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Conceptual Questions 

2.1.  It was a typical summer day on the interstate. I started 10 mi east of town and drove for 20 min at 30 mph west 
to town. My stop for gas took 10 min. Then I headed back east at 60 mph before I encountered a construction zone. 
Traffic was at a standstill for 10 min and then I was able to move forward (east) at 30 mph until I got to my 
destination 30 mi east of town. 

2.2.  With a slow start out of the blocks, a super sprinter reached top speed in about 5 s, having gone only 30 m. He 
was still able to finish his 100 m in only just over 9 s by running a world record pace for the rest of the race. 

2.3.  The baseball team is warming up. The pitcher (who is 50 feet from home plate) lobs the ball at 100 ft/s to the 
second baseman who is 100 ft from home plate. The second baseman then fires the ball at 200 ft/s to the catcher at 
home plate. 

2.4.  (a) At   t = 1 s,  the slope of the line for object A is greater than that for object B. Therefore, object A’s speed is 
greater. (Both are positive slopes.) 
(b) No, the speeds are never the same. Each has a constant speed (constant slope) and A’s speed is always greater. 

2.5.  (a) A’s speed is greater at   t = 1 s.  The slope of the tangent to B’s curve at   t = 1 s  is smaller than the slope of 
A’s line. 
(b) A and B have the same speed at just about   t = 3 s.  At that time, the slope of the tangent to the curve representing 
B’s motion is equal to the slope of the line representing A. 

2.6.  (a) B. The object is still moving, but the magnitude of the slope of the position-versus-time curve is smaller than at D. 
(b) D. The slope is greatest at D. 
(c) At points A, C, and E the slope of the curve is zero, so the object is not moving. 
(d) At point D the slope is negative, so the object is moving to the left. 

2.7.  (a) The slope of the position-versus-time graph is greatest at D, so the object is moving fastest at this point. 
(b) The slope is negative at points C, D, and E, meaning the object is moving to the left at these points. 
(c) At point C the slope is increasing in magnitude (getting more negative), meaning that the object is speeding up to 
the left. 
(d) At point B the object is not moving since the slope is zero. Before point B, the slope is positive, while after B it is 
negative, so the object is turning around at B. 

2.8.  (a) The positions of the third dots of both motion diagrams are the same, as are the sixth dots of both, so cars A 
and B are at the same locations at the time corresponding to dot 3 and again at that of dot 6. 
(b) The spacing of dots 4 and 5 in both diagrams is the same, so the cars are traveling at the same speeds between 
times corresponding to dots 4 and 5. 
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2.9.  No, though you have the same position along the road, his velocity is greater because he is passing you. If his 
velocity were not greater, then he would remain even with the front of your car. 

2.10.  Yes. The acceleration vector will point west when the bicycle is slowing down while traveling east. 

2.11.  (a) As a ball tossed upward moves upward, its vertical velocity is positive, while its vertical acceleration is 
negative, opposite the velocity, causing the ball to slow down. 
(b) The same ball on its way down has downward (negative) velocity. The downward negative acceleration is 
pointing in the same direction as the velocity, causing the speed to increase. 
 

 

2.12.  For all three of these situations the acceleration is equal to g in the downward direction. The magnitude and 
direction of the velocity of the ball do not matter. Gravity pulls down at constant acceleration. (Air friction is 
ignored.) 

2.13.  (a) The magnitude of the acceleration while in free fall is equal to g at all times, independent of the initial 
velocity. The acceleration only tells how the velocity is changing. 
(b) The magnitude of the acceleration is still g because the rock is still in free fall. The speed is increasing at the same 
rate each instant, that is, by the same  Δv  each second. 

2.14.  The ball remains in contact with the floor for a small but noticeable amount of time. It is in free fall when not 
in contact with the floor. When it hits the floor, it is accelerated very rapidly in the upward direction as it bounces. 
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Exercises and Problems 

Section 2.1  Uniform Motion 

2.1.  Model:  Cars will be treated by the particle model. 

Visualize:  
 

 
 

Solve:   Beth and Alan are moving at a constant speed, so we can calculate the time of arrival as follows: 

  
v =

Δx
Δt

=
x1 − x0
t1 − t0

⇒ t1 = t0 +
x1 − x0

v
 

Using the known values identified in the pictorial representation, we find: 

  

tAlan 1 = tAlan 0 +
xAlan 1 − xAlan 0

v
= 8:00 AM +

400 mile
50 miles/hour

= 8:00 AM + 8 hr = 4:00 PM

tBeth 1 = tBeth 0 +
xBeth 1 − xBeth 0

v
= 9:00 AM +

400 mile
60 miles/hour

= 9:00 AM + 6.67 hr = 3:40 PM

 

(a) Beth arrives first. 
(b) Beth has to wait   tAlan 1 − tBeth 1 = 20 minutes  for Alan. 
Assess:  Times of the order of 7 or 8 hours are reasonable in the present problem. 

2.2.  Model:  We will consider Larry to be a particle. 

Visualize: 
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Solve:   Since Larry’s speed is constant, we can use the following equation to calculate the velocities: 

  
vs =

sf − si
tf − ti

 

(a) For the interval from the house to the lamppost: 

  
v1 =

200 m − 600 m
9 : 07 − 9 : 05

= −200 m/min  

For the interval from the lamppost to the tree: 

  
v2 =

1200 m − 200 m
9 :10 − 9 : 07

= +333 m/min  

(b) For the average velocity for the entire run: 

  
vavg =

1200 m − 600 m
9 :10 − 9 : 05

= +120 m/min  

2.3.  Solve:  (a) The time for each segment is   Δt1 = 50 mi/40 mph = 5/4 hr  and   Δt2 = 50 mi/60 mph = 5/6hr.  The 
average speed to the house is 

 

100 mi
5/6 h + 5/4 h

= 48 mph  

(b) Julie drives the distance   Δx1  in time   Δt1  at 40 mph. She then drives the distance   Δx2  in time   Δt2  at 60 mph. 
She spends the same amount of time at each speed, thus 

  Δt1 = Δt2 ⇒ Δx1/40 mph = Δx2 /60 mph ⇒ Δx1 = (2/3)Δx2  

But   Δx1 + Δx2 = 100 miles,  so   (2/3)Δx2 + Δx2 = 100 miles.  This means   Δx2 = 60 miles  and   Δx1 = 40 miles.  Thus, 
the times spent at each speed are   Δt1 = 40 mi/40 mph = 1.00 h  and   Δt2 = 60 mi/60 mph = 1.00 h.  The total time for 
her return trip is   Δt1 + Δt2 = 2.00 h.  So, her average speed is  100 mi/2 h = 50 mph.  

2.4.  Model:  The jogger is a particle. 
Solve:   The slope of the position-versus-time graph at every point gives the velocity at that point. The slope at   t = 10 s  is 

  
v = Δs

Δt
=

50 m − 25 m
20 s

= 1.25 m/s  

The slope at   t = 25 s  is 

  
v = 50 m − 50 m

10 s
= 0.0 m/s  

The slope at   t = 35 s  is 

  
v = 0 m − 50 m

10 s
= −5.0 m/s  

Section 2.2  Instantaneous Velocity 

Section 2.3  Finding Position from Velocity 
2.5.  Solve:  (a) We can obtain the values for the velocity-versus-time graph from the equation   v = Δs/Δt.  
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(b) There is only one turning point. At   t = 1 s  the velocity changes from +20 m/s to −5 m/s,  thus reversing the direction 
of motion. At   t = 3 s,  there is an abrupt change in motion from  −5 m/s  to rest, but there is no reversal in motion. 

2.6.  Visualize:   Please refer to Figure EX2.6. The particle starts at   x0 = 10 m  at   t0 = 0.  Its velocity is initially in 
the –x direction. The speed decreases as time increases during the first second, is zero at   t = 1 s,  and then increases 
after the particle reverses direction. 

Solve:  (a) The particle reverses direction at   t = 1 s,  when 
 
vx  changes sign. 

(b) Using the equation   xf = x0 +  area of the velocity graph between   t1  and   tf ,  

  

x2s = 10 m − (area of triangle between 0 s and 1 s) + (area of triangle between 1 s and 2 s)

= 10 m −
1
2

(4 m/s)(1 s) +
1
2

(4 m/s)(1 s) = 10 m

x3s = 10 m + area of trapazoid between 2 s and 3 s

= 10 m +
1
2

(4 m/s + 8 m/s)(3 s − 2 s) = 16 m

x4s = x3s + area between 3 s and 4 s

= 16 m +
1
2

(8 m/s + 12 m/s)(1 s) = 26 m

 

2.7.  Model:  The graph shows the assumption that the blood isn’t moving for the first 0.1 s nor at the end of the 
beat. 
Visualize:  The graph is a graph of velocity vs. time, so the displacement is the area under the graph—that is, the 
area of the triangle. The velocity of the blood increases quickly and decreases a bit more slowly. 

Solve:  Call the distance traveled   Δy.  The area of a triangle is 
  
1
2

BH .  

  
Δy =

1
2

BH =
1
2

(0.20 s)(0.80 m/s) = 8.0 cm  

Assess:  This distance seems reasonable for one beat. 

2.8.  Solve:  (a) We can calculate the position of the particle at every instant with the equation 

  xf = xi + area under the velocity-versus-time graph between   ti  and   tf  

The particle starts from the origin at   t = 0 s,  so   xi = 0 m.  Notice that the each square of the grid in Figure EX2.8 has 
“area”  (5 m/s) × (2 s) = 10 m.  We can find the area under the curve, and thus determine x, by counting squares. You 
can see that x = 35 m at   t = 4 s  because there are 3.5 squares under the curve. In addition,   x = 35 m  at t = 8 s 
because the 5 m represented by the half square between 4 and 6 s is cancelled by the –5 m represented by the half 
square between 6 and 8 s. Areas beneath the axis are negative areas. The particle passes through   x = 35 m  at   t = 4 s  
and again at   t = 8 s.  
(b) The particle moves to the right for   0 s ≥ t ≥ 6 s, where the velocity is positive. It reaches a turning point at 
  x = 40 m  at   t = 6 s.  The motion is to the left for   t > 6 s.  This is shown in the motion diagram below. 
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Section 2.4  Motion with Constant Acceleration 

2.9.  Visualize:  The object has a constant velocity for 2 s and then speeds up between   t = 2  and   t = 4.  
Solve:  A constant velocity from   t = 0 s  to   t = 2 s  means zero acceleration. On the other hand, a linear increase in 
velocity between   t = 2 s  and   t = 4 s  implies a constant positive acceleration which is the slope of the velocity line. 
 

 

2.10.  Visualize:  The graph is a graph of velocity vs. time, so the acceleration is the slope of the graph. 
Solve:  When the blood is speeding up the acceleration is 

  
ay =

Δυ y

Δt
=
0.80 m/s

0.05s
= 16 m/s2  

When the blood is slowing down the acceleration is 

  
ay =

Δυ y

Δt
=
−0.80 m/s

0.15 s
= −5.3 m/s2  

Assess:   16 m/s2  is an impressive but reasonable acceleration. 

