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6-1 

Conceptual Questions 

6.1.  (a)  Static equilibrium. The barbell is not accelerating and has a velocity of zero. 
(b)  Dynamic equilibrium. The girder is not accelerating but has a nonzero constant velocity. 
(c)  Not in equilibrium. Slowing down means the acceleration is not zero. 
(d)  Dynamic equilibrium. The plane is not accelerating but has a nonzero constant velocity. 
(e)  Not in equilibrium. The box slows down with the truck, so has a nonzero acceleration. 

6.2.   No. The ball is still changing its speed, and just momentarily has zero velocity. 

6.3.   Kat is closest to the correct statement, which should read “Gravity pulls down on it, but the table pushes it up so 
that the net force on the book is zero.” 

6.4.   No, because the net force is not necessarily in the same direction as the motion. For example, a car using its 
brakes to slow its forward motion has a net force opposite its direction of motion. 

6.5. 
 

 
 

Equal. The tension in the cable is equal to the force of gravity, since the net force must be zero in order for the elevator 
to move with constant speed. 
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6.6. 
 

 
 

Greater. Since the elevator is slowing down as it moves downward, it has an upward net force, so the tension must be 
greater than the gravitational force. 

6.7.  (a)  False. The mass of an object is a measure of its inertia, which is the same regardless of location. 
(b)  True. The weight of an object is a measurement of how much force an object presses down on a surface with, and 
varies depending on location and whether the object is accelerating. 
(c)  False. Mass and weight describe very different things, as pointed out in parts (a) and (b). 

6.8.  Yes, the scale shows the astronaut’s weight on the moon, since it shows how hard the astronaut is pressing down 
on the surface of the moon. His weight is different on the earth, of course. 

6.9.   The net force on each ball is the gravitational force mg, so the net force on the balls is ranked by mass. 

6.10.  Correct. There will be a correct amount of salt in the pan balance since a pan balance measures mass, which is 
independent of any gravitational force or acceleration present. 

6.11.  Zero. The passenger’s weight is zero once the box is launched since the passenger is in free fall (ignoring any 
air friction). While gravity still pulls the passenger down, a scale placed under his feet would not register any weight 
without a support under it. 

6.12.  The ball filled with lead is more massive. Since the balls are weightless, the astronaut must measure their inertia 
(mass) directly. One easy option is to move each ball side to side in turn. More force is required to change the more 
massive lead-filled ball’s direction of motion. 

6.13.  Larger. A free-body diagram for the book is shown in the figure. The normal force of the table on the book is 
larger than its weight, since the net force is zero. 
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6.14.  (a)   Your constant push  provides the net force, so the puck accelerates with constant acceleration 

 From kinematics, with  

. . 

If the mass is doubled, the time must also be doubled to reach the same speed, so you must push for a time  

(b)   From kinematics, with and  

 

If m is doubled, then  must be doubled, which means  is increased by a factor of  So you must push for a 

time  

6.15. 
 

 
 

(a)  d. Kinetic friction  determines the horizontal acceleration  which slows down the block. From 

the free body diagram,  So  which is independent of mass. Note that changing the 

mass has no effect on the distance the block slides. 
(b)  4d. From kinematics, with  

 

Thus  and we use proportional reasoning: 

 

6.16.  Yes, the friction force on a crate dropped on a conveyor belt speeds the crate up to the belt’s speed. 
 

 

6.17.  North. The friction force on the crate is the only horizontal force and is responsible for speeding the crate up 
along with the truck. Therefore the friction force points in the same direction as the motion of the crate. 
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6.18.    The balls all have the same cross-sectional area A. All of the balls have gravity pulling 

down, resulting in an acceleration g. The drag force  results in an addition or subtraction to g of  For 

ball e, the drag force adds to gravity, resulting in a higher acceleration.  for balls a and b. The drag force opposes 
gravity for balls c and d, and since  

Exercises and Problems 

Section 6.1  Equilibrium 

6.1.  Model:  We can assume that the ring is a single massless particle in static equilibrium. 
Visualize:  
 

 
 

Solve:  Written in component form, Newton’s first law is 
  

Evaluating the components of the force vectors from the free-body diagram: 
 
 

Using Newton’s first law: 
  

Rearranging: 
  

Assess:  Since  acts closer to the x-axis than to the y-axis, it makes sense that  

6.2.  Model:  We can assume that the ring is a particle. 
Visualize:  
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This is a static equilibrium problem. We will ignore the weight of the ring, because it is “very light,” so the only three 
forces are the tension forces shown in the free-body diagram. Note that the diagram defines the angle  
Solve:  Because the ring is in equilibrium it must obey  This is a vector equation, so it has both x- and  
y-components: 

 
 

We have two equations in the two unknowns  and  Divide the y-equation by the x-equation: 

 

Now we can use the x-equation to find 

 

The tension in the third rope is 94 N directed 58° below the horizontal. 

