x

mv mv F

Δ = = =

− =

Ñ
 

Using f0 500 kg, 6 0 m/s,m v= .  = .  and i 2 0 m/s,v = .  the above equation yields max 8 NF = .  
Assess:  Problems in which the force is not a constant cannot be solved using constant-acceleration kinematic 
equations. 

Section 11.5  Work and Potential Energy 

Section 11.6  Finding Force from Potential Energy 

11.18.  Model:  Use the definition /sF dU ds= − .   
Visualize:  Please refer to Figure EX11.18.  
Solve:  xF  is the negative of the slope of the potential energy graph at position x. Between 0 cmx =  and 10 cmx =  
the slope is  

f i f islope ( )/( ) 0 J 10 J /(0 10 m 0 0 m) 100 NU U x x= − − = ( − ) . − . = −  
Thus, 100 NxF =  at 5 cmx = .  The slope between 10 cmx =  and 20 cmx =  is zero, so 0 NxF =  at 15 cmx = .  
Between 20 cm and 40 cm, 

slope (10 J 0 J)/(0 40 m 0 20 m) 50 N = − . − . =  
At 25 cmx =  and 35 cm,x =  therefore, 50 NxF = − .  

11.19.  Model:  Use the definition /sF dU ds= − .  
Visualize:  Please refer to Figure EX11.19.  
Solve:  xF  is the negative of the slope of the potential energy graph at position x. 

x
dUF
dx

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

Between 0 my =  and 1 m,x =  the slope is 

f i f islope /( ) (60 J 0 J)/(1 m 0 m) 60 NU U x x= ( − ) − = − − =  
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Thus, 60 NxF =2  at 1 mx = .  Between 1 m and 5 m,x x= =  the slope is 

f i f islope /( ) (0 J 60 J)/(5 m 1 m) 15 NU U x x= ( − ) − = − − = −  
Thus, 15 N at 4 mxF x= = .  

11.20.  Model:  Use the negative derivative of the potential energy to determine the force acting on a particle. 
Solve:  The y-component of the force is 

3 2(4 J) 12 Ny
dU dF y y
dy dy

= − = − = −  

At 0 m,y =  0 N;yF =  at 1 m,y =  12 N;yF = −  and at 2 m,y =  48 NyF = − .  

11.21.  Model:  Use the negative derivative of the potential energy to determine the force acting on a particle. 
Solve:   The x-component of the force is 

2

2 2 2
2 m 5 m 8 m

10 10 J  N

10 10 10( 2 m) N 2 5 N, ( 5 m) N 0 40 N, ( 8 m) N 0 16 N

x

x x x

dU dF
dx dx x x

F x F x F x
x x x= = =

  ⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠

= = = . = = = .  = = = .
 

Section 11.7  Thermal Energy 

11.22.  Model:  Assume the carbon-carbon bond acts like an ideal spring that obeys Hooke’s law. 
Visualize: 
 

 
 

The quantity e( )x x−  is the stretching relative to the spring’s equilibrium length. In the present case, bond stretching 
is analogous to spring stretching. 
Solve:  (a) The kinetic energy of the carbon atom is  

2 26 2 211 1 (2 0 10 kg)(500 m/s) 2 5 10  J
2 2

K mv − −= = . × = . ×  

(b) The energy of the spring is given by 
2

s e

21

2 9 2
e

1 ( )
2

2 2(2 5 10 J) 2 0 N/m
( ) (0 050 10 m)

U k x x K

Kk
x x

−

−

= − =

. ×= = = .
− . ×

 

11.23.  Visualize:  One mole of helium atoms in the gas phase contains 23
A 6 02 10N = . ×  atoms. 

Solve:   If each atom moves with the same speed v, the microscopic total kinetic energy will be 

2 micro
micro A 27 23

A

1 2 2(3700 J)3700 J 1360 m/s
2 (6 68 10  kg)(6 02 10 )

KK N mv v
mN −

⎛ ⎞= = ⇒ = = =⎜ ⎟ . × . ×⎝ ⎠
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11.24.  Visualize: 
 

 
 

Solve:  (a)  2 2 21
i 0 0 i g0 02 0 J , (20 kg)(9 8 m/s )(3 0 m) 5 9 10  JK K mv U U mgy= = = = = = . . = . ×  

2 21 1
ext f 1 1 f g1 12 20 J, (20 kg)(2 0 m/s) 40 J, 0 JW K K mv U U mgy= = = = . = = = =  

At the top of the slide, the child has gravitational potential energy of 25 9 10  J. × .  This energy is transformed into the 
thermal energy of the child’s pants and the slide and the kinetic energy of the child. This energy transfer and 
transformation is shown on the energy bar chart. 
(b)  
 

 
 

The change in the thermal energy of the slide and of the child’s pants is 2 25 9 10  J 40 J 5 5 10  J. × − = . × .  

Section 11.8  Conservation of Energy 

11.25.  Visualize:  The system loses 400 J of potential energy. In the process of losing this energy, it does 400 J of 
work on the environment, which means ext 400 JW = − .  Since the thermal energy increases 100 J, we have 

th 100 J,EΔ =  which must have been 100 J of kinetic energy originally. This is shown in the energy bar chart.  
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11.26.  Visualize:   
 

 
 

Note that the conservation of energy equation 
i i ext f f thK U W K U E+ + = + + Δ  

requires that extW  be equal to 400 J− .  

11.27.  Solve:  Please refer to Figure EX11.27. The energy conservation equation yields 
i i ext f f th ext ext4 J 1 J 1 J 2 J 1 J W 1 JK U W K U E W+ + = + + Δ ⇒ + + = + + ⇒ = −  

Thus, the work done to the environment is 1 J− .  In other words, 1 J of energy is transferred from the system into the 
environment. This is shown in the energy bar chart.  
 

 
 

11.28.  Visualize:  The tension of 20.0 N in the cable is an external force that does work on the block extW =  
(20 0 N)(2 00 m) 40 0 J,. . = . increasing the gravitational potential energy of the block. We placed the origin of our 
coordinate system on the initial resting position of the block, so we have i 0 JU =  and f fU mgy= =  

2(1 02 kg)(9 8 m/s )(2 00 m) 20 0 J. . . = . .  Also, i 0 J,K =  and th 0 JEΔ = .  The energy bar chart shows the energy 
transfers and transformations.  
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Solve:   The conservation of energy equation is 
21

i i ext f f th f2

f

0 J 0 J 40 0 J 20 0 J 0 J

(20 0 J)(2)/(1 02 kg) 6 26 m/s

K U W K U E mv

v

+ + = + + Δ ⇒ + + . = + . +

= . . = .
 

Section 11.9  Power 

11.29.  Model:  Model the elevator as a particle, and apply the conservation of energy. 
Solve:  The tension in the cable does work on the elevator to lift it. Because the cable is pulled by the motor, we say 
that the motor does the work of lifting the elevator. 
(a) The energy conservation equation is i i ext f f thK U W K U E+ + = + + Δ .  Using i f0 J, 0 J,K K= =  and th 0 JEΔ =  
gives 

2 5
ext f i f i( ) 1000 kg 9 8 m/s 100 m 9 80 10 JW U U mg y y= ( − ) = − = ( )( . )( ) = . ×  

(b) The power required to give the elevator this much energy in a time of 50 s is 
5

4ext 9 80 10  J 1 96 10  W
50 s

WP
t

. ×= = = . ×
Δ

 

Assess:  Since 1 horsepower (hp) is 746 W, the power of the motor is 26 hp. This is a reasonable amount of power to 
lift a mass of 1000 kg to a height of 100 m in 50 s. 

11.30.  Model:  Model the steel block as a particle subject to the force of kinetic friction and use energy conservation. 
Visualize: 
 

 
 

Solve:  (a) The work done on the block is net netW F r= ⋅ Δ  where rΔ  is the displacement. We will find the 
displacement using kinematic equations and the force using Newton’s second law of motion. The displacement in the 
x-direction is 

21
1 0 0 1 0 1 02( ) ( ) 0 m (1 0 m/s)(3 0 s 0 s) 0 m 3 0 mx xx x x v t t a t tΔ = = + − + − = + . . − + = .  