2.11.  Solve:  (a) At   t = 2.0 s,  the position of the particle is 

  

x2 s = 2.0 m + area under velocity graph from t = 0 s to t = 2.0 s

= 2.0 m +
1
2

(4.0 m/s)(2.0 s) = 6.0 m
 

(b) From the graph itself at   t = 2.0 s,    v = 4 m/s.  
(c) The acceleration is 

  
ax =

Δvx
Δt

=
vfx − vix
Δt

=
6 m/s − 0 m/s

3 s
= 2 m/s2  

2.12.  Solve:  (a) Using the equation 

  xf = xi + area under the velocity-versus-time graph between   ti  and   tf  
we have 

  

x(at t = 1 s) = x(at t = 0 s) + area between t = 0 s and t = 1 s
= 2.0 m + (4 m/s)(1 s) = 6 m

 

Reading from the velocity-versus-time graph,   vx (at t = 1 s) = 4 m/s. Also, 
  
ax = slope = Δv/Δt = 0 m/s2.  

(b)   x(at t = 3.0 s) = x(at t = 0 s) +  area between   t = 0 s  and   t = 3 s  
                              = 2.0 m + 4 m/s × 2 s + 2 m/s × 1 s + (1/2) × 2 m/s × 1 s = 13.0 m  

Reading from the graph,   vx (t = 3 s) = 2 m/s.The acceleration is 

  
ax (t = 3 s) = slope =

vx (at t = 4 s) − vx (at t = 2 s)
2 s

= −2 m/s2  
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2.13.  Model:  Represent the jet plane as a particle. 

Visualize: 
 

 
 

Solve:  Since we don’t know the time of acceleration, we will use 

  

v1
2 = v0

2 + 2a(x1 − x0 )

⇒ a =
v1

2 − v0
2

2x1
=

(400 m/s)2 − (300 m/s)2

2(4000 m)
= 8.75 m/s2 ≈ 8.8 m/s2

 

The acceleration of the jet is not quite equal to g, the acceleration due to gravity; this seems reasonable for a jet. 

2.14.  Model:  Model the air as a particle. 
Visualize:   Use the definition of acceleration and then convert units. 
Solve: 

  
ax =

Δvx
Δt

=
150 km/h

0.50 s
1000 m

1 km
⎛

⎝⎜
⎞

⎠⎟
1 h

60 min
⎛

⎝⎜
⎞

⎠⎟
1 min
60 s

⎛

⎝⎜
⎞

⎠⎟
= 83 m/s2  

Assess:   83 m/s2  is a remarkable acceleration. 

2.15.  Model:  We are using the particle model for the skater and the kinematics model of motion under constant 
acceleration. 
Solve:  Since we don’t know the time of acceleration we will use 

  

vf
2 = vi

2 + 2a(xf − xi )

⇒ a =
vf

2 − vi
2

2(xf − xi )
=

(6.0 m/s)2 − (8.0 m/s)2

2(5.0 m)
= −2.8 m/s2

 

Assess:  A deceleration of 2.8  m/s2 is reasonable. 

2.16.  Model:  We are assuming both cars are particles. 
Visualize: 
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Solve:  The Porsche’s time to finish the race is determined from the position equation 

  

xP1 = xP0 + vP0 (tP1 − tP0 ) + 1
2

aP (tP1 − tP0 )2

⇒ 400 m = 0 m + 0 m +
1
2

(3.5 m/s2 )(tP1 − 0 s)2 ⇒ tP1 = 15.1 s
 

The Honda’s time to finish the race is obtained from Honda’s position equation as 

  

xH1 = xH0 + vH0 (tH1 − tH0 ) +
1
2

aH0 (tH1 − tH0 )2

400 m = 0 m + 0 m +
1
2

(3.0 m/s2 )(tH1 + 1 s)2 ⇒ tH1 = 15.3 s
 

So, the Porsche wins. 
Assess:  The numbers are contrived for the Porsche to win, but the time to go 400 m seems reasonable. 

Section 2.5  Free Fall 

2.17.  Model:  Represent the spherical drop of molten metal as a particle. 
Visualize: 
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Solve:  (a) The shot is in free fall, so we can use free fall kinematics with   a = −g.  The height must be such that the 
shot takes 4 s to fall, so we choose   t1 = 4 s.  Then, 

  
y1 = y0 + v0 (t1 − t0 ) − 1

2
g(t1 − t0 )2 ⇒ y0 =

1
2

gt1
2 =

1
2

(9.8  m/s2 )(4 s)2 = 78.4 m  

(b) The impact velocity is   v1 = v0 − g(t1 − t0 ) = −gt1 = −39.2 m/s.  
Assess:  Note the minus sign. The question asked for velocity, not speed, and the y-component of   

rv  is negative 
because the vector points downward. 

2.18.  Model:  Assume the ball undergoes free-fall acceleration and that the ball is a particle. 
Visualize: 
 

(a) 

 
Solve:  (a) We will use the kinematic equations 

  
v = v0 + a(t − t0 ) and y = y0 + v0 (t − t0 ) + 1

2
a(t − t0 )2  

as follows: 

  

v(at t = 1.0 s) = 19.6 m/s + (−9.8 m/s2 )(1.0 s − 0 s) = 9.8 m/s

y(at t = 1.0 s) = 0 m + (19.6 m/s)(1.0 s − 0 s) + 1/2(−9.8 m/s2 )(1.0 s − 0 s)2 = 14.7 m

v(at t = 2.0 s) = 19.6 m/s + (−9.8 m/s2 )(2.0 s − 0 s) = 0 m/s

y(at t = 2.0 s) = 0 m + (19.6 m/s)(2.0 s − 0 s) + 1/2(−9.8 m/s2 )(2.0 s − 0 s)2 = 19.6 m

v(at t = 3.0 s) = 19.6 m/s + (−9.8 m/s2 )(3 s − 0 s) = −9.8 m/s

y(at t = 3.0 s) = 0 m + (19.6 m/s)(3.0 s − 0 s) + 1/2(−9.8 m/s2 )(3.0 s − 0 s)2 = 14.7 m

v(at t = 4.0 s) = 19.6 m/s + (−9.8 m/s2 )(4.0 s − 0 s) = −19.6 m/s

y(at t = 4.0 s) = 0 m + (19.6 m/s)(4.0 s − 0 s) + 1/2(−9.8 m/s2 )(4.0 s − 0 s)2 = 0 m

 

 

(b) 
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Assess:  (a) A downward acceleration of  9.8 m/s2  on a particle that has been given an initial upward velocity of 
 +19.6 m/s  will reduce its speed to  9.8 m/s after 1 s and then to zero after 2 s. The answers obtained in this solution 
are consistent with the above logic. 
(b) Velocity changes linearly with a negative uniform acceleration of  9.8 m/s2.  The position is symmetrical in time 
around the highest point which occurs at   t = 2 s.  

2.19.  Model:  We model the ball as a particle. 
Visualize: 
 

 
 

Solve:  Once the ball leaves the student’s hand, the ball is in free fall and its acceleration is equal to the free-fall 
acceleration g that always acts vertically downward toward the center of the earth. According to the constant-
acceleration kinematic equations of motion 

  
 y1 = y0 + v0Δt +

1
2

aΔt2  

Substituting the known values 

  −2 m = 0 m + (15 m/s)t1 + (1/2)(−9.8 m/s2 )t1
2  

One solution of this quadratic equation is   t1 = 3.2 s.  The other root of this equation yields a negative value for   t1,  
which is not valid for this problem. 
Assess:  A time of 3.2 s is reasonable. 

2.20.  Model:  We will use the particle model and the constant-acceleration kinematic equations. 
Visualize: 
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Solve:  (a) Substituting the known values into 
  
 y1 = y0 + v0Δt + 1

2
aΔt2 ,  we get 

  
−10 m = 0 m + 20 (m/s)t1 +

1
2

(−9.8 m/s2 )t1
2  

One of the roots of this equation is negative and is not relevant physically. The other root is  t1 = 4.53 s, which is the 

answer to part (b). Using   v1 = v0 + aΔt,  we obtain 

  v1 = 20(m/s) + (−9.8 m/s2 )(4.53 s) = −24 m/s  
(b) The time is 4.5 s. 
Assess:  A time of 4.5 s is a reasonable value. The rock’s velocity as it hits the bottom of the hole has a negative sign 
because of its downward direction. The magnitude of 24 m/s compared to 20 m/s, when the rock was tossed up, is 
consistent with the fact that the rock travels an additional distance of 10 m into the hole. 

Section 2.6  Motion on an Inclined Plane 

2.21.  Model:  We will model the skier as a particle. 
Visualize: 
 

 

 

Note that the skier’s motion on the horizontal, frictionless snow is not of any interest to us. Also note that the 
acceleration parallel to the incline is equal to g sin10°. 
Solve:  Using the following constant-acceleration kinematic equations, 

  

vfx
2 = vix

2 + 2ax (xf − xi )

⇒ (15 m / s)2 = (3.0 m/s)2 + 2(9.8 m/s2 )sin10°(x1 − 0 m) ⇒ x1 = 64 m

vfx = vix + ax (tf − ti )

⇒ (15 m/s) = (3.0 m/s) + (9.8 m/s2 )(sin10°)t ⇒ t = 7.1 s

 

Assess:  A time of 7.1 s to cover 64 m is a reasonable value. 

2.22.  Model:  Represent the car as a particle. 
Visualize: 
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Solve:  Note that the problem “ends” at a turning point, where the car has an instantaneous speed of 0 m/s before 
rolling back down. The rolling back motion is not part of this problem. If we assume the car rolls without friction, 
then we have motion on a frictionless inclined plane with an accleration   a = −g sinθ = −g sin10° = −1.7 m/s2.  
Constant acceleration kinematics gives 

  
v1

2 = v0
2 + 2a(x1 − x0 ) ⇒ 0 m2 /s2 = v0

2 + 2ax1 ⇒ x1 = −
v0

2

2a
= −

(30 m/s)2

2(−1.7 m/s2 )
= 265 m  

Notice how the two negatives canceled to give a positive value for   x1.  
Assess:  We must include the minus sign because the   

ra  vector points down the slope, which is in the negative 
x-direction. 

Section 2.7  Instantaneous Acceleration 

2.23.  Solve:    x = (2t2 − t + 1) m  

(a) The position   t = 2 s  is 
  
x2 s = [2(2)2 − 2 + 1] m = 7 m.  

(b) The velocity is the derivative   v = dx/dt  and the velocity at   t = 2 s  is calculated as follows: 

  
v = (4t − 1) m/s ⇒ v2 s = [4(2) − 1] m/s = 7 m/s  

(c) The acceleration is the derivative   a = dv/dt  and the acceleration at   t = 2 s  is calculated as follows: 

  
a = (4) m/s2 ⇒ a2 s = 4 m/s2  

2.24.  Solve:  The formula for the particle’s position along the x-axis is given by 

   
xf = xi + ti

tfÑvx dt  

Using the expression for 
 
vx  we get 

  
xf = xi + 2

3
[tf

3 − ti
3]  ax =

dvx
dt

=
d
dt

(2t2  m/s) = 4t  m/s2  

(a) The particle’s position at   t = 1 s  is 
  
x1 s = 1 m + 2

3
 m = 5

3
 m.  

(b) The particle’s speed at   t = 1 s  is   v1 s = 2 m/s.  