6.3.  Model:  We assume the speaker is a particle in static equilibrium under the influence of three forces: gravity and 
the tensions in the two cables. 
Visualize:  
 

 
 

Solve:  From the lengths of the cables and the distance below the ceiling we can calculate  as follows: 

 

Newton’s first law for this situation is 
 

 

The x-component equation means  From the y-component equation: 

 

Assess:  It’s to be expected that the two tensions are equal, since the speaker is suspended symmetrically from the two 
cables. That the two tensions add to considerably more than the weight of the speaker reflects the relatively large angle 
of suspension. 

6.4.  Model:  We can assume that the coach and his sled are a particle being towed at a constant velocity by the two 
ropes, with friction providing the force that resists the pullers. 
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Visualize:  
 

 

 

Solve:  Since the sled is not accelerating, it is in dynamic equilibrium and Newton’s first law applies: 
	  

From the free-body diagram: 

	  

From the second of these equations  Then from the first: 

 

Assess:  The two tensions are equal, as expected, since the two players are pulling at the same angle. The two add up 
to only slightly more than 1000 N, which makes sense because the angle at which the two players are pulling is small. 

6.5.  Model:  Model the worker as a particle. 
Visualize:  In equilibrium the net force is zero in both directions. There must be a static friction force to keep her from 
sliding off. 
 

 
 

Solve:  We only need to examine the y-direction. 
 

Assess:  A good way to assess solutions like this is to consider what happens in the limit as  and as  In 
the first case  and in the second  as expected. 

Section 6.2  Using Newton’s Second Law 

6.6.  Solve:  (a)  Applying Newton’s second law to the diagram, 
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(b)  Applying Newton’s second law to the diagram, 

 

6.7.  Solve:  (a)  For the diagram on the left, three of the vectors lie along the axes of the tilted coordinate system. 
Notice that the angle between the 3 N force and the –y-axis is the same 20° by which the coordinates are tilted. Applying 
Newton’s second law, 

 

 

(b)  For the diagram on the right, the 2-newton force in the first quadrant makes an angle of 15° with the positive  
x-axis. The other 2-newton force makes an angle of 15° with the negative y-axis. The accelerations are 

 

6.8.  Solve:  We can use the constant slopes of the three segments of the graph to calculate the three accelerations. For 
t between 0 s and 2 s, 

 

For t between 3 s and 6 s,  so  For t between 6 s and 8 s, 

 

From Newton’s second law, at  s we have 
 

At  so  At  

 
Assess:  The magnitudes of the forces look reasonable, given the small mass of the object. The positive and negative 
signs are appropriate for an object first speeding up, then slowing down. 

6.9.  Visualize:  Assuming the positive direction is to the right, positive forces result in the object accelerating to the right 
and negative forces result in the object accelerating to the left. The final segment of zero force is a period of constant speed. 
Solve:  We have the mass and net force for all the three segments. This means we can use Newton’s second law to 
calculate the accelerations. The acceleration from  to  is 

 

The acceleration from  to  is 

 

The acceleration from  to 8 s is  In particular,  
We can now use one-dimensional kinematics to calculate v at  as follows: 

 

Assess:  The positive final velocity makes sense, given the greater magnitude and longer duration of the positive  
A velocity of 4 m/s also seems reasonable, given the magnitudes and directions of the forces and the mass involved. 
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6.10.  Model:  We assume that the box is a particle being pulled in a straight line. Since the ice is frictionless, the 
tension in the rope is the only horizontal force. 
Visualize:  
 

 

 

Solve:  (a)  Since the box is at rest,  and the net force on the box must be zero. Therefore, according to 
Newton’s first law, the tension in the rope must be zero. 
(b)  For this situation again,  so  
(c)  Here, the velocity of the box is irrelevant, since only a change in velocity requires a nonzero net force. Since 

 

 
Assess:  For parts (a) and (b), the zero acceleration immediately implies that the rope is exerting no horizontal force 
on the box. For part (c), the 250 N force (the equivalent of about half the weight of a small person) seems reasonable 
to accelerate a box of this mass at  

6.11.  Model:  We assume that the box is a point particle that is acted on only by the tension in the rope and the pull of 
gravity. Both the forces act along the same vertical line. 
Visualize:  
 