Thus ˆ3 0  mr iΔ = . .  



Work   11-11 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

The equations for Newton’s second law along the x and y components are 
2

net G G

net k k k

net net

( ) 0 N (10 kg)(9 8 m/s ) 98 0 N

( ) 0 N (0 6)(98 0 N) 58 8 N

cos(0 ) (58 8 N)(3 0 m)(1) 176 J

y

x

F n F n F mg

F F f F f n

W F r F x

= − = ⇒ = = = . = .

= − = ⇒ = = = . . = .

= ⋅ Δ = Δ ° = . . =

μ  

(b) The power required to do this much work in 3.0 s is 
176 J 59 W
3 0 s

WP
t

= = =
.

 

11.31.  Solve:  The power of the solar collector is the solar energy collected divided by time. The intensity of the 
solar energy striking the earth is the power divided by area. We have 

6
2

2
2

150 10  J 41,667 W and intensity 1000 W/m
3600 s

41,667 WArea of solar collector 42 m
1000 W/m

EP
t

Δ ×= = = =
Δ

= =
 

11.32.   Solve:   The night light consumes more energy than the hair dryer. The calculations are 
3 5

5

1 2 kW 10 min 1 2 10 10 60 J 7 2 10  J

10 W 24 hours 10 24 60 60 J 8 6 10  J

. × = . × × × = . ×

× = × × × = . ×
 

11.33.  Solve:  Using the conversion 746 W 1 hp,=  we have a power of 1492 J/s. This means 
6(1492 J/s)(1 h) 5 3712 10  JW Pt= = = . ×  is the total work done by the electric motor in one hour. Furthermore, 

motor g gf gi f i

6
4 4 4motor

2

( ) (10 m)

5 3712 10  J 1 liter5 481 10  kg 5 481 10  kg 5 5 10  liters
(10 m) 1 kg(9 8 m/s )(10 m)

W W U U mg y y mg

Wm
g

= − = − = − =

. ×= = = . × = . × × = . ×
.

 

11.34.  Model:  Model the sprinter as a particle, and use the constant-acceleration kinematic equations and the 
definition of power in terms of velocity. 
Visualize: 
 

 
 

Solve:  (a) We can find the acceleration from the kinematic equations and the horizontal force from Newton’s second 
law. We have 

2 2 21 1
0 0 1 0 1 02 2

2 1

( ) ( ) 50 m 0 m 0 m (7 0 s 0 s) 2 04 m/s

(50 kg)(2 04 m/s ) 10 10  N

x x x x

x x

x x v t t a t t a a

F ma

= + − + − ⇒ = + + . − ⇒ = .

= = . = ×
 

(b) We obtain the sprinter’s power output by using ,P F v= ⋅  where v  is the sprinter’s velocity. At 2 0 st = .  the 
power is  

2
0 0( )[ ( )] (102 N)[0 m/s 2 04 m/s 2 0 s 0 s ] 0 42 kWx x xP F v a t t= + − = + ( . )( . − ) = .  

The power at 4 0 st = .  is 0.83 kW, and at 6 0 st = .  the power is 1.3 kW. 
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11.35.  Visualize:  We place the origin of the coordinate system at the base of the stairs on the first floor. 
 

 
 

Solve:  (a) We might estimate 2 1 3 24 0 m 12 ft ,y y y y− ≈ . ≈ ≈ −  thus, 3 1 8 0 my y− ≈ . .  
(b) We might estimate the time to run up these two flights of stairs to be 20 s. 
(c) Estimate your mass as 70 kg 150 lbm ≈ ≈ .  Your power output while running up the stairs is 

3 1

2

work done by you change in potential energy ( )
time time time

(70 kg)(9 8 m/s )(8 0 m) 1 hp270 W 270 W 0 35 hp
20 s 746 W

mg y y−= =

. . ⎛ ⎞= ≈ = ( ) ≈ .⎜ ⎟
⎝ ⎠

 

Assess:  Your estimate may vary, depending on your mass and how fast you run. 

11.36.  Visualize:  See figure below. 
 

 
 

Solve:   Average power output is the change in energy of the system divided by the time interval. For the runner, the 
change in energy is just the change KΔ  in the kinetic energy because the potential energy remains unchanged. Thus, 

2 2 21 1 1
f 0 f 02 2 2 (70 kg)(10 m/s) 3500 J.E K K K mv mvΔ = Δ = − = − = = For the greyhound, the change in energy 

is 21
2 (30 kg)(20 m/s) 6000 J.E KΔ = Δ = = Thus, the average power output of the runner is /P E t= Δ Δ =  

3500 J / 3.0 s 1.2 kW( ) ( ) =  and the average power output of the greyhound is (6000 J)/(3.0 s) 2.0 kW.P = =  

11.37.  Model:  Use the definition of work for a constant force ,F  ,W F s= ⋅ Δ  where sΔ  is the displacement. 
Visualize:   Please refer to Figure P11.37. The force ˆ ˆ(6 8 ) NF i j= +  on the particle is constant. 

Solve:  (a) ABD AB BD AB BD( ) ( )W W W F s F s= + = ⋅ Δ + ⋅ Δ  
ˆˆ ˆ ˆ ˆ ˆ(6 8 ) N (3 ) m (6 8 ) N (4 ) m 18 J 32 J 50 Ji j i i j j= + ⋅ + + ⋅ = + =  
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(b) ACD AC CD AC CD( ) ( )W W W F s F s= + = ⋅ Δ + ⋅ Δ  
ˆˆ ˆ ˆ ˆ ˆ(6 8 ) N (4 ) m (6 8 ) N (3 ) m 32 J 18 J 50 J i j j i j j= + ⋅ + + ⋅ = + =  

(c) AD AD
ˆˆ ˆ ˆ( ) (6 8 ) N (3 4 ) m 18 J 32 J 50 J W F s i j i j= ⋅ Δ = + ⋅ + = + =  

The force is conservative because the work done is independent of the path. 

11.38.  Model:  The force is conservative, so it has a potential energy. 
Visualize:  Please refer to Figure P11.38 for the graph of the force. 
Solve:  (a) The definition of potential energy is (i f )U WΔ = − → . In addition, work is the area under the force-
versus-displacement graph. Thus f i (area under the force curve).U U UΔ = − = −  Since i 0U =  at 0 m,x =  the 
potential energy at position x is ( ) (area under the force curve from 0 to ).U x x= −  From 0 m to 3 m, the area increases 
linearly from 0 Nm to 60 Nm,−  so U increases from 0 J to 60 J. At 4 m,x =  the area is 70 J− .  Thus 70 JU =  at 

4 m,x =  and U doesn’t change after that since the force is then zero. Between 3 m and 4 m, where F changes 
linearly, U must have a quadratic dependence on x (i.e., the potential energy curve is a parabola). This information is 
shown on the potential energy graph below. 
 

 
 

(b) Mechanical energy is E K U= + .  From the graph, 20 JU =  at 1 0 mx = . .   
The kinetic energy is 2 21 1

2 2 (0 100 kg)(25 m/s) 31 25 JK mv= = . = . .  Thus 51 JE = .  

(c) The total energy line at 51 J is shown on the graph above. 
(d) The turning point occurs where the total energy line crosses the potential energy curve. We can see from the 
graph that this is at approximately 2.5 m. For a more accurate value, the potential energy function is U = 20x J. The 
TE line crosses at the point where 20 51 25,x = .  which is 2 6 mx = . .  

11.39.  Model:  Use the relationship between force and potential energy and the work–kinetic-energy theorem. 
Visualize:  Please refer to Figure P11.39. We will find the slope in the following x regions: 0 cm 1 cm,x< <  
1 3 cm,x< < 3 5 cm,x< < 5 7 cm,x< <  and 7 8 cmx< < .  
Solve:  (a) xF is the negative slope of the U-versus-x graph, for example, for 0 m 2 mx< <  

4 J 400 N 400 N 
0 01 m x

dU F
dx

− = = − ⇒ = +
.