(c) The particle’s acceleration at   t = 1 s  is   a1 s = 4 m/s2.  

2.25.  Solve:  The formula for the particle’s velocity is given by 

  vf = vi + area under the acceleration curve between   ti  and   tf  
For   t = 4 s,  we get 

  
v4 s = 8 m/s + 1

2
(4 m/s2 )4 s = 16 m/s  

Assess:  The acceleration is positive but decreases as a function of time. The initial velocity of 8.0 m/s will therefore 
increase. A value of 16 m/s is reasonable. 
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2.26.  Solve:  (a) 
 

 
 

(b) To be completed by student. 

(c) 
  

dx
dt

= vx = 2t − 4 ⇒ vx (at t = 1 s) = [2 m/s2 (1 s) − 4 m/s] = −2 m/s  

(d) There is a turning point at   t = 2 s.  At that time   x = −2 m.  
(e) Using the equation in part (c), 

  vx = 4 m/s = (2t − 4) m/s ⇒ t = 4  

Since   x = (t2 − 4t + 2) m, x = 2 m.  
(f ) 
 

 

2.27.  Solve:  The graph for particle A is a straight line from   t = 2 s  to   t = 8 s.  The slope of this line is  −10 m/s,  
which is the velocity at   t = 7.0 s.  The negative sign indicates motion toward lower values on the x-axis. The velocity 
of particle B at   t = 7.0 s  can be read directly from its graph. It is  −20 m/s.  The velocity of particle C can be obtained 
from the equation 

  vf = vi + area under the acceleration curve between   ti  and   tf  
This area can be calculated by adding up three sections. The area between   t = 0 s  and   t = 2 s  is 40 m/s, the area 
between   t = 2 s  and   t = 5 s  is 45 m/s, and the area between   t = 5 s  and   t = 7 s  is  −20 m/s.We get  (10 m/s) +  

 (40 m/s) + (45 m/s) − (20 m/s) = 75 m/s.  

2.28.  Visualize: 
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Solve:  We will determine the object’s velocity using graphical methods first and then using calculus. 
Graphically,   v(t) = v0 +  area under the acceleration curve from 0 to t. In this case,   v0 = 0 m/s.  The area at each 
time t requested is a triangle. 

  

t = 0 s v(t = 0 s) = v0 = 0 m/s

t = 2 s v(t = 2 s) = 1
2

(2 s)(5 m/s) = 5 m/s

t = 4 s v(t = 4 s) = 1
2

(4 s)(10 m/s) = 20 m/s

t = 6 s v(t = 6 s) = 1
2

(6 s)(10 m/s) = 30 m/s

t = 8 s v(t = 8 s) = v(t = 6 s) = 30 m/s

 

The last result arises because there is no additional area after   t = 6 s.  Let us now use calculus. The acceleration 
function a(t) consists of three pieces and can be written: 

  

a(t) =
2.5t 0 s ≤ t ≤ 4 s

−5t + 30 4 s ≤ t ≤ 6 s
0 6 s ≤ t ≤ 8 s

⎧

⎨
⎪

⎩
⎪

 

These were determined by the slope and the y-intercept of each of the segments of the graph. The velocity function is 
found by integration as follows: For   0 ≤ t ≤ 4 s,  

  

v(t) = v(t = 0 s) + a(t)dt
0

t
∫ = 0 + 2.5 t2

2
0

t

= 1.25t2  

This gives 

  

t = 0 s v(t = 0 s) = 0 m/s
t = 2 s v(t = 2 s) = 5 m/s
t = 4 s v(t = 4 s) = 20 m/s

 

For   4 s ≤ t ≤ 6 s,  

  

v(t) = v(t = 4 s) + a(t)dt
4

t
∫ = 20 m/s + −5t2

2
+ 30t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 4

t

= −2.5t2 + 30t − 60  

This gives: 

  t = 6 s v(t = 6 s) = 30 m/s  
For   6 s ≤ t ≤ 8 s,  

  
v(t) = v(t = 6 s) + a(t)dt

6

t
∫ = 30 m/s + 0 m/s = 30 m/s  

This gives: 

  t = 8 s v(t = 8 s) = 30 m/s  

Assess:  The same velocities are found using calculus and graphs, but the graphical method is easier for simple 
graphs. 

2.29.  Solve:  (a) The velocity-versus-time graph is the derivative with respect to time of the distance-versus-time 
graph. The velocity is zero when the slope of the position-versus-time graph is zero, the velocity is most positive 
when the slope is most positive, and the velocity is most negative when the slope is most negative. The slope is zero 
at t = 0, 1 s, 2 s, 3 s, . . . ; the slope is most positive at t = 0.5 s, 2.5 s, . . ; and the slope is most negative at t = 1.5 s,  
3.5 s, . . . 
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(b) 
 

 
 

2.30.  Solve:  The given function for the velocity is   vx = t2 − 7t + 10.  

(a) The turning points are when the velocity changes sign. Set   vx = 0  and check that it actually changes sign at those 
times. The function factors into the product of two binomials: 

  vx = (t − 2)(t − 5) ⇒ vx = 0 when t = 2 s and t = 5 s  
Indeed, the function changes sign at those two times. 
(b) The acceleration is given by the derivative of the velocity. 

  
ax =

dvx
dt

= 2t − 7  

Plug in the times from part (a):   ax (2 s) = 2(2) − 7 = −3 m/s2  and   ax (5 s) = 2(5) − 7 = 3 m/s2  

Assess:  This problem does not have constant acceleration so the kinematic equations do not apply, but   a = dv/dt  
always applies. 

2.31.  Solve:  (a) The velocity-versus-time graph is given by the derivative with respect to time of the position 
function: 

  
vx =

dx
dt

= (6t2 − 18t) m/s  

For   vx = 0 m/s,  there are two solutions to the quadratic equation: t = 0 s and t = 3 s. 
(b) At the first of these solutions, 

  x(at t = 0 s) = 2(0 s)3 − 9(0 s)2 + 12 = 12 m  
The acceleration is the derivative of the velocity function: 

  
ax =

dvx
dt

= (12t − 18) m/s2 ⇒ a (at t = 0 s) = −18 m/s2  

At the second solution, 

   x(at t = 3 s) = 2(3 s)3 − 9(3 s)2 + 12 = −15 m ax (at t = 3 s) = 12(3 s) − 18 = 1 18 m/s2  

2.32.  Model:  Represent the object as a particle. 
Solve:  (a) Known information:   x0 = 0 m, v0 = 0 m/s, x1 = 40 m, v1 = 11 m/s, t1 = 5 s.  If the acceleration is uniform 
(constant a), then the motion must satisfy the three equations 

  
x1 =

1
2

at1
2 ⇒ a = 3.20 m/s2 v1 = at1 ⇒ a = 2.20 m/s2 v1

2 = 2ax1 ⇒ a = 1.51 m/s2  

But each equation gives a different value of a. Thus the motion is not uniform acceleration. 
(b) We know two points on the velocity-versus-time graph, namely at   t0 = 0  and   t1 = 5 s.  What shape does the 
function have between these two points? If the acceleration was uniform, which it’s not, then the graph would be a 
straight line. The area under the graph is the displacement   Δx.  From the figure you can see that   Δx = 27.5 m  for a 
straight-line graph. But we know that, in reality,   Δx = 40 m.  To get a larger   Δx,  the graph must bulge upward 
above the straight line. Thus the graph is curved, and it is concave downward. 
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2.33.  Solve:  The position is the integral of the velocity. 

  
x1 = x0 + vx dt

t0

t1∫ = x0 + kt2 dt
0

t1∫ = x0 +
1
3

kt3
0

t1
= x0 +

1
3

kt1
3  

We’re given that   x0 = −9.0 m  and that the particle is at   x1 = 9.0 m  at   t1 = 3.0 s.  Thus 

  
9.0 m = (−9.0 m) + 1

3
k(3.0 s)3 = (−9.0 m) + k(9.0 s3)  

Solving for k gives   k = 2.0 m/s3.  
2.34.  Solve:  (a) The velocity is the integral of the acceleration. 

  
v1x = v0x + ax dt = 0 m/s

t0

t1∫ + (10 − t)dt
0

t1∫ = 10t − 1
2

t2( )
0

t1
= 10t1 −

1
2

t1
2  

The velocity is zero when 

  

v1x = 0 m/s = 10t1 −
1
2

t1
2( ) = 10 − 1

2
t1( ) × t1

⇒ t1 = 0 s or t1 = 20 s
 

The first solution is the initial condition. Thus the particle’s velocity is again 0 m/s at   t1 = 20 s.  
(b) Position is the integral of the velocity. At   t1 = 20 s,  and using   x0 = 0 m  at   t0 = 0 s,  the position is 

  
x1 = x0 + vx dt

t0

t1∫ = 0 m + 10t − 1
2

t2( )0

20
∫ dt = 5t2

0

20
− 1

6
t3

0

20
= 667 m  

2.35.  Model:  Represent the ball as a particle. 
Visualize:  Please refer to Figure P2.35. 
Solve:   In the first and third segments the acceleration  as  is zero. In the second segment the acceleration is negative and 
constant. This means the velocity   vs  will be constant in the first two segments and will decrease linearly in the third 
segment. Because the velocity is constant in the first and third segments, the position s will increase linearly. In the second 
segment, the position will increase parabolically rather than linearly because the velocity decreases linearly with time. 
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2.36.  Model:  Represent the ball as a particle. 
Visualize:   Please refer to Figure P2.36. The ball rolls down the first short track, then up the second short track, and 
then down the long track. s is the distance along the track measured from the left end (where s = 0). Label t = 0 at the 
beginning, that is, when the ball starts to roll down the first short track. 
Solve:  Because the incline angle is the same, the magnitude of the acceleration is the same on all of the tracks. 
 

 
Assess:  Note that the derivative of the s versus t graph yields the   vs  versus t graph. And the derivative of the   vs  

versus t graph gives rise to the as versus t graph. 

2.37.  Model: Represent the ball as a particle. 
Visualize:   The ball moves to the right along the first track until it strikes the wall, which causes it to move to the 
left on a second track. The ball then descends on a third track until it reaches the fourth track, which is horizontal. 
Solve: 
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Assess:  Note that the time derivative of the position graph yields the velocity graph, and the derivative of the 
velocity graph gives the acceleration graph. 

2.38.  Visualize:  Please refer to Figure P2.38. 
Solve: 
 

 

2.39.  Visualize:  Please refer to Figure P2.39. 
Solve: 
 

 

2.40.  Model:  The plane is a particle and the constant-acceleration kinematic equations hold. 
Solve:  (a) To convert 80 m/s to mph, we calculate 80 m/s × 1 mi/1609 m × 3600 s/h = 179 mph. 
(b) Using   as = Δv/Δt,  we have, 

  
as (t = 0 to t = 10 s) =

23 m/s − 0 m/s
10 s − 0 s

= 2.3 m/s2 as (t = 20 s to t = 30 s) =
69 m/s − 46 m/s

30 s − 20 s
= 2.3 m/s2  

For all time intervals a is 2.3  m/s2.  
(c) Using kinematics as follows: 

  vfs = vis + a(tf − ti ) ⇒ 80 m/s = 0 m/s + (2.3 m/s2 )(tf − 0 s) ⇒ tf = 35 s  
(d) Using the above values, we calculate the takeoff distance as follows: 

  
sf = si + vis (tf − ti ) +

1
2

as (tf − ti )
2 = 0 m + (0 m/s)(35 s) + 1

2
(2.3 m/s2 )(35 s)2 = 1410 m  

For safety, the runway should be  3× 1410 m = 4230 m  or 2.6 mi. This is longer than the 2.4 mi long runway, so the 
takeoff is not safe. 