 
 

Solve:  (a)  Since the box is at rest,  and the net force on it must be zero: 

 

(b)  Since the box is rising at a constant speed, again   and  
(c)  The velocity of the box is irrelevant, since only a change in velocity requires a nonzero net force. Since 
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(d)  The situation is the same as in part (c), except that the rising box is slowing down. Thus  and we 
have instead 

 

Assess:  For parts (a) and (b) the zero accelerations immediately imply that the gravitational force on the box must be 
exactly balanced by the upward tension in the rope. For part (c) the tension not only has to support the gravitational 
force on the box but must also accelerate it upward, hence, T must be greater than  When the box accelerates 
downward, the rope need not support the entire gravitational force, hence, T is less than  

6.12.  Model:  We assume that the block is a point particle that is acted on only the force shown. 
Visualize:  We apply Newton’s second law in both parts. 
Solve:  (a)  Since the net force is to the right the block is accelerating to the right, so it is speeding up in this case.  The 
answer is A. (b) The net force, while decreasing, is still to the right, so the block continues to accelerate to the right 
and in this case continues to speed up. The answer is A. 

Section 6.3  Mass, Weight, and Gravity 

6.13.  Model:  Use the particle model for the woman. 
Solve:  (a)  The woman’s weight on the earth is 

 
(b)  Since mass is a measure of the amount of matter, the woman’s mass is the same on Mars as on the earth. Her 
weight on Mars is 

 
Assess:  The smaller acceleration due to gravity on Mars reveals that objects are less strongly attracted to Mars than to 
the earth. Thus the woman’s smaller weight on Mars makes sense. 

6.14.  Model:  We assume that the passenger is a particle subject to two vertical forces: the downward pull of gravity 
and the upward push of the elevator floor. We can use one-dimensional kinematics and Equation 6.10. 
Visualize:  
 

 
 

Solve:  (a)  The weight is 

 

(b) The elevator speeds up from  to its cruising speed at  We need its acceleration before we 
can find the apparent weight: 
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The passenger’s weight is 

 

(c)  The passenger is no longer accelerating since the elevator has reached its cruising speed. Thus, w = mg = 590 N 
as in part (a). 
Assess:  The passenger’s weight is the gravitational force on the passenger in parts (a) and (c), since there is no 
acceleration. In part (b), the elevator must not only support the gravitational force but must also accelerate him upward, 
so it’s reasonable that the floor will have to push up harder on him, increasing his weight. 

6.15.  Model:  We assume that the passenger is a particle acted on by only two vertical forces: the downward pull of 
gravity and the upward force of the elevator floor. 
Visualize:  The graph has three segments corresponding to different conditions: (1) increasing velocity, meaning an 
upward acceleration; (2) a period of constant upward velocity; and (3) decreasing velocity, indicating a period of 
deceleration (negative acceleration). 
Solve:  Given the assumptions of our model, we can calculate the acceleration for each segment of the graph and then 
apply Equation 6.10. The acceleration for the first segment is 

 

 

For the second segment,  and the weight is 

 

For the third segment, 

 

Assess:  As expected, the weight is greater than the gravitational force on the passenger when the elevator is 
accelerating upward and lower than normal when the acceleration is downward. When there is no acceleration the 
weight is the gravitational force. In all three cases the magnitudes are reasonable, given the mass of the passenger and 
the accelerations of the elevator. 

6.16.  Model:  We assume the rocket is a particle moving in a vertical straight line under the influence of only two 
forces: gravity and its own thrust. 
Visualize:  
 

 
 

Solve:  (a)  Using Newton’s second law and reading the forces from the free-body diagram, 
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(b)  Likewise, the thrust on the moon is  
Assess:  The thrust required is smaller on the moon, as it should be, given the moon’s weaker gravitational pull. The 
magnitude of a few newtons seems reasonable for a small model rocket. 

Section 6.4  Friction 

6.17.  Model:  We assume that the safe is a particle moving only in the x-direction. Since it is sliding during the entire 
problem, we can use the model of kinetic friction. 
Visualize:  
 

 

 

Solve:  The safe is in equilibrium, since it’s not accelerating. Thus we can apply Newton’s first law in the vertical and 
horizontal directions: 

 

 
Then, for kinetic friction: 

 

Assess:  The value of  is hard to evaluate without knowing the material the floor is made of, but it seems 
reasonable. 

