Ch 13 Newton's Theory of Gravity Notes and Ideas

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad G=6.67 \times 10^{-11} \mathrm{~N} * \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

To derive ' g '; $\quad a=\frac{F_{\text {Net }}}{M_{\text {Total }}} ; \mathrm{F}_{\text {net }}$ is F_{g} or $\mathrm{m} * \mathrm{~g}$ so $\quad a=\frac{M^{M} * g}{M_{\text {at }}}$
so $\mathrm{g}=\mathrm{a}$ for an object $\left(\mathrm{m}_{1}\right)$ at a certain position,
$m_{ \pm} g=G \frac{m_{ \pm} M_{\text {planet }}}{r^{2}} \rightarrow\left[g=G \frac{M_{\text {planet }}}{r^{2}}\right]$
only works if $r>$ planets radius (surface)
$\mathrm{g}=9.83 \mathrm{~m} / \mathrm{s}^{2} \mathrm{w} / \mathrm{o}$ spinning Earth, but $9.81 \mathrm{~m} / \mathrm{s}^{2}$ since Earth $\underline{\boldsymbol{i} \boldsymbol{s}}$ spinning $\left(\frac{2 \pi r}{d a y}\right)$

- There are several ways to think about U_{g} from a planet. Basically, at ∞, there is no force, no interaction, so $\mathrm{U}_{\mathrm{g}}=0 \mathrm{~J}$. To push an object away from the Earth takes work (energy), but since force is pushing away it is negative work...
- Also, since $\mathrm{U}_{\mathrm{g}}=0 @ \infty$, but U_{g} increases as distance increases, U_{g} must be negative for points less than ∞.

Either way $W=F * d \quad \rightarrow G \frac{m_{1} m_{2}}{r^{z}} * r \rightarrow\left[U_{g}=-G \frac{M_{1} M_{2}}{r}\right]$ see page 362 .

To find escape velocity (page 363 Example 13.2); we need the change in potential energy to be equal to the object initial kinetic energy.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{f}} \quad \mathrm{~K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2} \quad 0 \mathrm{~J}+0 \mathrm{~J}=\frac{1}{2} m_{ \pm} v^{2}-G \frac{m_{ \pm} M_{\text {Planet }}}{R} \\
& \frac{1}{2} v^{2}=G \frac{M_{\text {Planet }}}{R} \rightarrow v^{2}=\frac{2 G M_{\text {Planet }}}{R} \rightarrow v_{\text {esc }}=\sqrt{\frac{2 G M_{\text {Planet }}}{R}}
\end{aligned}
$$

To find an orbital speed @ a certain position we need to realize that the gravitational force will cause a centripetal acceleration.
$F_{\text {Net }}=M_{\text {Satellite }} * a \quad a=\frac{v^{2}}{r} \rightarrow$ For centripetal acceleration \downarrow
$F_{\text {Gravitational }}$ so $F_{g}=G \frac{M_{\text {sattee }} M_{\text {Earth }}}{r^{2}}=M_{\text {satellite }} * \frac{v_{\text {orbital }}{ }^{2}}{r}$
$\frac{G M_{\text {Earth }}}{r}=v_{\text {Orbital }^{2}}{ }^{2} \rightarrow v_{\text {Orbital }}=\sqrt{\frac{G M_{\text {Earth }}}{r}}$

For Keplers' $3^{\text {rd }}$ Law
$V=\frac{x}{t} \rightarrow V=\frac{2 \pi r}{T} \rightarrow\left(\sqrt{\frac{G M}{r}}=\frac{2 \pi r}{T}\right)^{2} \rightarrow \frac{G M}{r}=\frac{4 \pi^{2} r^{2}}{T^{2}}$ rearrange to solve for $\mathrm{T}^{2} \quad T^{2}=\frac{4 \pi^{2} r^{3}}{G M} \rightarrow$ Kepler's $3^{\text {rd }}$ Law

Finally ...
The kinetic energy of a satellite $=1 / 2 \mathrm{~m}_{\text {Satellite }} \mathrm{v}^{2}$,
but $v_{\text {Orbital }}{ }^{2}=\frac{G M_{\text {Earth }}}{r}$ so $\ldots K=\frac{1}{2} m_{\text {Satellite }}\left(G \frac{G M_{\text {Earth }}}{r}\right)$
$K=G \frac{M_{\text {Satellite }} M_{\text {Earth }}}{2 r}$ Since $U_{g}=-G \frac{M_{\text {Satelitte }} M_{\text {Earth }}}{r}$ the K is always
$1 / 2$ of the U_{g} for a satellite in stable orbit.

Therefore the total mechanical energy will $\boldsymbol{A L W A} \boldsymbol{A} \boldsymbol{S}$ be negative and ALWAYS be $1 / 2$ of U_{g}.

$$
\mathbf{E}_{\text {Mech }}=\mathbf{K}+\mathbf{U}_{\mathbf{g}}=1 / 2 \mathbf{U}_{\mathbf{g}}
$$