2.41.  Model:  Represent the car as a particle. 
Solve:  (a) First, we will convert units: 

 
60

miles
hour

×
1 hour
3600 s

×
1610 m
1 mile

= 27 m/s  

The motion is constant acceleration, so 

  
v1 = v0 + aΔt ⇒ a =

v1 − v0
Δt

=
(27 m/s − 0 m/s)

10 s
= 2.7 m/s2  

(b) The fraction is   a/g = 2.7/9.8 = 0.28.  So a is 28% of g. 
(c) The distance is calculated as follows: 

  
x1 = x0 + v0Δt +

1
2

a(Δt)2 =
1
2

a(Δt)2 = 1.3× 102  m = 4.3× 102  feet  

2.42.  Model:  Represent the spaceship as a particle. 
Solve:  (a) The known information is:  x0 = 0 m, v0 = 0 m/s, t0 = 0 s, a = g = 9.8 m/s2 , and   v1 = 3.0 × 108  m/s.  
Constant acceleration kinematics gives 

  
v1 = v0 + aΔt ⇒ Δt = t1 =

v1 − v0
a

= 3.06 × 107 s  
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The problem asks for the answer in days, so we need a conversion: 

  
t1 = (3.06 × 107 s) ×

1 hour
3600 s

×
1 day

24 hour
= 3.54 × 102  days ≈ 3.6 × 102  days  

(b) The distance traveled is 

  
x1 − x0 = v0Δt +

1
2

a(Δt)2 =
1
2

at1
2 = 4.6 × 1015m  

(c) The number of seconds in a year is 

 
1 year = 365 days ×

24 hours
1 day

×
3600 s
1 hour

= 3.15× 107 s  

In one year light travels a distance 

 1 light year = (3.0 × 108 m/s)(3.15× 107 s) = 9.47 × 1015m  

The distance traveled by the spaceship is  4.6 × 1015m/9.46 × 1015m = 0.49  of a light year. 
Assess:  Note that   x1  gives “Where is it?” rather than “How far has it traveled?” “How far” is represented by 

  x1 − x0.  They happen to be the same number in this problem, but that isn’t always the case. 

2.43.  Model:  The car is a particle and constant-acceleration kinematic equations hold. 
Visualize: 
 

 
 

Solve:  (a) This is a two-part problem. During the reaction time, 

  

x1 = x0 + v0 (t1 − t0 ) + 1/2a0 (t1 − t0 )2

= 0 m + (20 m/s)(0.50 s − 0 s) + 0 m = 10 m
 

After reacting,   x2 − x1 = 110 m − 10 m = 100 m,  that is, you are 100 m away from the intersection. 
(b) To stop successfully, 

  v2
2 = v1

2 + 2a1(x2 − x1) ⇒ (0 m/s)2 = (20 m/s)2 + 2a1(100 m) ⇒ a1 = −2 m/s2  
(c) The time it takes to stop once the brakes are applied can be obtained as follows: 

  v2 = v1 + a1(t2 − t1) ⇒ 0 m/s = 20 m/s + (−2 m/s2 )(t2 − 0.50 s) ⇒ t2 = 11 s  
The total time to stop since the light turned red is 11.5 s. 

2.44.  Model:  Model the car as a particle. Use the kinematic equations. 
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Visualize:   

 

Solve: 
(a)  In the pictorial representation   d = x2 − x0  and   t1 = tR .  At the end of the reaction time the position is 

  x1 = x0 + v0tR  and   v1 = v0.  We need to end up at rest with   v2 = 0.  During the braking time we have 

  v2
2 = v1

2 + 2a(x2 − x1);  solve that for a and set   v2 = 0.  

  
a =

v2
2 − v1

2

2(x2 − x1)
=

−v1
2

2(x2 − x1)
=

−v0
2

2(x2 − (x0 + v0tR ))
=

−v0
2

2(d − v0tR )
 

The required deceleration is the absolute value of a; (the denominator is positive because we were told   d > v0tR ).  

  
a =

v0
2

2(d − v0tR )
 

(b)  Given   v0 = 21 m/s,   d = 50 m,  and   tR = 0.50 s  find the required deceleration using the answer from part (a). 

  
a =

v0
2

2(d − v0tR )
=

(21 m/s)2

2(50 m − (21 m/s)(0.50 s))
= 5.6 m/s2  

Your car’s maximum deceleration is greater than this, so yes, you can stop in time. 
Assess:  The units check out. The data given seem reasonable, and our answer is just less than the maximum 
deceleration. 

2.45.  Model:  We will use the particle model and the constant-acceleration kinematic equations. 
Visualize: 
 

 
 

Solve:  (a) To find   x2 ,  we first need to determine   x1.  Using   x1 = x0 + v0 (t1 − t0 ),  we get   x1 = 0 m + (20 m/s)  

 (0.50 s − 0 s) = 10 m.  Now, 

  v2
2 = v1

2 + 2a1(x2 − x1) ⇒ 0 m2 /s2 = (20 m/s)2 + 2(−10 m/s2 )(x2 − 10 m) ⇒ x2 = 30 m
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The distance between you and the deer is   (x3 − x2 )  or  (35 m − 30 m) = 5 m.  

(b) Let us find 
  v0 max  such that   v2 = 0 m/s  at   x2 = x3 = 35 m.  Using the following equation, 

  
v2

2 − v0 max
2 = 2a1(x2 − x1) ⇒ 0 m2 /s2 − v0 max

2 = 2(−10 m/s2 )(35 m − x1)  

Also, 
  
x1 = x0 + v0 max (t1 − t0 ) = v0 max (0.50 s − 0 s) = (0.50 s)v0 max .  Substituting this expression for   x1  in the above 

equation yields 

  −v0 max
2 = (−20 m/s2 )[35 m − (0.50 s) v0 max ]⇒ v0  max

2 + (10 m/s)v0 max − 700 m2 /s2 = 0  

The solution of this quadratic equation yields 
  v0 max = 22 m/s.  (The other root is negative and unphysical for the 

present situation.) 

Assess:  An increase of speed from 20 m/s to 22 m/s is very reasonable for the car to cover an additional distance of 
5 m with a reaction time of 0.50 s and a deceleration of 10  m/s2.  

2.46.  Model:  The car is represented as a particle. 
Visualize: 
 

 
 

Solve:  (a) This is a two-part problem. First, we need to use the information given to determine the acceleration 
during braking. Second, we need to use that acceleration to find the stopping distance for a different initial velocity. 
First, the car coasts at constant speed before braking: 

  x1 = x0 + v0 (t1 − t0 ) = v0t1 = (30 m/s)(0.5 s) = 15 m  
Then, the car brakes to a halt. Because we don’t know the time interval, use 

   

v2
2 = 0 = v1

2 + 2a1(x2 − x1)

⇒ a1 = −
v1

2

2(x2 − x1)
= 2 (30 m/s)2

2(60 m − 15 m)
= −10 m/s2

 

We used   v1 = v0 = 30 m/s.Note the minus sign, because    
ra1  points to the left. 

We can repeat these steps now with   v0 = 40 m/s.  The coasting distance before braking is 

  x1 = v0t1 = (40 m/s)(0.5 s) = 20 m  

The position   x2  after braking is found using 

  

v2
2 = 0 = v1

2 + 2a1(x2 − x1)

⇒ x2 = x1 −
v1

2

2a1
= 20 m −

(40 m/s)2

2(−10 m/s2 )
= 100 m

 

(b) The car coasts at a constant speed for 0.5 s, traveling 20 m. The graph will be a straight line with a slope of 
40 m/s. For   t ≥ 0.5 the graph will be a parabola until the car stops at   t2.  We can find   t2  from 

  
v2 = 0 = v1 + a1(t2 − t1) ⇒ t2 = t1 −

v1
a1
= 4.5 s  
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The parabola will reach zero slope   (v = 0 m/s)  at t = 4.5 s. This is enough information to draw the graph shown in the 
figure. 
 

 
 

2.47.  Model:  Model the flea as a particle. Both the initial acceleration phase and the free-fall phase have constant 
acceleration, so use the kinematic equations. 
Visualize: 
 

 
 

Solve:  We can apply the kinematic equation   vf
2 − vi

2 = 2aΔy  twice, once to find the take-off speed and then again 

to find the final height. In the first phase the acceleration is up (positive) and   v0 = 0.  

  v1
2 = 2a0 ( y1 − y0 ) = 2(1000 m/s2 )(0.50 × 10−3  m)v1 = 1.0 m/s  

In the free fall phase the acceleration is   a1 = −g  and   v1 = 1.0 m/s  and   v2 = 0 m/s.  

  
y2 − y1 =

v2
2 − v1

2

2a1
=

−v1
2

2(−g)
=
−(1.0 m/s)2

2(−9.8 m/s2 )
= 5.1 cm  

So the final height is   y2 = 5.1 cm + y1 = 5.1 cm + 0.50 mm = 5.2 cm.  
Assess:  This is pretty amazing–about 10–20 times the size of a typical flea. 

2.48.  Model:  Model each of the animals as a particle and use kinematic equations. Assume that the time it takes 
the cheetah to accelerate to  30 m/s  is negligible. 
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Visualize:   
 

 
 

Solve:  The cheetah is in uniform motion for the entire duration of the problem, so we can easily solve for its 
position at   t3 = 25 s:  

  x3C = x1C + (vx )1C Δt = 0 m + (30 m/s)(15 s) = 450 m  

The gazelle’s motion has two phases: one of constant acceleration and then one of constant velocity. We can solve 
for the position and the velocity at   t2 , the end of the first phase. 

  

(vx )2G = (vx )1G + (ax )G Δt = 0 m/s + (4.6 m/s2 )(5.0 s) = 23 m/s

x2G = x1G + (vx )1G Δt +
1
2

(ax )G (Δt)2 = 170 m + 0 m +
1
2

(4.6 m/s2 )(5.0 s)2 = 227.5 m
 

From   t2  to   t3  the gazelle moves at a constant speed, so we can use the equation for uniform motion to find its final 
position. 

  x3G = x2G + (vx )2G Δt = 227.5 m + (23 m/s)(10.0 s) = 457.5 m ≈ 460 m  

  x3C  is  450m;    x3G  is  460m.  The gazelle is just a few meters ahead of the cheetah when the cheetah has to break off 
the chase, so the gazelle escapes. 
Assess:  The numbers in the problem statement are realistic, so we expect our results to mirror real life. The speed 
for the gazelle is close to that of the cheetah, which seems reasonable for two animals known for their speed. And the 
result is the most common occurrence–the chase is very close, but the gazelle gets away. 
 