 

Calculating the values of xF  in this way, we can draw the force-versus-position graph as shown below. 
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(b) Since f

i

x
xxW F dx= =∫  area of the -versus-xF x  graph between ix and f ,x the work done by the force as the 

particle moves from i 2 cmx =  to f 6 cmx =  is 2 J− .  
(c) The conservation of energy equation is f f i iK U K U+ = + .  We can see from the graph that i 0 JU =  and 

f 2 JU =  in moving from 2 cmx =  to 6 cmx = .  The final speed is f 10 m/s,v =  so 
2 21 1

i i2 22 J (0 010 kg)(10 0 m/s) 0 J  (0 010 kg) 22 m/sv v+ . . = + . ⇒ =  

11.40.  Model:  Use the relationship between a conservative force and potential energy. 
Visualize:  Please refer to Figure P11.40. We will obtain U as a function of x and xF  as a function of x by using the 
calculus techniques of integration and differentiation. 
Solve:  (a) For the interval 0 m 0 5 m,  4  N,xx F x< < . = ( )  where x is in meters. This means 

2 2
14 2 2x

dU F x U x C x
dx

= − = − ⇒ = − + = −  

where we have used 0 JU =  at 0x = m to obtain 1 0C = .  For the interval 0 5 m 1 m,x. < < ( 4 4) NxF x= − + .  
Likewise, 

2
24 4 2 4dU x U x x C

dx
= − ⇒ = − +  

Since U should be continuous at the junction, we have the continuity condition  
2 2

0 5 m 2 0 5 m 2 2( 2 ) 2 4 0 5 0 5 2 1x xx x x C C C= . = .− = ( − + ) ⇒ − . = . − + ⇒ =  

U remains constant for 1 mx ≥ .  
(b) For the interval 0 m 0 5 m,x< < . 4 ,U x= +  and for the interval 0 5 m 1 0 m,x. < < . 4 4,U x= − +  where x is in 
meters. The derivatives give 4 N and 4 N,x xF F= − = +  respectively. The slope is zero for 1 mx ≥ .  
 

 
 

11.41.  Model:  Use / ,x xa dv dt= ,xx v dt= ∫ 21
2 ,xK mv=  and xF ma= .  

Visualize:   Please refer to Figure P11.41. We know slopexa =  of the -versus-  graph xv t and areax =  under the 
-versus-xv x  graph between 0 and x. 

Solve:  Using the above definitions and methodology, we can generate the following table: 
 

t(s) xa  (m/s2) x(m) K(J) F(N) 
0 10 0 0 5 
0.5 10       1.25      6.25 5 
1.0 10 5 25 5 
1.5 10      11.25       56.25 5 
2.0 10+  or 10−  20 100 5−  or 5+  
2.5 10       28.75        56.25 5 
3.0 10−  or 0 35 25 5−  or 0 
3.5 0 40 25 0 
4.0 0 45 25 0 
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(e) Let 1J be the impulse from 0 st =  to 2 st =  and 2J  be the impulse from 2 st =  to 4 st = .  We have 
2s 4s

1 2
0s 0s

(5 N)(2 s) 10 N s and ( 5 N)(1 s) 5 N sx xJ F dt J F dt= = = ⋅ = = − = − ⋅Ñ Ñ  

(f) f i f i /J p mv mv v v J m= Δ = − ⇒ = +  
At  2 s, 0 m/s 10 N s /(0 5 kg) 0 m/s 20 m/s 20 m/sxt v= = + ( ⋅ ) . = + =  
At  4 s, 20 m/s ( 5 N s)/(0 5 kg) 20 m/s 10 m/s 10 m/sxt v= = + − ⋅ . = − =  

The -versus-xv t  graph also gives 20 m/sxv =  at 2 st =  and 10 m/sxv =  at 4 st = .  
(g)  
 

 

(h) From 0 s to 2 s, (5 N)(20 m) 100 Jxt t W F dx= = = = =∫  
From 2 s to 4 s, ( 5 N)(15 m) 75 Jxt t W F dx= = = = − = −∫  

(i) At 0 s,t = 0 m/sxv =  so the work–kinetic-energy theorem for calculating xv  at 2 st =  is 

2 2 2 2
f i

1 1 1 1100 J (0 5 kg) (0 5 kg)(0 m/s) 20 m/s
2 2 2 2x xW K mv mv v v= Δ = − ⇒ = . − . ⇒ =  

To calculate xv  at 4 s,t =  we use xv  at 2 st =  as the initial velocity: 

2 21 175 J (0 5 kg) (0 5 kg)(20 m/s) 10 m/s
2 2x xv v− = . − . ⇒ =  

Both of these values agree with the values on the velocity graph. 
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11.42.  Model:  Model the elevator as a particle. 
Visualize: 
+ 

 
 

Solve:  (a) The work done by gravity on the elevator is 
2 4

g g 0 1 1 0( ) (1000 kg)(9 8 m/s )(10 m) 9 8 10  JW U mgy mgy mg y y= −Δ = − = − − = − . = − . ×  
(b) The work done by the tension in the cable on the elevator is 

1 0( )cos(0 ) ( ) (10 m)TW T y T y y T= Δ ° = − =  
To find T we write Newton’s second law for the elevator: 

2 2
G G

4 4 5

( ) (1000 kg)(9 8 m/s 1 0 m/s )

1 08 10  N (1 08 10  N)(10 m) 1 1 10  J

y y y y

T

F T F ma T F ma m g a

W

= − = ⇒ = + = + = . + .

= . × ⇒ = . × = . ×

∑  

(c) The work–kinetic-energy theorem is 
2 21 1

net g f i f 0 f g 02 2
4 5 2 41

f 2( 9 8 10  J) 1 08 10  J (1000 kg)(0 m/s) 1 0 10  J

T TW W W K K K K mv K W W mv

K

= + = Δ = − = − ⇒ = + +

= − . × + ( . × ) + = . ×
 

(d) 2 4 21 1
f f f f2 21 0 10  J (1000 kg) 4 5 m/sK mv v v= ⇒ . × = ⇒ = .  

11.43.  Model:  Model the rock as a particle, and apply the work–kinetic-energy theorem. 
Visualize: 
 

 
 

Solve:  (a) The work done by Bob on the rock is  
2 2 2 2 21 1 1 1

Bob 1 0 12 2 2 2 (0 500 kg)(30 m/s) 225 J 2 3 10  JW K mv mv mv= Δ = − = = . = = . ×  

(b) For a constant force, 2
Bob Bob Bob Bob/ 2 3 10 NW F x F W x= Δ ⇒ = Δ = . × .  

(c) Bob’s power output is Bob Bob rockP F v=  and will be a maximum when the rock has maximum speed. This is just 
as he releases the rock with rock 1 30 m/sv v= = .  Thus, max Bob 1 (225 J)(30 m/s) 6750 W 6 8 kWP F v= = = = . .  
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11.44.  Model:  Model the crate as a particle, and use the work–kinetic-energy theorem. 
Visualize: 
 

 
 

Solve:  (a) The work–kinetic-energy theorem is 2 2 21 1 1
1 0 1 total2 2 2 .K mv mv mv WΔ = − = =  Three forces act on the box, 

so total grav n pushW W W W= + + .  The normal force is perpendicular to the motion, so n 0 JW = .  The other two forces 
do the following amount of work: 

push 1

grav G 1

cos cos cot
sin

sin sin
sin

hW F r Fx F Fh

hW F r mgx mg mgh

θ θ θ
θ

θ θ
θ

⎛ ⎞= ⋅ Δ = = =⎜ ⎟
⎝ ⎠

⎛ ⎞= ⋅ Δ = − = − = −⎜ ⎟
⎝ ⎠

 

Thus, the speed at the top of the ramp is 

total
1

2 2( cot )W Fh mghv
m m

θ −= =  

(b) Insert the given quantities into the expression for the speed to find 
2

1
2[(25 N)(2.0 m)cot (20 ) 5.0 kg 9.8 m/s 2.0 m ] 4.0 m/s

5.0 kg
v ° − ( )( )( )= =  

Assess:  Note that cos sinF mgθ θ>  for the radical to remain positive. This means that the component of the 
pushing force up the slope must be greater that then component of gravity down the slope for the crate to move 
upwards, which is the assumption with which we started. Furthermore, if we take the limit 0,h →  we get 

( )1

1
lim 0

0

2 2h

h
h

Fh mgh Fv
m m→

=

⎡ ⎤−⎣ ⎦= =  

which is the expected result for pushing the crate along a horizontal frictionless surface. 