2.49.  Model:  The rocket is represented as a particle. 
Visualize: 
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Solve:  (a) There are three parts to the motion. Both the second and third parts of the motion are free fall, with 

  a = −g.  The maximum altitude is   y2.  In the acceleration phase: 

  

y1 = y0 + v0 (t1 − t0 ) + 1
2

a(t1 − t0 )2 =
1
2

at1
2 =

1
2

(30 m/s2 )(30 s)2 = 13,500 m

v1 = v0 + a(t1 − t0 ) = at1 = (30 m/s2 )(30 s) = 900 m/s
 

In the coasting phase, 

  
v2

2 = 0 = v1
2 − 2g( y2 − y1) ⇒ y2 = y1 +

v1
2

2g
= 13,500 m +

(900 m/s)2

2(9.8 m/s2 )
= 54,800 m = 54.8 km  

The maximum altitude is 54.8 km  (≈ 33 miles).  
(b) The rocket is in the air until time   t3.We already know   t1 = 30 s.  We can find   t2  as follows: 

  
v2 = 0 m/s = v1 − g(t2 − t1) ⇒ t2 = t1 +

v1
g
= 122 s  

Then   t3  is found by considering the time needed to fall 54,800 m: 

  
y3 = 0 m = y2 + v2 (t3 − t2 ) − 1

2
g(t3 − t2 )2 = y2 −

1
2

g(t3 − t2 )2 ⇒ t3 = t2 +
2y2

g
= 228 s  

(c) The velocity increases linearly, with a slope of 30 (m/s)/s, for 30 s to a maximum speed of 900 m/s. It then begins 
to decrease linearly with a slope of  −9.8(m/s)/s. The velocity passes through zero (the turning point at  y2 )  at 

  t2 = 122 s.  The impact velocity at   t3 = 228 s  is calculated to be   v3 = v2 − g(t3 − t2 ) = −1040 m/s.  
 

 
 

Assess:  In reality, friction due to air resistance would prevent the rocket from reaching such high speeds as it falls, 
and the acceleration upward would not be constant because the mass changes as the fuel is burned, but that is a more 
complicated problem. 

2.50.  Model:  We will model the rocket as a particle. Air resistance will be neglected. 
Visualize: 
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Solve:  (a) Using the constant-acceleration kinematic equations,2 

  

v1 = v0 + a0 (t1 − t0 ) = 0 m/s + a0 (16 s − 0 s) = ao (16 s)

y1 = y0 + v0 (t1 − t0 ) + 1
2

a0 (t1 − t0 )2 =
1
2

a0 (16 s − 0 s)2 = ao (128 s2 )

y2 = y1 + v1(t2 − t1) + 1
2

a1(t2 − t1)2

⇒ 5100 m = 128 s2  a0 + 16 s a0 (20 s − 16 s) + 1
2

(−9.8 m/s2 )(20 s − 16 s)2 ⇒ a0 = 27 m/s2

 

(b) The rocket’s speed as it passes through a cloud 5100 m above the ground can be determined using the kinematic 
equation: 

  v2 = v1 + a1(t2 − t1) = (16 s)a0 + (−9.8 m/s2 )(4 s) = 390 m/s  

Assess:  400 m/s ≈ 900 mph, which would be the final speed of a rocket that has been accelerating for 20 s at a rate 
of approximately 20  m/s2  or 66  ft/s

2.  

2.51.  Model:  We will model the lead ball as a particle and use the constant-acceleration kinematic equations. 
Visualize: 
 

 
 

Note that the particle undergoes free fall until it hits the water surface. 

Solve:  The kinematics equation 
  
y1 = y0 + v0 (t1 − t0 ) + 1

2
a0 (t1 − t0 )2  becomes 

  
−5.0 m = 0 m + 0 m +

1
2

(−9.8 m/s2 )(t1 − 0)2 ⇒ t1 = 1.01 s  

Now, once again, 

  

y2 = y1 + v1(t2 − t1) + 1
2

a1(t2 − t1)2

⇒ y2 − y1 = v1(3.0 s − 1.01 s) + 0 m/s = 1.99 v1

 

  v1 is easy to determine since the time   t1  has been found. Using  v1 = v0 + a0 (t1 − t0 ),  we get 

  v1 = 0 m/s − (9.8 m/s2 )(1.01 s − 0 s) = −9.898 m/s  

With this value for   v1,  we go back to: 

  y2 − y1 = 1.99v1 = (1.99)(−9.898 m/s) = −19.7 m  

  y2 − y1 is the displacement of the lead ball in the lake and thus corresponds to the depth of the lake. The negative 
sign shows the direction of the displacement vector. 
Assess:  A depth of about 60 ft for a lake is not unusual. 
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2.52.  Model:  The elevator is a particle moving under constant-acceleration kinematic equations. 
Visualize: 
 

 
 

Solve:  (a) To calculate the distance to accelerate up: 

  (v1)2 = v0
2 + 2a0 ( y0 − y0 ) ⇒ (5 m/s)2 = (0 m/s)2 + 2(1 m/s2 )( y1 − 0 m) ⇒ y1 = 12.5 m  

(b) To calculate the time to accelerate up: 

  v1 = v0 + a0 (t1 − t0 ) ⇒ 5 m/s = 0 m/s + (1 m/s2 )(t1 − 0 s) ⇒ t1 = 5 s  

To calculate the distance to decelerate at the top: 

  v3
2 = v2

2 + 2a2 ( y3 − y2 ) ⇒ (0 m/s)2 = (5 m/s)2 + 2(−1 m/s2 )( y3 − y2 ) ⇒ y3 − y2 = 12.5 m  

To calculate the time to decelerate at the top: 

  v3 = v2 + a2 (t3 − t2 ) ⇒ 0 m/s = 5 m/s + (−1 m/s2 )(t3 − t2 ) ⇒ t3 − t2 = 5 s  

The distance moved up at 5 m/s is 

  y2 − y1 = ( y3 − y0 ) − ( y3 − y2 ) − ( y1 − y0 ) = 200 m − 12.5 m − 12.5 m = 175 m  

The time to move up 175 m is given by 

  
y2 − y1 = v1(t2 − t1) + 1

2
a1(t2 − t1)2 ⇒ 175 m = (5 m/s)(t2 − t1) ⇒ (t2 − t1) = 35 s  

To total time to move to the top is 

  (t1 − t0 ) + (t2 − t1) + (t3 − t2 ) = 5 s + 35 s + 5 s = 45 s  

Assess:  To cover a distance of 200 m at 5 m/s (ignoring acceleration and deceleration times) will require a time of 
40 s. This is comparable to the time of 45 s for the entire trip as obtained above. 
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2.53.  Model:  The car is a particle moving under constant-acceleration kinematic equations. 
Visualize: 
 

 
 

Solve:  This is a three-part problem. First the car accelerates, then it moves with a constant speed, and then it 
decelerates. 
First, the car accelerates: 

  

v1 = v0 + a0 (t1 − t0 ) = 0 m/s + (4.0 m/s2 )(6 s − 0 s) = 24 m/s

x1 = x0 + v0 (t1 − t0 ) + 1
2

a0 (t1 − t0 )2 = 0 m +
1
2

(4.0 m/s2 )(6 s − 0 s)2 = 72 m
 

Second, the car moves at   v1:  

  
x2 − x1 = v1(t2 − t1) + 1

2
a1(t2 − t1)2 = (24 m/s)(8 s − 6 s) + 0 m = 48 m  

Third, the car decelerates: 

  

v3 = v2 + a2 (t3 − t2 ) ⇒ 0 m/s = 24 m/s + (−3.0 m/s2 )(t3 − t2 ) ⇒ (t3 − t2 ) = 8 s

x3 = x2 + v2 (t3 − t2 ) + 1
2

a2 (t3 − t2 )2 ⇒ x3 − x2 = (24 m/s)(8 s) + 1
2

(−3.0 m/s2 )(8 s)2 = 96 m
 

Thus, the total distance between stop signs is: 

  x3 − x0 = (x3 − x2 ) + (x2 − x1) + (x1 − x0 ) = 96 m + 48m + 72 m = 216 m  

Assess:  A distance of approximately 600 ft in a time of around 10 s with an acceleration/deceleration of the order of 
7 mph/s is reasonable. 

2.54.  Model:  The car is a particle moving under constant linear acceleration. 
Visualize: 
 

 

Solve:  Using the kinematic equation for position: 
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x2 = x1 + v1(t2 − t1) + 1
2

a1(t2 − t1)2 ⇒ x1 + 30 m = x1 + v1(5.0 s − 4.0 s) + 1
2

(2 m/s2 )(5.0 s − 4.0 s)2

⇒ 30 m = v1(1.0 s) + 1
2

(2 m/s2 )(1.0 s)2 ⇒ v1 = 29 m/s
 

And 4.0 seconds before: 

  v1 = v0 + a0 (t1 − t0 ) ⇒ 29 m/s = v0 + (2 m/s2 )(4.0 s − 0 s) ⇒ v0 = 21 m/s  
Assess:  21 m/s ≈  47 mph and is a reasonable value. 

2.55.  Model:  Santa is a particle moving under constant-acceleration kinematic equations. 
Visualize:  Note that our x-axis is positioned along the incline. 
 

 
 

Solve:  Using the following kinematic equation, 

   
v1

2 = v0
2 + 2a�(x1 − x2 ) = (0 m/s)2 + 2(4.9 m/s2 )(10 m − 0 m) ⇒ v1 = 9.9 m/s  

Assess:  Santa’s speed of 20 mph as he reaches the edge is reasonable. 

2.56.  Model:  The cars are represented as particles. 
Visualize: 
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Solve:  (a) Ann and Carol start from different locations at different times and drive at different speeds. But at time   t1  
they have the same position. It is important in a problem such as this to express information in terms of positions (that is, 
coordinates) rather than distances. Each drives at a constant velocity, so using constant velocity kinematics gives 

  xA1 = xA0 + vA (t1 − tA0 ) = vA (t1 − tA0 ) xC1 = xC0 + vC (t1 − tC0 ) = xC0 + vCt1  

The critical piece of information is that Ann and Carol have the same position at   t1, so   xA1 = xC1.  Equating these 

two expressions, we can solve for the time   t1  when Ann passes Carol: 

  

vA (t1 − tA0 ) = xC0 + vCt1
⇒ (vA − vC )t1 = xC0 + vAtA0

⇒ t1 =
xC0 + vAtA0

vA − vC
=

2.4 mi + (50 mph)(0.5 h)
50 mph − 36 mph

= 1.96 h ≈ 2.0 h

 

(b) Their position is   x1 = xA1 = xC1 = xC0 + vCt1 = 72.86 miles ≈ 73 miles  
(c) Note that Ann’s graph doesn’t start until   t = 0.5  hours, but her graph has a steeper slope so it intersects Carol’s 
graph at t ≈ 2.0 hours. 
 

 

2.57.  Model:  Model the ice as a particle and use the kinematic equations for constant acceleration. Model the 
“very slippery block” and “smooth ramp”‘ as frictionless. Set the x-axis parallel to the ramp. 
Visualize: 
 

 
 

Note that the distance down the ramp is   Δx = h/ sinθ.  Also   ax = g sinθ  down a frictionless ramp. 
Solve: 

(a)  Use   vf
2 = vi

2 + 2axΔx , where   vi = 0 . 

  
vf

2 = 2aΔx ⇒ vf = 2(g sinθ ) h
sinθ

= 2gh  
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(b)  For   h = 0.30 m,  

  vf = 2(9.8 m/s2 )(0.30 m) = 2.4 m/s  
This is true for both angles as the answer is independent of the angle. 
Assess:   We will later learn how to solve this problem in an easier way with energy. 

2.58.  Model:   We will model the toy train as a particle. 
Visualize: 
 

 
 

Solve:  Using kinematics, 

  
x1 = x0 + v0 (t1 − t0 ) + 1

2
a0 (t1 − t0 )2 = 2 m + (2.0 m/s)(2.0 s − 0 s) + 0 m = 6.0 m  

The acceleration can now be obtained as follows: 

   v2
2 = v1

2 + 2a1(x2 − x1) ⇒ 0 m2 /s2 = (2.0 m/s)2 + 2a1(8.0 m − 6.0 m) ⇒ a1 = 2 1.0 m/s2  

The magnitude is 1.0  m/s2.  

Assess:  A deceleration of  1 m/s2  in bringing the toy train to a halt over a distance of 2.0 m is reasonable. 

2.59.  Model:  We will use the particle model and the kinematic equations at constant-acceleration. 
Visualize: 
 

 
 

Solve:  To find   x2 ,  let us use the kinematic equation 

  v2
2 = v1

2 + 2a1(x2 − x1) = (0 m/s)2 = (50 m/s)2 + 2(−10 m/s2 )(x2 − x1) ⇒ x2 = x1 + 125 m  

Since the nail strip is at a distance of 150 m from the origin, we need to determine   x1:  

  x1 = x0 + v0 (t1 − t0 ) = 0 m + (50 m/s)(0.60 s − 0.0 s) = 30 m  

Therefore, we can see that   x2 = (30 + 125) m = 155 m. That is, he can’t stop within a distance of 150 m. He is in jail. 
Assess:  Bob is driving at approximately 100 mph and the stopping distance is of the correct order of magnitude. 
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2.60.  Model:  We will use the particle model with constant-acceleration kinematic equations. 
Visualize: 
 

 
 

Solve:   The acceleration, being the same along the incline, can be found as 

  v1
2 = v0

2 + 2a(x1 − x0 ) ⇒ (4.0 m/s)2 = (5.0 m/s)2 + 2a(3.0 m − 0 m) ⇒ a = −1.5 m/s2  

We can also find the total time the puck takes to come to a halt as 

  v2 = v0 + a(t2 − t0 ) ⇒ 0 m/s = (5.0 m/s) + (−1.5 m/s2 )t2 ⇒ t2 = 3.3 s  

Using the above obtained values of a and   t2 ,  we can find   x2  as follows: 

  
x2 = x0 + v0 (t2 − t0 ) + 1

2
a(t2 − t0 )2 = 0 m + (5.0 m/s)(3.3 s) + 1

2
(−1.5 m/s2 )(3.3 s)2 = 8.3 m  

That is, the puck goes through a displacement of 8.3 m. Since the end of the ramp is 8.5 m from the starting position 

  x0  and the puck stops 0.2 m or 20 cm before the ramp ends, you are not a winner. 

2.61.  Model:  Model the ball as a particle. Ignore air resistance. 
Visualize: 
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Solve: 
(a)  We can apply the kinematic equation   vf

2 − vi
2 = 2aΔy  twice, once for the launching phase and again for the free 

fall phase. In the launching phase the acceleration is up (positive),   v0 = 0  and   Δy = y1 − y0 = d.  

  v1
2 = 2a0d  

In the free fall phase the acceleration is   a1 = −g,   v2 = 0,  and   Δy = y2 − y1 = h.  

  −v1
2 = 2a1h = 2(−g)h  

Cancel the negative signs and set the two expressions for   v1
2  equal to each other. 

  2a0d = 2gh  

Solve for   a0.  

  
a0 =

h
d

g  

(b)  For   h = 3.2m,  and   d = 0.45 m  we get 

  
a0 =

h
d

g =
3.2 m
0.45 m

(9.8 m/s2 ) = 69.7 m/s2 ≈ 70 m/s2  

Assess:  The answer is independent of the mass of the ball. The units check out. 

2.62.  Model:  The ball is a particle that exhibits freely falling motion according to the constant-acceleration 
kinematic equations. 
Visualize: 
 

 
 

Solve:  Using the known values, we have 

  v1
2 = v0

2 + 2a0 ( y1 − y0 ) ⇒ (−10 m/s)2 = v0
2 + 2(−9.8 m/s2 )(5.0 m − 0 m) ⇒ v0 = 14 m/s  

2.63.  Model:  The car is a particle that moves with constant linear acceleration. 
Visualize: 
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Solve:  The reaction time is 1.0 s, and the motion during this time is 

  x1 = x0 + v0 (t1 − t0 ) = 0 m + (20 m/s)(1.0 s) = 20 m  
During slowing down, 

  

x2 = x1 + v1(t2 − t1) + 1
2

a1(t2 − t1)2 = 200 m

= 20 m + (20 m/s)(15 s − 1.0 s) + 1
2

a1(15 s − 1.0 s)2 ⇒ a1 = −1.02 m/s2
 

The final speed   v2 can now be obtained as 

  v2 = v1 + a1(t2 − t1) = (20 m/s) + (−1.02 m/s2 )(15 s − 1 s) = 5.7 m/s  

2.64.  Solve:  (a) The quantity 
  

2P
m

=
2(3.6 × 104  W)

1200 kg
= 60 m2 /s3.  Thus 

  vx = (60 m2 /s3)t  

At   t = 10 s, vx = (60 m2 /s3)(10 s) = 24 m/s ( ≈ 50 mph), and at   t = 20 s, vx = 35 m/s ( ≈ 75 mph).  

(b) With 
  
vx =

2P
m

t1/2 ,  we have 

  
ax =

dvx
dt

=
2P
m

×
1
2

t−1/2 =
P

2mt
 

(c) At 
  
t = 1 s, ax =  

P
2mt

=
(3.6 × 104  W)

2(1200 kg)(1 s)
= 3.9 m/s2.  Similarly, at   t = 10 s, ax = 1.2 m/s2.  

(d) Consider the limiting case of very short times. Note that   ax → ∞ as t → 0.  This is physically impossible for the 
Alfa Romeo. 

(e) We can use the relationship that 
 
vx =

dx
dt

and integrate to find   x(t). We have 
  
vx =

2P
m

t1/2  and the initial 

condition   xi = 0 at   ti = 0. Thus 

   

0
xÑ dx =

2P
m 0

tÑ t1/2dt

and  x = 2P
m

t3/2

3/2
=

2
3

2P
m

t3/2

 

(f) Time to travel a distance x is found by solving the above equation for t. 

  
t =

3
2

m
2P

x
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2/3

 

For   x = 402 m, t = 18.2 s.  

2.65.  Model:  Both cars are particles that move according to the constant-acceleration kinematic equations. 
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Visualize: 
 

 
 

Solve:  (a) David’s and Tina’s motions are given by the following equations: 

  

xD1 = xD0 + vD0 (tD1 − tD0 ) + 1
2

aD (tD1 − tD0 )2 = vD0tD1

xT1 = xT0 + vT0 (tT1 − tT0 ) + 1
2

aT (tT1 − tT0 )2 = 0 m + 0 m +
1
2

aTtT1
2

 

When Tina passes David the distances are equal and   tD1 = tT1, so we get 

  
xD1 = xT1 ⇒ vD0tD1 =

1
2

aTtT1
2 ⇒ vD0 =

1
2

aTtT1 ⇒ tT1 =
2vD0
aT

=
2(30 m/s)
2.0 m/s2

=  30 s  

Using Tina’s position equation, 

  
xT1 =

1
2

aTtT1
2 =

1
2

(2.0 m/s2 )(30 s)2 = 900 m  

(b) Tina’s speed   vT1  can be obtained from 

  vT1 = vT0 + aT (tT1 − tT0 ) = (0 m/s) + (2.0 m/s2 )(30 s − 0 s) = 60 m/s  
Assess:  This is a high speed for Tina (~134 mph) and so is David’s velocity (~67 mph). Thus the large distance for 
Tina to catch up with David (~0.6 miles) is reasonable. 

2.66.  Model:  We will represent the dog and the cat in the particle model. 
Visualize: 
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Solve:  We will first calculate the time   tC1  the cat takes to reach the window. The dog has exactly the same time to 

reach the cat (or the window). Let us therefore first calculate   tC1  as follows: 

  

xC1 = xC0 + vC0 (tC1 − tC0 ) + 1
2

aC (tC1 − tC0 )2

⇒ 3.0 m = 1.5 m + 0 m +
1
2

(0.85 m/s2 )tC1
2 ⇒ tC1 = 1.879 s

 

In the time   tD1 = 1.879 s,  the dog’s position can be found as follows: 

  

xD1 = xD0 + vD0 (tD1 − tD0 ) + 1
2

aD (tD1 − tD0 )2

= 0 m + (1.50 m/s)(1.879 s) + 1
2

(−0.10 m/s2 )(1.879 s)2 = 2.6 m
 

That is, the dog is shy of reaching the cat by 0.4 m. The cat is safe. 

2.67.  Model:   Jill and the grocery cart will be treated as particles that move according to the constant-acceleration 
kinematic equations. 
Visualize: 
 

 
 

Solve:  The final position of Jill when the cart is caught is given by 

  
xJ1 = xJ0 + vJ0 (tJ1 − tJ0 ) + 1

2
aJ0 (tJ1 − tJ0 )2 = 0 m + 0 m +

1
2

aJ0 (tJ1 − 0 s)2 =
1
2

(2.0 m/s2 )tJ1
2  

The cart’s position when it is caught is 

  

xC1 = xC0 + vC0 (tC1 − tC0 ) + 1
2

aC0 (tC1 − tC0 )2 = 20 m + 0 m +
1
2

(0.5 m/s2 )(tC1 − 0 s)2

= 20 m + (0.25 m/s2 )tC1
2

 

Since   xJ1 = xC1  and   tJ1 = tC1,  we get 

  

1
2

(2.0)tJ1
2 = 20 s2 + 0.25tC1

2 ⇒ 0.75tC1
2 = 20 s2 ⇒ tC1 = 5.16 s

⇒ xC1 = 20 m + (0.25 m/s2 )tC1
2 = 20 m + (0.25 m/s2 )(5.16 s)2 = 26.7 m

 

So, the cart has moved 6.7 m. 
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2.68.  Model:  The watermelon and Superman will be treated as particles that move according to constant-
acceleration kinematic equations. 
Visualize: 
 

 
 

Solve:  The watermelon’s and Superman’s position as they meet each other are 

  

yW1 = yW0 + vW0 (tW1 − tW0 ) + 1
2

aW0 (tW1 − tW0 )2

yS1 = yS0 + vS0 (tS1 − tS0 ) + 1
2

aS0 (tS1 − tS0 )2

⇒ yW1 = 320 m + 0 m +
1
2

(−9.8 m/s2 )(tW1 − 0 s)2

⇒ yS1 = 320 m + (−35 m/s)(tS1 − 0 s) + 0 m

 