11.45.  Model:  Model Sam strapped with skis as a particle, and apply the law of conservation of energy. 
Visualize: 
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Solve:  (a) The conservation of energy equation is 
1 g1 th 0 g0 extK U E K U W+ + Δ = + +  

The snow is frictionless, so th 0 JEΔ = .  However, the wind is an external force doing work on Sam as he moves 
down the hill. Thus, 

( ) ( ) ( )
ext wind 1 g1 0 g0

2 2 2 21 1 1 1
1 1 0 0 1 0 1 02 2 2 2

wind
1 0

( )

0 J (0 J )

22

W W K U K U

mv mgy mv mgy mv mgy mv mgy

Wv gy
m

= = + − ( + )

= + − + = + − + = −

= +

 

We compute the work done by the wind as follows: 

wind wind wind cos(160 ) (200 N)(146 m)cos(160 ) 27,400 JW F r F r= ⋅ Δ = Δ ° = ° = −  
where we have used / sin(20 ) 146 mr hΔ = ° = .  Now we can compute 

2
1

2( 27,400 J)2(9 8 m/s )(50 m) 16 m/s
75 kg

v −= . + =  

Assess:  We used a vertical y-axis for energy analysis, rather than a tilted coordinate system, because gU  is determined 
by its vertical position. 

11.46.  Model:  Model Paul and the mat as a particle, assume the mat to be massless, use the model of kinetic friction, 
and apply the work–kinetic-energy theorem. 
Visualize: 
 

 
 

We define the x-axis along the floor and the y-axis perpendicular to the floor. 
Solve:  We first need to determine kf .  Newton’s second law in the y-direction gives  

2
Gsin (30 ) sin (30 ) (10 kg)(9 8 m/s ) (30 N)sin (30 ) 83 0 Nn T F mg n mg T+ ° = = ⇒ = − ° = . − ° = . .  

Using n and the model of kinetic friction gives k k (0 2)(83 0 N) 16 60 Nf n= = . . = . .μ  The net force on Paul and the 
mat is therefore net kcos(30 ) (30 N)cos(30 ) 16 6 N 9 4 NF T f= ° − = ° − . = . . Thus, 

net net (9 4 N)(3 0 m) 28 JW F r= Δ = . . =  

The other forces G and Fn  make an angle of 90° with rΔ  and do zero work. We can now use the work–kinetic-
energy theorem to find the final velocity as follows: 

2
net f i f f f net

10 J 2 / 2(28 J)/(10 kg) 2 4 m/s
2

W K K K mv v W m= − = − = ⇒ = = = .  

Assess:  A speed of 2.4 m/s or 5.4 mph is reasonable for the present problem. 

11.47.  Model:  Assume an ideal spring that obeys Hooke’s law. Model the box as a particle and use the model of 
kinetic friction. 
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Visualize: 
 

 
 

Solve:  When the horizontal surface is frictionless, conservation of energy means 
2 2 21 1 1

0 e 1 1 12 2 2( ) (100 N/m)(0 20 m 0 m) 2 0 Jxk x x mv K K− = = ⇒ = . − = .  

That is, the box is launched with 2.0 J of kinetic energy. It will lose 2.0 J of kinetic energy on the rough surface. The 
net force on the box is net k k ˆF f mgi= − = − .μ  The work–kinetic-energy theorem is  

net net 2 1

k 2 1

2 1 2
k

0 J 2 0 J 2 0 J
( )( ) 2 0 J

2 0 J 2 0 J( ) 0 54 m
(0 15)(2 5 kg)(9 8 m/s )

W F r K K
mg x x

x x
mg

= ⋅ Δ = − = − . = − .
− − = − .

. .− = = = .
. . .

μ

μ

 

Assess:  Because the force of friction transforms kinetic energy into thermal energy, energy is transferred out of the 
box into the environment. In response, the box slows down and comes to rest. 

11.48.  Model:  Model the suitcase as a particle, use the model of kinetic friction, and use the work–kinetic-energy 
theorem. 
Visualize: 
 

 
 

The net force on the suitcase is net kF f= .   
Solve:  (a) The work–kinetic-energy theorem gives 

2 2 21 1 1
net 1 0 net k 02 2 20 JW K mv mv F r f r mv= Δ = − ⇒ ⋅ Δ = ⋅ Δ = −  

2
2 2 01 1

k 0 k 0 k2 2( ) cos(180 )
2
vf d mv mgd mv
gd

μ μ° = − − = − ⇒ =  

(b) Inserting the given quantities into the expression for the coefficient of kinetic friction gives 
2 2
0

k 2
(1 2 m/s) 0 037

2 2(9 8 m/s )(2 0 m)
v
gd

.= = = .
. .

μ  

Assess:  Friction transforms kinetic energy of the suitcase into thermal energy. In response, the suitcase slows down and 
comes to rest. Notice that the coefficient of friction does not depend on the mass of the object, which is reasonable. 

11.49.  Model:  Identify the truck and the loose gravel as the system. We need the gravel inside the system because 
friction increases the temperature of the truck and the gravel. We will also use the model of kinetic friction and the 
conservation of energy equation. 
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Visualize: 
 

 
 

We place the origin of our coordinate system at the base of the ramp in such a way that the x-axis is along the ramp 
and the y-axis is vertical so that we can calculate potential energy. The free-body diagram of forces on the truck is 
shown. 
Solve:  The conservation of energy equation is 1 g1 th 0 g0 extK U E K U W+ + Δ = + + .  In the present case, ext 0 J,W =  

1 0 m/s,xv =  0 0 J,gU = 0 35 m/sxv = .  The thermal energy created by friction is  

th k 1 0 k 1 0 k 1 0
2

1 0 1 0

( ) ( )( ) cos(6 0 )( )

(0 40)(15,000 kg)(9 8 m/s )cos(6 0 )( ) (58,478 J/m)( )

E f x x n x x mg x x

x x x x

Δ = − = − = . ° −

= . . . ° − = −

μ μ
 

Thus, the energy conservation equation simplifies to 
21

1 1 0 02
2 21

1 0 1 0 2

1 0

0 J 58,478 J/m 0 J 0 J

(15,000 kg)(9 8 m/s )( )sin (6 0 ) (58,478 J/m)( ) (15,000 kg)(35 m/s)

( ) 124 m 0 12 km

xmgy x x mv

x x x x

x x

+ + ( )( − ) = + +

. − . ° + − =

− = = .

 

Assess:  A length of 124 m at a slope of 6°  seems reasonable. 

11.50.  Model:  We will use the spring, the package, and the ramp as the system. We will model the package as a 
particle. 
Visualize: 
 

 
 

We place the origin of our coordinate system on the end of the spring when it is compressed and is in contact with the 
package to be shot.  
Model:  (a) The energy conservation equation is  

1 g1 s1 th 0 g0 s0 ext

2 2 2 21 1 1 1
1 1 e e th 0 0 ext2 2 2 2( ) ( )

K U U E K U U W

mv mgy k x x E mv mgy k x W

+ + + Δ = + + +

+ + − + Δ = + + Δ +
 

Using 1 1 0 m,y = . th 0 JEΔ = (the frictionless ramp), 0 0 m/s,v = 0 0 m,y = 30 cm,xΔ = and ext 0 J,W = we get  
2 21 1
12 2

2 2 21 1
12 2

1

(1 0 m) 0 J 0 J 0 J 0 J (0 30 m) 0 J

(2 0 kg) (2 0 kg)(9 8 m/s )(1 0 m) (500 N/m)(0 30 m)

1 7 m/s

mv mg k

v

v

+ . + + = + + . +

. + . . . = .

= .
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(b) How high can the package go after crossing the sticky spot? If the package can reach 1 1 0 my ≥ .  before stopping 

1( 0),v =  then it makes it. But if 1 1 0 my < .  when 1 0,v =  the package does not make it. The friction of the sticky spot 
generates thermal energy 

2
th k( ) (0 30)(2 0 kg)(9 8 m/s )(0 50 m) 2 94 JE mg xΔ = Δ = . . . . = .μ  

The energy conservation equation is now 
2 21 1
1 1 th2 2 ( )mv mgy E k x+ + Δ = Δ  

If we set 1 0 m/sv =  to find the highest point the package can reach, we get 

( )2 2 21 1
1 th2 2( ) [ (500 N/m)(0 30 m) 2 94 J]/[(2 0 kg)(9 8 m/s )] 0 998 my k x E mg= Δ − Δ = . − . . . = .  

The package does not make it. It just barely misses. 

11.51.  Model:  Model the two blocks as particles. The two blocks make our system. 
Visualize: 
 

 
 

We place the origin of our coordinate system at the location of the 3.0 kg block. 
Solve:  (a) The conservation of energy equation gives f gf th i gi extK U E K U W+ + Δ = + + .  The thermal energy is 

th kE Mg xΔ = Δμ  and the external work done is ext 0.W =  The initial potential energy is gi i ,U my= and the final 

potential energy is gf f ,U my= where we have ignored the gravitational potential energy of block M because its 

height does not change. The initial and final kinetic energy are 21
f f20, and ( ) ,iK K M m v= = +  respectively. The 

energy conservation equation thus takes the form  
21

3 2 f 3 table 2 f k 3 3 table 2 i2 ( )m m v m y m gy m g x m y m gy+ + + + Δ = +μ  

Note that x y hΔ = −Δ =  because the blocks are constrained by the cable to move the same distance. Solving for fv  
gives 

f k k
2 2( ) ( )g ghv m y M x m M

M m M m
= − Δ − Δ = −

+ +
μ μ  

(b) If the table is frictionless, this expression takes the form 

f
2gmhv
M m

=
+

 

Assess:   It is reasonable that the speed is reduced when friction is present compared with when there is no friction. 

11.52.  Model:  Use the particle model, the definition of work ,W F s= ⋅ Δ  and the model of kinetic friction. 
Visualize: We place the coordinate frame on the incline so that its x-axis is along the incline. 
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Solve:  (a) T cos(18 ) (120 N)(5 0 m)cos(18 ) 0 57 kJW T r T x= ⋅ Δ = Δ ° = . ° = .   
2

g G cos(120 ) (8 0 kg)(9 8 m/s )(5 0 m)cos(120 ) 0 20 kJW F r mg x= ⋅ Δ = Δ ° = . . . ° = − .  
n cos(90 ) 0 0 JW n r n x= ⋅ Δ = Δ ° = .  

(b) The amount of energy transformed into thermal energy is th k kE f x n xΔ = Δ = Δ .μ   
To find n, we write Newton’s second law as follows: 

G G

2

cos(30 ) sin (18 ) 0 N cos(30 ) sin (18 )

cos(30 ) sin (18 ) (8 0 kg)(9 8 m/s )cos(30 ) 120 N sin (18 ) 30 814 N

yF n F T n F T

n mg T

= − ° + ° = ⇒  = ° − °

= ° − ° = . . ° − ( ) ° = .

∑
 

Thus, th (0 25)(30 814 N)(5 0 m) 39 JEΔ = . . . = .  
Assess:  Any force that acts perpendicular to the displacement does no work. 

11.53.  Model:  Model the water skier as a particle, apply the law of conservation of mechanical energy, and use the 
constant-acceleration kinematic equations. 
Visualize: 
 

 
 

We placed the origin of the coordinate system at the base of the frictionless ramp. 
Solve:  We’ll start by finding the smallest speed 1v at the top of the ramp that allows her to clear the shark tank. From 
the vertical motion for jumping the shark tank,  

21
2 1 1 2

2 21
20 m 2 0 m 0 m (9 8 m/s ) 0 639 s

y yy y v t a t

t t

= + Δ + Δ

= . + + . Δ ⇒ Δ = .
 

From the horizontal motion, 
21

2 1 1 2

1 1 1 1
5 0 m( 5 0 m) 0 m 7 825 m/s

0 639 s

x xx x v t a t

x x v t v

= + Δ + Δ

.+ . = + Δ + ⇒ = = .
.

 

Having found the 1v  that will take the skier to the other side of the tank, we now use the energy equation to find the 
minimum speed 0.v  We have 

2 21 1
1 g1 0 g0 1 1 0 02 2

2 2 2
0 1 1 02 ( ) (7 825 m/s) 2(9 8 m/s )(2 0 m) 10 m/s

K U K U mv mgy mv mgy

v v g y y

+ = + ⇒ + = +

= + − = . + . . =
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11.54.  Model:  Use the particle model for the ice skater, the friction model, and the work–kinetic-energy theorem. 
Visualize: 
 

 
 

Solve:  (a) The work–kinetic-energy theorem gives  
2 21 1
1 0 net wind2 2K mv mv W WΔ = − = =  

There is no kinetic friction along her direction of motion. Static friction acts to prevent her skates from slipping 
sideways on the ice, but this force is perpendicular to the motion and does not contribute to a change in thermal 
energy. The angle between windF  and rΔ  is 135 ,= °θ  so 

wind wind wind cos(135 ) (4 0 N)(100 m)cos(135 ) 282 8 JW F r F y= ⋅ Δ = Δ ° = . ° = − .  

Thus, her final speed is 

2 wind
1 0

2 2 2 m/sWv v
m

= + = .  

(b) If the skates don’t slip, she has no acceleration in the x-direction and so net( ) 0 NxF = . That is: 

s wind s windcos(45 ) 0 N cos(45 ) 2 83 Nf F f F− ° = ⇒ = ° = .  

Now there is an upper limit to the static friction: s s max sf f mg≤ ( ) = .μ  To not slip requires 

s
s 2

2 83 N 0 0058
(50 kg)(9 8 m/s )

f
mg

μ .≥ = = .
.

 

Thus, the minimum value of sμ  is 0.0058. 
Assess:   The work done by the wind on the ice skater is negative, because the wind slows the skater down. 

11.55.  Model:  Model the ice cube as a particle, the spring as an ideal that obeys Hooke’s law, and the law of 
conservation of energy. 
Visualize: 
 

 
 

Solve:  (a) The normal force does no work and the slope is frictionless, so mechanical energy is conserved. We’ve 
drawn two separate axes: a vertical y-axis to measure potential energy and a tilted s-axis to measure distance along 
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the slope. Both have the same origin which is at the point where the spring is not compressed. Thus, the two axes are 
related by siny s= .θ  Also, this choice of origin makes the elastic potential energy simply 2 21 1

s 02 2( )U k s s ks= − = .  

Because energy is conserved, we can relate the initial point—with the spring compressed—to the final point where 
the ice cube is at maximum height. We do not need to find the speed with which it leaves the spring. We have 

2 g2 s2 1 g1 s1

2 2 2 21 1 1 1
2 2 0 1 1 12 2 2 2

K U U K U U

mv mgy ks mv mgy ks

+ + = + +

+ + = + +
 

It is important to note that at the final point, when the ice cube is at 2,y  the end of the spring is only at 0.s The spring 

does not stretch to 2,s  so s2U  is not 21
22 ks .  Three of the terms are zero, leaving 

2
2 11

2 1 1 2 12 height gained 0 255 m 25 5 cm
2
ksmgy mgy ks y y y
mg

= + + ⇒ − = Δ = = = . = .  