Because   tS1 = tW1,  

  yW1 = 320 m − (4.9 m/s2 ) tW1
2 yS1 = 320 m − (35 m/s) tW1  

Since   yW1 = yS1,  

  320 m − (4.9 m/s2 )tW1
2 = 320 m − (35 m/s)tW1 ⇒ tW1 = 0 s and 7.1 s  

Indeed,   tW1 = 0 s corresponds to the situation when Superman arrives just as the watermelon is dropped off the 

Empire State Building. The other value,   tW1 = 7.1 s,  is the time when the watermelon will catch up with Superman. 
The speed of the watermelon as it passes Superman is 

  vW1 = vW0 + aW0 (tW1 − tW0 ) = 0 m/s + (−9.8 m/s2 )(7.1 s − 0 s) = −70 m/s  
Note that the negative sign implies a downward velocity. 
Assess:  A speed of 140 mph for the watermelon is understandable in view of the significant distance (250 m) 
involved in the free fall. 
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2.69.  Model:  Treat the car and train in the particle model and use the constant acceleration kinematics equations. 
Visualize: 
 

 
 

Solve:  In the particle model the car and train have no physical size, so the car has to reach the crossing at an 
infinitesimally sooner time than the train. Crossing at the same time corresponds to the minimum   a1  necessary to 

avoid a collision. So the problem is to find   a1  such that   x2 = 45 m when   y2 = 60 m. 
The time it takes the train to reach the intersection can be found by considering its known constant velocity. 

  
v0 y = v2 y = 30 m/s =

y2 − y0
t2 − t0

=
60 m

t2
⇒ t2 = 2.0 s  

Now find the distance traveled by the car during the reaction time of the driver. 

  x1 = x0 + v0x (t1 − t0 ) = 0 + (20 m/s)(0.50 s) = 10 m  

The kinematic equation for the final position at the intersection can be solved for the minimum acceleration   a1.  

  

x2 = 45 m = x1 + v1x (t2 − t1) + 1
2

a1(t2 − t1)2

= 10 m + (20 m/s)(1.5 s) + 1
2

a1(1.5 s)2

⇒ a1 = 4.4 m/s2

 

Assess:  The acceleration of 4.4  m/s2 = 2.0 miles/h/s is reasonable for an automobile to achieve. However, you 
should not try this yourself! Always pay attention when you drive! Train crossings are dangerous locations, and 
many people lose their lives at one each year. 

2.70.  Model:  Model the ball as a particle. Since the ball is heavy we ignore air resistance. 

Visualize:  We use the kinematic equation 
  
Δy = v0Δt + 1

2
a(Δt)2 ,  but we set the origin at the ground so   y0 = h  and 

  y1 = 0;  this means   Δy = y1 − y0 = −h.  We release the ball from rest so at   t0 = 0  we have   v0 = 0  and   Δt = t.  We 
also note that  a = −g  where  g  is the free-fall acceleration on Planet X. Making all these substitutions leaves 

  
h = 1

2
g

⎛

⎝⎜
⎞

⎠⎟
t2  

So we expect a graph of  h  vs.   t2  to produce a straight line whose slope is   g /2  and whose intercept is zero. 

Compare to  y = mx + b  where   y = h,   m = g /2,    x = t2 ,  and   b = 0.  
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Solve:  First look at a graph of height vs. fall time and notice that it is not linear. It would be difficult to analyze. 
Even though the point  (0,0)  is not a measured data point, it is valid to add to the data table and graph because it 
would take zero time to fall zero distance. 
 

 
 

However, the theory has guided us to expect that a graph of height vs. fall time squared would be linear and the 
slope would be   g /2.  First we use a spreadsheet to square the fall times and then graph the height vs. fall time 
squared to see if it looks linear and that the intercept is close to zero. 
 

 
 

It looks linear and   R
2 = 0.996  tells us the linear fit is very good. We also see that the intercept is a very small 

negative number which is close to zero, so we have confidence in our model. The fit is not perfect and the intercept is 
not exactly zero probably because of uncertainties in timing the fall. 
We now conclude that the slope of the best fit line  m = 3.7326 is  g /2 in the proper units, so   g = 2 × 3.7326m/s2 =  

 7.5m/s2  on Planet X. 
Assess:  The free-fall acceleration on Planet X is a little bit smaller than on earth, but is reasonable. It is customary 
to put the independent variable on the horizontal axis and the dependent variable along the vertical axis. Had we done 
so here we would have graphed   t2  vs.  h  and the slope would have been   2/g.  Our answer to the question would be 
the same. 
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2.71.  Model:  Model the car as a particle. Ignore air resistance. Hard braking means the wheels are locked (not 
turning) and the car is in full skid. For convenience, assume the car is skidding to the right. 
Visualize:  We use the kinematic equation   vf

2 − vi
2 = 2aΔx.  In this case   vf = 0  and   a < 0,  but since we want the 

deceleration (which is the absolute value of the acceleration) we drop the negative signs. Relabel   vi  as  v . We’ll call the 

beginning of the skid mark the origin so that   xi = 0  and the skid length is   Δx = x.  Making these substitutions leaves 

  v
2 = (2a)x  

So we expect a graph of   v2  vs.  x  to produce a straight line whose slope is   2a  and whose intercept is zero. Compare 
to  y = mx + b  where   y = v2 ,   m = 2a,   x = x,  and   b = 0.  
Solve:   First look at a graph of the data of speed vs. skid length and notice that it is not linear. It would be difficult to 
analyze. We added the point  (0,0)  to the data table and graph because we are sure that if the speed were zero the skid 
length would also be zero. 
 

 
 

However, the theory has guided us to expect that a graph of speed squared vs. skid length would be linear and the 
slope would be   2a . First we use a spreadsheet to square the speed and then graph the speed squared vs. skid length 
to see if it looks linear and that the intercept is close to zero. Only if it is linear is the deceleration constant, 
independent of speed. 
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(a) It looks linear and   R
2 = 0.995  tells us the linear fit is very good. This means the deceleration (involved in the 

slope) is constant, independent of speed. We also see that the intercept is a very small negative number which is close 
to zero, so we have confidence in our model. The fit is not perfect and the intercept is not exactly zero probably 
because of uncertainties in measuring the speed. 
(b) We now conclude that the slope of the best fit line   m = 15.812  is   2a  in the proper units, so the deceleration is 

  
a = 1

2
× 15.812 m/s2 = 7.9 m/s2.  

Assess:   The value of  7.9 m/s2  seems reasonable for hard braking. It is customary to put the independent variable 
on the horizontal axis and the dependent variable along the vertical axis. Had we done so here we would have 
graphed  x  vs.   v2  and the slope would have been   1/2a.  Our answer to the question would be the same. 

2.72.  Solve:   A comparison of the given equation with the constant-acceleration kinematics equation 

  
x1 = x0 + v0 (t1 − t0 ) +

1
2

ax (t1 − t0 )2  

yields the following information:   x0 = 0 m, x1 = 64 m, t0 = 0, t1 = 4 s, and   v0 = 32 m/s.  
(a) After landing on the deck of a ship at sea with a velocity of 32 m/s, a fighter plane is observed to come to a 
complete stop in 4.0 seconds over a distance of 64 m. Find the plane’s deceleration. 
(b) 
 

 
 

(c) 
  
64 m = 0 m + (32 m/s)(4 s − 0 s) + 1

2
ax (4 s − 0 s)2 64 m = 128 m + (8 s2 )ax ⇒ ax = −8 m/s2  

The deceleration is the absolute value of the acceleration, or 8  m/s2.  

2.73.  Solve:   (a) A comparison of this equation with the constant-acceleration kinematic equation 

  
(v1y )2 = v0y

2 + 2(ay )( y1 − y0 )  

yields the following information: 
  
y0 = 0 m, y1 = 10 m, ay = −9.8 m/s2 ,  and 

  
v1y = 10 m/s.  It is clearly a problem of 

free fall. On a romantic Valentine’s Day, John decided to surprise his girlfriend, Judy, in a special way. As he 
reached her apartment building, he found her sitting in the balcony of her second floor apartment 10 m above the first 
floor. John quietly armed his spring-loaded gun with a rose, and launched it straight up to catch her attention. Judy 
noticed that the flower flew past her at a speed of 10 m/s. Judy is refusing to kiss John until he tells her the initial 
speed of the rose as it was released by the spring-loaded gun. Can you help John on this Valentine’s Day? 
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(b) 
 

 
 

(c) 
  
(10 m/s)2 = v0y

2 − 2(9.8 m/s2 )(10 m − 0 m) ⇒ v0y = 17.2 m/s  

Assess:   The initial velocity of 17.2 m/s, compared to a velocity of 10 m/s at a height of 10 m, is very reasonable. 

2.74.  Solve:   A comparison with the constant-acceleration kinematics equation 

  
(v1x )2 = (v0x )2 + 2ax (x1 − x0 )  

yields the following quantities:   x0 = 0 m, v0x = 5 m/s, v1x = 0 m/s, and    ax = −(9.8 m/s2 )sin10o.  

(a) A wagon at the bottom of a frictionless 10° incline is moving up at 5 m/s. How far up the incline does it move 
before reversing direction and then rolling back down? 
(b) 
 

 
 

(c) 

  

(0 m/s)2 = (5 m/s)2 − 2(9.8 m/s2 )sin10°(x1 − 0 m)

⇒ 25(m/s)2 = 2(9.8 m/s2 )(0.174)x1 ⇒ x1 = 7.3 m
 

2.75.  Solve:   (a) From the first equation, the particle starts from rest and accelerates for 5 s. The second equation 
gives a position consistent with the first equation. The third equation gives a subsequent position following the 
second equation with zero acceleration. A rocket sled accelerates from rest at 20  m/s2

 for 5 s and then coasts at 
constant speed for an additional 5 s. Draw a graph showing the velocity of the sled as a function of time up to t = 10 s. 
Also, how far does the sled move in 10 s? 
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(b) 
 

 
 

(c) 
  
x1 =

1
2

(20 m/s2 )(5 s)2 = 250 m v1 = 20 m/s2 (5 s) = 100 m/s x2 = 250 m + (100 m/s)(5 s) = 750 m  

2.76.  Model:   The masses are particles. 
Visualize:  
 

 
 

Solve:   The rigid rod forms the hypotenuse of a right triangle, which defines a relationship between   x2 and   y1:  

  x2
2 + y1

2 = L2 . 
Taking the time derivative of both sides yields 

  
2x2

dx2
dt

+ 2y1
dy1
dt

= 0  

We can now use 
  
v2x =

dx2
dt

 and 
  
v1y =

dy1
dt

 to write 
  
x2v2x + y1v1y = 0.  

Thus 
  
v2x = −

y1
x2

⎛

⎝
⎜

⎞

⎠
⎟ v1y . But from the figure, 

  

y1
x2

= tanθ ⇒ v2x = −v1y tanθ.  

Assess:   As   x2  decreases   (v2x < 0), y1  increases 
  
(v1y > 0),  and vice versa. 