The distance traveled is / sin (30 ) 0 51 ms yΔ = Δ ° = . .  
(b) Using the energy equation and the expression for thermal energy: 

2 g2 s2 th 1 g1 s1 ext th k k,K U U E K U U W E f s n sμ+ + + Δ = + + +  Δ = Δ = Δ  
From the free-body diagram,  

net( ) 0 N cos(30 ) cos(30 )yF n mg n mg= = − ° ⇒ = °  

Now, having found th k cos(30 ) ,E mg sΔ = ° Δμ  the energy equation can be written 
21

2 k 1 12
21

2 1 1 k2

0 J 0 J cos(30 ) 0 J 0 J

( ) cos(30 ) 0

mgy mg s mgy ks

mg y y ks mg s

+ + + ° Δ = + + +

− − + ° Δ =

μ

μ
 

Using sin (30 ),y sΔ = Δ °  the above equation simplifies to  
2

2 11
k 12

k
sin (30 ) cos(30 ) 0 38 m

2 [sin (30 ) cos(30 )]
ksmg s mg s ks s

mg
μ

μ
Δ ° + ° Δ = ⇒ Δ = = .

° + °
 

 

11.56.  Model:  Assume an ideal spring, so Hooke’s law is obeyed. Treat the box as a particle and apply the energy 
conservation law. Box, spring, and the ground make our system, and we also use the model of kinetic friction. 
Visualize:  We place the origin of the coordinate system on the ground directly below the box’s starting position.  
 

 
 

Solve:  (a) The energy conservation equation gives 
1 g1 s1 th 0 g0 s0 ext

2 2 21 1 1
1 1 0 0 1 02 2 2

2
1 0

0 J 0 J 0 J 0 J 0 J 0 J

2 2(9 8 m/s )(5 0 m) 9 9 m/s

K U U E K U U W

mv mgy mv mgy mv mgy

v gy

+ + + Δ = + + +

+ + + = + + + ⇒ + = +

= = . . = .
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(b) The friction creates thermal energy. The energy conservation equation for this part of the problem is 
2 21 1

2 g2 s2 th 1 g1 s1 ext 2 k 2 1 12 2
2 2 2 21 1 1 1
2 k 2 1 1 2 k 2 1 12 2 2 2

2 2 2
2 1 k 2 1

, 0 J 0 J ( ) 0 J 0 J 0 J

( ) ( )

2 ( ) (9.9 m/s) 2(0.25)(9.8 m/s )(2.0 m) 9.4 m/s

K U U E K U U W mv mg x x mv

mv n x x mv mv mg x x mv

v v g x x

+ + + Δ = + + + + + + − = + + +

+ − = ⇒ + − =

= − − = − =

μ

μ μ

μ

 

(c) To find how much the spring is compressed, we apply the energy conservation once again: 
2 2

3 g3 s3 th 2 g2 s2 ext 3 2 2
1 1, 0 J 0 J ( ) 0 J 0 J 0 J 0 J
2 2

K U U E K U U W k x x mv+ + + Δ = + + + + + − + = + + +  

Using 2 9 4 m/s, 500 N/m,v k= . =  and 5 0 kg,m = .  the above equation yields 3 2( ) 0 94 mx x x− = Δ = . .  

(d) The initial energy 2
0 (5 0 kg)(9 8 m/s )(5 0 m) 254 Jmgy= = . . . = .  The energy transformed to thermal energy during 

each passage is 
2

k 2 1( ) (0 25)(5 0 kg)(9 8 m/s )(2 0 m) 24 5 Jmg x x− = . . . . = .μ  
The number of passages is equal to 245 J/24 5 J.  or 10. 

11.57.  Model:  Assume an ideal spring, so Hooke’s law is obeyed. Treat the physics student as a particle and apply 
the law of conservation of energy. Our system is comprised of the spring, the student, and the ground. We also use 
the model of kinetic friction. 
Visualize:   We place the origin of the coordinate system on the ground directly below the end of the compressed 
spring that is in contact with the student. 
 

 
 

Solve:  (a) The energy conservation equation gives  
1 g1 s1 th 0 g0 s0 ext

2 2 2 21 1 1 1
1 1 1 e 0 0 1 02 2 2 2( ) 0 J ( ) 0 J

K U U E K U U W

mv mgy k x x mv mgy k x x

+ + + Δ = + + +

+ + − + = + + − +
 

Since 1 0 10 m,y y= = 1 e,x x= 0 0 m/s,v = 80,000 N/m,k = 100 kg,m = and 1 0( ) 0 5 m,x x− = .  

2 21 1
1 1 0 1 1 02 2

80,000 N/( ) ( ) (0.50 m) 14 m/s
100 kg

k mmv k x x v x x
m

= − ⇒ = − = =  

(b) Friction creates thermal energy. Applying the conservation of energy equation once again: 
2 g2 s2 th 0 g0 s0 ext

2 21 1
2 2 k 0 1 02 20 J 0 J ( ) 0 J

K U U E K U U W

mv mgy f s mgy k x x

+ + + Δ = + + +

+ + + Δ = + + − +
 

With 2 0 m/sv =  and 2 sin (30 ),y s= Δ °  the above equation is simplified to 
21

k 0 1 02sin (30 ) ( )mg s n s mgy k x xΔ ° + Δ = + −μ  

From the free-body diagram for the physics student, we see that G cos(30 ) cos(30 )n F mg= ° = ° .  Thus, the conservation 
of energy equation gives 
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21
k 0 1 02[ sin (30 ) cos(30 )] ( )s mg mg mgy k x xΔ ° + ° = + −μ  

Using 100 kg,m = 80,000 N/m,k = 1 0( ) 0 50 m,x x− = . 0 10 m,y = and k 0 15,= .μ  we get 
21

0 1 02

k

( )
32 m

[sin (30 ) cos(30 )]
mgy k x x

s
mg

+ −
Δ = =

° + °μ
 

Assess:  2 sin (30 ) 16 m,y s= Δ ° =  which is greater than 0 10 my = .  The higher value is due to the transformation of 
the spring energy into gravitational potential energy. 

11.58.  Model:  Treat the block as a particle, use the model of kinetic friction, and apply the energy conservation 
law. The block and the incline comprise our system. 
Visualize:   We place the origin of the coordinate system directly below the block’s starting position at the same 
level as the horizontal surface. On the horizontal surface the model of kinetic friction applies. 
 

 
 

Solve:  (a) For the first incline, the conservation of energy equation gives 
21

1 g1 th 0 g0 ext 1 0 1 02, 0 J 0 J 0 J 0 J 2 2K U E K U W mv mgy v gy gh+ + Δ = + + + + = + + ⇒ = =  

(b) The friction creates thermal energy. Applying once again the conservation of energy equation, we have 
2 21 1

3 g3 th 1 g1 ext 3 3 2 1 1 1 ext2 2, ( )kK U E K U W mv mgy mg x x mv mgy W+ + Δ = + + + + − = + +μ  

Using 3 0 m/s,v = 1 0 m,y = ext 0 J,W = 1 2 ,v gh= and 2 1( ) ,x x L− =  we get 
1

3 k 3 k2 (2 )mgy mgL m gh y h L+ = ⇒ = −μ μ  

Assess:  For k 0,=μ 3y h=  which is predicted by the law of the conservation of energy. 

11.59.  Model:  Assume an ideal spring, so Hooke’s law is obeyed. 
Visualize: 
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Solve:  For a conservative force the work done on a particle as it moves from an initial to a final position is 
independent of the path. We will show that A C B A BW W→ → →=  for the spring force. Work done by a spring force 
F kx= −  is given by 

f

i

x

x

W Fdx kxdx= = −∫ Ñ  

This means 
CB B

A A C

2 2 2 2 2 2
A B B A A C C A C B B C( ), ( ),  and ( )

2 2 2

xx x

x x x

k k kW kxdx x x W kxdx x x W kxdx x x→ → →= − = − −  = − = − − = − = − −Ñ Ñ Ñ  

Adding the last two: 
2 2 2 2

A C B A C C B C A B A B( )
2 C
kW W W x x x x W→ → → → →= + = − − + − =  

Assess:   Because the paths are arbitrary, we have shown that the work done on a particle is independent of the path, 
so the spring force is conservative. 

11.60.  Model:  A “sprong” obeys the force law 3
e( ) ,xF q x x= − −  where q is the sprong constant and ex  is the 

equilibrium position. 
Visualize:  We place the origin of the coordinate system on the free end of the sprong, that is, e f 0 mx x= = .  
 