2.77.  Model:   The rocket and the bolt will be represented as particles to investigate their motion. 
Visualize:  
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The initial velocity of the bolt as it falls off the side of the rocket is the same as that of the rocket, that is, 

  vB0 = vR1 and it is positive since the rocket is moving upward. The bolt continues to move upward with a 

deceleration equal to   g = 9.8 m/s2  before it comes to rest and begins its downward journey. 
Solve:   To find   aR  we look first at the motion of the rocket: 

  

yR1 = yR0 + vR0 (tR1 − tR0 ) + 1
2

aR (tR1 − tR0 )2

= 0 m + 0 m/s + 1
2

aR (4.0 s − 0 s)2 = 8aR

 

To find   aR  we must determine the magnitude of   yR1 or   yB0.  Let us now look at the bolt’s motion: 

  

yB1 = yB0 + vB0 (tB1 − tB0 ) + 1
2

aB(tB1 − tB0 )2

0 = yR1 + vR1(6.0 s − 0 s) + 1
2

(−9.8 m/s2 )(6.0 s − 0 s)2
 

  ⇒ yR1 = 176.4 m − (6.0 s) vR1  

Since   vR1 = vR0 + aR (tR1 − tR0 ) = 0 m/s + 4 aR = 4 aR  the above equation for   yR1  yields   yR1 = 176.4 − 6.0(4aR ).  We 
know from the first part of the solution that   yR1 = 8aR .  Therefore,   8aR = 176.4 − 24.0aR and hence   aR = 5.5 m/s2.  

2.78.  Model:   The rocket car is a particle that moves according to the constant-acceleration equations of motion. 
Visualize:  
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Solve:   This is a two-part problem. For the first part, 

  

x1 = x0 + v0 (t1 − t0 ) + 1
2

a0 (t1 − t0 )2 = 0 m + 0 m +
1
2

a0 9.0 s − 0 s( )2 = 1
2

(81 s2 )a0

v1 = v0 + a0 (t1 − t0 ) = 0 m/s + a0 (9.0 s − 0 s) = (9.0 s)a0

 

During the second part of the problem, 

  

x2 = x1 + v1(t2 − t1) + 1
2

a1(t2 − t1)2

⇒ 990 m =
1
2

(81 s2 )a0 + (9.0 s)a0 (12 s − 9.0 s) + 1
2

(−5.0 m/s2 )(12 s − 9.0 s)2

⇒ a0 = 15 m/s2

 

This leads to: 

  v1 = (9.0 s)a0 = (9.0 s)(15 m/s2 ) = 135 m/s  

Using this value of   v1,  we can now calculate   v2  as follows: 

  v2 = v1 + a1(t2 − t1) = (135 m/s) + (−5.0 m/s2 )(12 s − 9.0 s) = 120 m/s  
That is, the car’s speed as it passes the judges is 120 m/s. 
Assess:   This is a very fast motion (~250 mph), but the acceleration is large and the long burn time of 9 s yields a 
high velocity. 

2.79.  Model:   Use the particle model. 
Visualize:  
 

 
 

Solve:   (a) Substituting into the constant-acceleration kinematic equation 

  

x2 = x1 + v1(t2 − t1) + 1
2

a1(t2 − t1)2 ⇒ 100 m = x1 + v1 t2 −
10
3

⎛

⎝⎜
⎞

⎠⎟
+ 0 m

t2 =
100 − x1

v1
+

10
3

 

Let us now find   v1  and   x1  as follows: 

  

v1 = v0 + a0 (t1 − t0 ) = 0 m/s + (3.6 m/s2 ) 10
3

 s − 0 s
⎛

⎝⎜
⎞

⎠⎟
= 12 m/s

x1 = x0 + v0 (t1 − t0 ) + 1
2

a0 (t1 − t0 )2 = 0 m + 0 m +
1
2

(3.6 m/s2 ) 10
3

 s − 0 s
⎛

⎝⎜
⎞

⎠⎟

2

= 20 m
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The expression for   t2  can now be solved as 

  
t2 =

100 m − 20 m
12 m/s

+
10 s

3
= 10 s  

(b) The top speed = 12 m/s which means   v1 = 12 m/s.  To find the acceleration so that the sprinter can run the  
100-meter dash in 9.9 s, we use 

  

v1 = v0 + a0 (t1 − t0 ) ⇒ 12 m/s = 0 m/s + a0t1 ⇒ t1 =
12 m/s

a0

x1 = x0 + v0 (t1 − t0 ) + 1
2

a0 (t1 − t0 )2 = 0 m + 0 m +
1
2

a0t1
2 =

1
2

a0t1
2

 

Since 
  
x2 = x1 + v1(t2 − t1) + 1

2
a1(t2 − t1)2 ,  we get 

  
100 m =

1
2

a0t1
2 + (12 m/s) (9.9 s − t1) + 0 m  

Substituting the above equation for   t1  in this equation, 

  
100 m =

1
2

⎛

⎝⎜
⎞

⎠⎟
a0

12 m/s
a0

⎛

⎝
⎜

⎞

⎠
⎟

2

+ (12 m/s) 9.9 s − 12 m/s
a0

⎛

⎝
⎜

⎞

⎠
⎟ ⇒ a0 = 3.8 m/s2  

(c) We see from parts (a) and (b) that the acceleration has to be increased from 3.6  m/s2  to 3.8  m/s2  for the sprint 
time to be reduced from 10 s to 9.9 s, that is, by 1%. This decrease of time by 1% corresponds to an increase of 
acceleration by 

  
3.8 − 3.6

3.6
× 100, = 5.6,  

2.80.  Solve:   (a) The acceleration is the time derivative of the velocity. 

  
ax =

dvx
dt

=
d
dt

[a(1− e−bt )] = abe−bt  

With   a = 11.81 m/s  and   b = 0.6887 s−1,    ax = 8.134e−0.6887t  m/s2.  At the times   t = 0 s,  2 s, and 4 s, this has the 

values 8.134  m/s2 ,  2.052  m/s2 ,  and 0.5175  m/s2.  

(b) Since 
 
vx =

dx
dt

, the position x is the integral of the velocity. With 
 
vx =

dx
dt

= a − ae−bt and the initial condition 

that   xi = 0 m  at   ti = 0 s,  

  
dx

o

x
∫ = dt

o

t
∫ − ae2 bt dt

o

t
∫  

Thus 

  
x = at

o

t

+
a
b

e2 bt

o

t

= at +
a
b

e2 bt −
a
b

 

This can be written a little more neatly as 

  

x =
a
b

(bt + e−bt − 1)

= 17.15(0.6887t + e−0.6887t − 1) m
 

(c) By trial and error, t = 9.92 s yields x = 100.0 m. 
Assess:   Lewis’s actual time was 9.93 s. 

2.81.  Model:   We will use the particle-model to represent the sprinter and the equations of kinematics. 
Visualize:  
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Solve:   Substituting into the constant-acceleration kinematic equations, 

  

x1 = x0 + v0 (t1 − t0 ) + 1
2

a0 (t1 − t0 )2 = 0 m + 0 m +
1
2

a0 (4 s − 0 s)2 =
1
2

a0t1
2 =

1
2

a0 (4.0 s)2

⇒ x1 = (8 s2 )a0

v1 = v0 + a0 (t1 − t0 ) = 0 m/s + a0 (4.0 s − 0 s) ⇒ v1 = (4.0 s) a0

 

From these two results, we find that   x1 = (2 s)v1.  Now, 

  

x2 = x1 + v1(t2 − t1) + 1
2

a1(t2 − t1)2

⇒ 100 m = (2 s)v1 + v1(10 s − 4 s) + 0 m ⇒ v1 = 12.5 m/s
 

Assess:   Using the conversion 2.24 mph = 1 m/s,  v1 = 12.5 m/s = 28 mph.  This speed as the sprinter reaches the 
finish line is physically reasonable. 

2.82.  Model:   The balls are particles undergoing constant acceleration. 
Visualize: 
 

 
 

Solve:   (a) The positions of each of the balls at   t1  is found from kinematics. 

  
( y1)A = ( y0 )A + (v0 y )At1 −

1
2

gt1
2 = v0t1 −

1
2

gt1
2  

  
( y1)B = ( y0 )B + (v0 y )B t1 −

1
2

gt1
2 = h − 1

2
gt1

2  
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In the particle model the balls have no physical extent, so they meet when  ( y1)A = ( y1)B .  This means 

  
v0t1 −

1
2

gt1
2 = h − 1

2
gt1

2 ⇒ t1 =
h
v0

 

Thus the collision height is
  
ycoll = h − 1

2
gt1

2 = h − gh2

2v0
2

.  

(b) We need the collision to occur while
  ycoll ≥ 0.  Thus 

  
h − gh2

2v0
2
≥ 0 ⇒

  
1 ≥ gh

2v0
2
⇒

  
h ≤

2v0
2

g
 

So
  
hmax =

2v0
2

g
.  

(c) Ball A is at its highest point when its velocity
  
(v1y )A = 0.  

  
(v1y )A = (v0 y )A − gt1 ⇒ 0 = v0 − gt1

  
⇒ t1 =

v0
g

 

In (a) we found that the collision occurs at 
  
t1 =

h
v0

.  Equating these, 
  

h
v0

=
v0
g
⇒ h =

v0
2

g
.  

Assess:   Interestingly, the height at which a collision occurs while Ball A is at its highest point is exactly half of 

  hmax .  

2.83.  Model:   The space ships are represented as particles. 
Visualize:  
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Solve:   The difficulty with this problem is how to describe “barely avoid.” The Klingon ship is moving with constant 
speed, so its position-versus-time graph is a straight line from   xK0 = 100  km. The Enterprise will be decelerating, so 
its graph is a parabola with decreasing slope. The Enterprise doesn’t have to stop; it merely has to slow quickly 
enough to match the Klingon ship speed at the point where it has caught up with the Klingon ship. (You do the same 
thing in your car when you are coming up on a slower car; you decelerate to match its speed just as you come up on 
its rear bumper.) Thus the parabola of the Enterprise will be tangent to the straight line of the Klingon ship, showing 
that the two ships have the same speed (same slopes) when they are at the same position. Mathematically, we can say 
that at time   t1  the two ships will have the same position   (xE1 = xK1)  and the same velocity   (vE1 = vK1).  Note that 

we are using the particle model, so the ships have zero length. At time   t1,  

  

xK1 = xK0 + vK0t1

xE1 = vE0t1 +
1
2

at1
2

 

  

vK1 = vK0

vE1 = vE0 + at1
 

Equating positions and velocities at   t1 : 

  
xK0 + vK0t1 = vE0t1 +

1
2

at1
2 vK0 = vE0 + at1  

We have two simultaneous equations in the two unknowns a and   t1. From the velocity equation, 

  t1 = (vK0 − vE0 ) / a  

Substituting into the position equation gives 

   
xK0 = −(vK0 − vE0 ) ⋅

(vK0 − vE0 )
a

+
1
2

a ⋅
(vK0 − vE0 )

a

⎛

⎝
⎜

⎞

⎠
⎟

2

= 2 (vK0 − vE0 )2

2a
 

   
⇒ a = 2 (vK0 − vE0 )2

2xK0
= −

(20,000 m/s −  50,000 m/s)2

2(100,000 m)
= −4500 m/s2  

The magnitude of the acceleration is  4500 m/s2.  

Assess:   The deceleration is  4500 m/s2 ,  which is a rather extreme   ≈ 460g.  Fortunately, the Enterprise has other 
methods to keep the crew from being killed. 