 
 

Solve:  (a) The units of q are 3N/m .  

(b) 3 4
0

Since / ,  we have ( ) ( ) /4
x

x xF dU dx U x F dx qx dx qx= − = − = − − = .∫ Ñ  

(c) Applying the energy conservation equation to the ball and sprong system gives 
f f i i
2 41 1
f i2 4

4 3 4

f

0 J 0 J

(40,000 N/m )( 0 10 m) 10 m/s
2 2(0 020 kg)

K U K U

mv qx

qxv
m

+ = +

+ = +

− .= = =
.

 

11.61.  Solve:  (a) Because sin (cx) is dimensionless, 0F must have units of force in newtons. 
(b) The product cx is an angle because we are taking the sine of it. An angle is dimensionless. If x has units of m and 
the product cx is dimensionless, then c has to have units of 1m .−  
(c) The force is a maximum when sin ( ) 1cx = .  This occurs when /2,cx = π  or for max /(2 )x c= .π  
(d) The graph is the first quarter of a sine curve.  
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(e) We can find the velocity fv at f maxx x=  from the work–kinetic-energy theorem: 

2 2 2 2 21 1 1 1
f i f 0 f 02 2 2 2

2WK mv mv mv mv W v v
m

Δ = − = − = ⇒ = +  

This is a variable force. As the particle moves from i 0 mx =  to f max /(2 )x x c= = π  the work done on it is 

[ ]
f f

i i

/(2 )
0 0 0

0
0

( ) sin( ) cos( ) cos( /2) cos(0)
x x c

x x

F F FW F x dx F cx dx cx
c c c

= = = − = − − =
π

πÑ Ñ  

Thus, the particle’s speed at f max /(2 )x x c= = π  is 2
f 0 02 /( )v v F mc= + .   

11.62.  Solve:  The average power output during the push-off period is equal to the work done by the cat divided by the 
time the cat applied the force. Since the force on the floor by the cat is equal in magnitude to the force on the cat by the 
floor, work done by the cat can be found using the work–kinetic-energy theorem during the push-off period; 

net floorW W K= = Δ .  We do not need to explicitly calculate cat ,W since we know that the cat’s kinetic energy is transformed 
into its potential energy during the leap. That is,  

2
g 2 1( ) (5 0 kg)(9 8 m/s )(0 95 m) 46 55 JU mg y yΔ = − = . . . = .  

Thus, the average power output during the push-off period is 
net 46 55 J 0 23 kW

0 20 s
WP

t
.= = = .

.
 

11.63.  Model:  The heart provides the pressure to move blood through the body and therefore does work on the 
blood. We assume all the work goes into pushing the blood through the body. 
Solve:  (a) Using the hint, 4 2 3 3(1.3 10 N/m )(6.0 10 m ) 78 JW PAd PV −= = = × × =  (in this equation, P represents 
pressure, not power). 
(b) Using P to represent power now, we can calculate the average power output of the heart as follows: 

78 J 1.3 W
60 s

WP
t

= = =
Δ

 

Assess:   This power is much less than that of an ordinary lightbulb ( 75 W).≈  

11.64.  Model:  We will ignore rolling friction because it is much less than the drag force (and becaue we are not 
given the mass of the bicyclist + bicycle). Therefore, model the system as a particle with the given cross-sectional 
area and that is moving through the air at the given speed. 
Solve:   (a) From Eq. 6.16, we know that the drag force D has the magnitude 

21
2D C Av= ρ  

where 0.90,C =  20.45 m ,A =  and 31.2 kg/m=ρ  (the density of air). To overcome this force, the cyclist must 

generate the force ,F D= −  or a  power ,P F v Dv= ⋅ =  where the last equality follows because the drag force acts in 
parallel to the velocity. Thus, the power isi 

3 3 2 31 1
2 2 (0.90)(1.2 kg/m )(0.45 m )(7.3 m/s) 95 WP C Av= = =ρ  

(b) The metabolic power output MP  is 2
M /0.25 3.8 10 W.P P= = ×  
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(c) The number of food calories c burned riding for one hour is 

( ) 21cal 3600 s(378 W) 1 h 3.2 10 cal
4190 J 1 h

c
⎛ ⎞⎛ ⎞

= = ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Assess:   The 320 cal in part (c) is about what you would get from drinking two 8-oz glasses of whole milk. 

11.65.  Solve:  (a) The change in the potential energy of 1.0 kg of water in falling 25 m is  
2

g (1 0 kg)(9 8 m/s )(25 m) 245 J 0 25 kJU mghΔ = − = − . . = − ≈ − .  
(b) The power required of the dam is  

6 650 10  Watts 50 10  J
1 s

W WP W
t

= = = × ⇒ = ×  

That is, 650 10  J× of energy is required per second for the dam. Out of the 245 J of lost potential energy, 
(245 J)(0 80) 196 J. =  is converted to electrical energy. Thus, the amount of water needed per second is 

6 5(50 10  J)(1 0 kg/196 J) 255,000 kg 2 6 10  kg× . = ≈ . × .  

11.66.  Solve:  The force required to tow a water skier at a speed v is towF Av= .  Since power ,P Fv= the power 

required to tow the water skier is 2
tow towP F v Av= = .  We can find the constant A by noting that a speed of 2 5 mphv = .  

requires a power of 2 hp. Thus, 
2

2
hp2 hp (2 5 mph) 0 32

mph
A A= . ⇒ = .  

 

Now, the power required to tow a water skier at 7.5 mph is 
2 2

tow 2
hp0 32 (7 5 mph) 18 hp

mph
P Av= = . . =  

Assess:   Since 2,P v∝  a three-fold increase in velocity leads to a nine-fold increase in power. 

11.67.  Model:  Use the model of static friction, kinematic equations, and the definition of power. 
Solve:  (a) The rated power of the Porsche is 217 hp 161,882 W=  and the gravitational force on the car is 

2(1480 kg)(9 8 m/s ) 14,504 N.. = The amount of that force on the drive wheels is (14,504)(2/3) 9670 N= .  Because 
the static friction of the tires on road pushes the car forward, 

max s,max s s max

2
max

(1 00)(9670 N)

9670 N 6 53 m/s
1480 kg

F f n mg ma

a

= = = = . =

= = .

μ μ
 

(b) Only 70% of the power generated by the motor is applied at the wheels. 

max max
(0 70)(161,882 W) 11 7 m/s

9670 N
PP Fv v
F

.= ⇒ = = = .  

(c) Using the kinematic equation, max 0 max min 0( )v v a t t= + −  with 0 0 m/sv =  and 0 0 s,t =  we obtain 

max
min 2

max

11 7 m/s 1 79 s
6 53 m/s

vt
a

.= = = .
.

 

Assess:  An acceleration time of 1.79 s for the Porsche to reach a speed of 26 mph≈ from rest is reasonable. 

11.68.  Solve:  (a) A student uses a string to pull her 2.0 kg physics book, starting from rest, across a 2.0-m-long lab 
bench. The coefficient of kinetic friction between the book and the lab bench is 0.15. If the book’s final speed is 4.0 m/s, 
what is the tension in the string? 
(b)  
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(c) The tension does external work extW .  This work increases the book’s kinetic energy and also causes an increase 

thEΔ  in the thermal energy of the book and the lab bench. Solving the equation gives 11 N.T =  

11.69.  (a) A 20 kg chicken crate slides down a 2.5-m-high, 40° ramp from the back of a truck to the ground. The 
coefficient of kinetic friction between the crate and the ramp bench is 0.15. How fast are the chickens going at the 
bottom of the ramp? 
(b)  
 

 
 

(c) 1 6 3 m/sv = . .  

11.70.  (a) If you expend 75 W of power to push a 30 kg sled on a surface where the coefficient of kinetic friction 
between the sled and the surface is k 0 20,= .μ what speed will you be able to maintain? 
(b)  
 

 
 

(c) 2
push

75 W(0 20)(30 kg)(9 8 m/s ) 58 8 N 75 W (58 8 N) 1 3 m/s
58 8 N

F v v= . . = . ⇒ = . ⇒ = = .
.

 

11.71.  (a) A 1500 kg object is being accelerated upward at 21.0 m/s by a rope. How much power must the motor 
supply at the instant when the velocity is 2.0 m/s? 
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(b)  
 

 
 

(c) 2 2(1500 kg)(9 8 m/s ) 1500 kg(1 0 m/s ) 16,200 N 16 2 kNT = . + . = = .  
(2 m/s) (16,200 N)(2 0 m/s) 32,400 W 32 kWP T= = . = =  

11.72.  Model:  Assume the spring is ideal so that Hooke’s law is obeyed, and model the weather rocket as a particle. 
Visualize: 
 

 
 

The origin of the coordinate system is placed on the free end of the spring. Note that the bottom of the spring is 
anchored to the ground. 
Solve:  (a) The rocket is initially at rest. The free-body diagram on the rocket helps us write Newton’s second law as 

( ) sp G

2

0 N

(10 2 kg)(9 81 m/s ) 20 0 cm
(500 N/m)

yF F F mg k y mg

mgy
k

= ⇒ = = ⇒ Δ =

. .Δ = = = .

∑
 

(b) The thrust does work. Using the energy conservation equation when 2 e 40 cm 0 40 m:y y− = = .  

2 g2 sp2 1 g1 sp1 ext

2 2 2 21 1 1 1
ext 2 2 2 e 1 1 1 e2 2 2 2

2
2 2

( ) ( ) 200 N 0 60 m

(5 10 kg) 40 0 J 40 0 J 0 20 0 J 10 0 J 120 J 2 43 m/s

K U U K U U W

W mv mgy k y y mv mgy k y y

v v

+ + = + + +

= + + − = + + − + ( )( . )

. + . + . = − . + . + ⇒ = .
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If the rocket were not attached to the spring, the energy conservation equation would not involve the spring energy 
term sp2U .  That is, 

2 g2 1 g1 sp1 ext

2 2 21
22

21
2

(10 2 kg) (10 2 kg)(9 81 m/s )(0 40 m) 0 J (10 2 kg)(9 81 m/s )(0 20 m)

(500 N/m)(0 20 m) 200 N 0 60 m

K U K U U W

v

+ = + + +

. + . . . = − . . .

 + . + ( )( . )

 

2
2 2(5 10 kg) 70 0 J 3 70 m/sv v. = . ⇒ = .  

Assess:  (a) The rocket has greater speed at 2y  when it is not attached to the spring because, as the spring extends, it 
contributes a downward force to the rocket. 

11.73.  Model:  Assume the spring to be ideal that obeys Hooke’s law, and model the block as a particle. 
Visualize:  We place the origin of the coordinate system on the free end of the compressed spring which is in contact 
with the block. Because the horizontal surface at the bottom of the ramp is frictionless, the spring energy appears as 
kinetic energy of the block until the block begins to climb up the incline. 
 

 
 

Solve:  Although we could find the speed 1v  of the block as it leaves the spring, we don’t need to. We can use energy 
conservation to relate the initial potential energy of the spring to the energy of the block as it begins projectile motion 
at point 2. However, friction requires us to calculate the increase in thermal energy. The energy equation is 

2 21 1
2 g2 th 0 g0 ext 2 2 k 0 e2 2 ( )K U E K U W mv mgy f s k x x+ + Δ = + + ⇒ + + Δ = −  

The distance along the slope is 2/ sin(45 ).s yΔ = °  The friction force is k k ,f n= μ  and we can see from the free-body 
diagram that cos(45 )n mg= ° . Thus 

2
2 0 e 2 k 2

1/2
2 2 2

( ) 2 2 cot(45 )

1000 N/m (0 15 m) 2(9 8 m/s )(2 0 m) 2(0 20)(9 8 m/s )(2 0 m)cot(45 ) 8 091 m/s
0 20 kg

kv x x gy gy
m

= − − − °

⎡ ⎤
= . − . . − . . . ° = .⎢ ⎥.⎣ ⎦

μ
 

Having found the velocity 2,v  we can now find 3 2( )x x d− =  using the kinematic equations of projectile motion: 

2
3 2 2 3 2 2 3 2

2 21
2 3 2 3 22

1( ) ( )
2

2 0 m 2 0 m sin (45 )( ) ( 9 8 m/s )( )

y yy y v t t a t t

v t t t t

= + − + −

. = .  + ° − + − . −
 

3 2 0 s and 1 168 st t− = .  
Finally, 

2
3 2 2 3 2 2 3 2

3 2 2

1( ) ( )
2

( ) cos(45 )(1 168 s) 0 m 6 7 m

x xx x v t t a t t

d x x v

= + − + −

= − = ° . + = .
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11.74.  Solve:  (a)  
 

 
 

The graph is a hyperbola. 
(b) The separation for zero potential energy is ,r = ∞  since 

1 2 0 J as Gm mU r
r

= − → → ∞  

This makes sense because two masses don’t interact at all if they are infinitely far apart. 
(c) Due to the absence of nonconservative forces in our system of two particles, the mechanical energy is conserved. 
 

 
 

The equations of energy and momentum conservation are 
2 2 2 21 2 1 21 1 1 1

f gf i gi 1 1f 2 2f 1 1i 2 2i2 2 2 2
f i

2 21 1
1 1f 2 2f 1 22 2

f i

1 1

Gm m Gm mK U K U m v m v m v m v
r r

m v m v Gm m
r r

⎛ ⎞ ⎛ ⎞
+ = +     + + − = + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

+ = −   ⎜ ⎟
⎝ ⎠

 

1
f i 1 1f 2 2f 2f 1f

2
0 kg m/s mp p m v m v v v

m
= ⇒ + = ⇒ = −  

Substituting this expression for 2fv  into the energy equation, we get 
2

2 21 21 1
1 1f 2 1f 1 2 1f2 2

2 f i 1 2 f i

1 1 2 1 1
(1 / )

m Gmm v m v Gm m v
m r r m m r r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = − ⇒ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

With 11 2 8 14 30 30
f 1 2 i 1 26 67 10  N m(kg) , 18 10 m, 1 0 10 m,  8 0 10 kg, and 2 0 10  kg,G r R R r m m− −= . × ⋅ = + = × = . × = . × = . ×  

the above equation can be simplified to yield 
30

5 5 51
1f 2f 1f 30

2

8 0 10  kg1 72 10  m/s, and (1 72 10  m/s) 6 89 10  m/s
2 0 10  kg

mv v v
m

⎛ ⎞. ×= . × = − = . × = . ×⎜ ⎟⎜ ⎟. ×⎝ ⎠
 



11-34   Chapter 11 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

The speed of the heavier star is 51 7 10  m/s. × .  That of the lighter star is 56 9 10 m/s. × .  

11.75.  Model:  Model the lawnmower as a particle and use the model of kinetic friction. 
Visualize: 
 

 
 

We placed the origin of our coordinate system on the lawnmower and drew the free-body diagram of forces. 
Solve:  The normal force ,n  which is related to the frictional force, is not equal to GF .  This is due to the presence of F .  

The rolling friction is r r r r,  or /f n n f= = .μ μ  The lawnmower moves at constant velocity, so net 0F = .  The two 
components of Newton’s second law are 

G r r r r r

r r r

( ) sin (37 ) 0 N / sin (37 ) 0 N sin37

( ) cos(37 ) 0 N cos(37 ) sin (37 ) 0 N
y y

x

F n F F ma f mg F f mg F

F F f F mg F

μ μ μ
μ μ

∑ = − − ° = = ⇒ − − ° = ⇒ = + °

∑ = ° − = ⇒ ° − − ° =
 

2
r

r

(0.15)(12 kg)(9.8 m/s ) 24.9 N
cos(37 ) sin (37 ) 0.7986 0.15 0.6018

mgF μ
μ

= = =
° − ° − ( )( )

 

Thus, the power supplied by the gardener in pushing the lawnmower at a constant speed of 1.2 m/s is P F v= ⋅ =  
cos (24 9 N)(1 2 m/s)cos(37 ) 24 WFv = . . ° = .θ  