6.18.  Model:  We assume that the mule is a particle acted on by two opposing forces in a single line: the farmer’s pull 
and friction. The mule will be subject to static friction until (and if!) it begins to move; after that it will be subject to 
kinetic friction. 
Visualize: 
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Solve:  Since the mule does not accelerate in the vertical direction, the free-body diagram shows that  
The maximum friction force is 

 
The maximum static friction force is greater than the farmer’s maximum pull of 800 N; thus, the farmer will not be 
able to budge the mule. 
Assess:  Maybe the farmer could put something smoother under the mule. 

6.19.  Model:  We will represent the crate as a particle. 
Visualize: 
 

 

 

Solve:  (a)  When the belt runs at constant speed, the crate has an acceleration  and is in dynamic 
equilibrium. Thus  It is tempting to think that the belt exerts a friction force on the crate. But if it did, there 
would be a net force because there are no other possible horizontal forces to balance a friction force. Because there is 
no net force, there cannot be a friction force. The only forces are the upward normal force and the gravitational force 
on the crate. (A friction force would have been needed to get the crate moving initially, but no horizontal force is 
needed to keep it moving once it is moving with the same constant speed as the belt.) 
(b)  If the belt accelerates gently, the crate speeds up without slipping on the belt. Because it is accelerating, the crate 
must have a net horizontal force. So now there is a friction force, and the force points in the direction of the crate’s 
motion. Is it static friction or kinetic friction? Although the crate is moving, there is no motion of the crate relative to 
the belt. Thus, it is a static friction force that accelerates the crate so that it moves without slipping on the belt. 
(c)  The static friction force has a maximum possible value  The maximum possible acceleration of the 
crate is 

 

If the belt accelerates more rapidly than this, the crate will not be able to keep up and will slip. It is clear from the free-
body diagram that  Thus, 

 

6.20.  Model:  Model the cabinet as a particle. 
Visualize:  In equilibrium the net force is zero. 
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Solve:  The cabinet is in static equilibrium, so the static frictional force must have the same magnitude as Bob’s pulling 
force:  
Assess:  A possible misconception is that  always. That value is the maximum possible value. If Bob pulled 
harder and harder and got up to  then the cabinet would move. But the static frictional force can easily be 
less than this value. 

6.21.  Model:  We assume that the truck is a particle in equilibrium, and use the model of static friction. 
Visualize:  
 

 
 

Solve:  The truck is not accelerating, so it is in equilibrium, and we can apply Newton’s first law. The normal force 
has no component in the x-direction, so we can ignore it here. For the other two forces: 

 
Assess:  The truck’s weight (mg) is roughly 40,000 N. A friction force that is  of the truck’s weight seems 
reasonable. 

6.22.  Model:  The car is a particle subject to Newton’s laws and kinematics. 
Visualize:  
 

 
 

Solve:  Kinetic friction provides a horizontal acceleration which stops the car. From the figure, applying Newton’s first 
and second laws gives 
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Combining these two equations with  yields 

 
Kinematics can be used to determine the initial velocity. 

 

Thus  
Assess:  The initial speed of is a reasonable speed to have initially for a vehicle to leave 65-meter-
long skid marks. 

6.23.  Model:  We treat the train as a particle subject to rolling friction but not to drag (because of its slow speed and 
large mass). We can use the one-dimensional kinematic equations.  Look up the coefficient of rolling friction in the 
table. 
Visualize:  
 

 

 

Solve:  The locomotive is not accelerating in the vertical direction, so the free-body diagram shows us that 
 Thus, 

 
From Newton’s second law for the decelerating locomotive, 

 

Since we’re looking for the distance the train rolls, but we don’t have the time: 

 

Assess:  The locomotive’s enormous inertia (mass) and the small coefficient of rolling friction make this long stopping 
distance seem reasonable. 

Section 6.5  Drag 

6.24.  Model:  We assume that the skydiver is shaped like a box and is a particle.  But we will also model the diver as 
a cylinder falling end down to use  
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Visualize:  
 

 
 

The skydiver falls straight down toward the earth’s surface, that is, the direction of fall is vertical. Since the skydiver 
falls feet first, the surface perpendicular to the drag has the cross-sectional area The physical 
conditions needed to use Equation 6.16 for the drag force are satisfied. The terminal speed corresponds to the situation 
when the net force acting on the skydiver becomes zero. 
Solve:  The expression for the magnitude of the drag with v in m/s is 

 

The gravitational force on the skydiver is  The mathematical form of the 
condition defining dynamical equilibrium for the skydiver and the terminal speed is 

 

 

Assess:  The result of the above simplified physical modeling approach and subsequent calculation, even if 
approximate, shows that the terminal velocity is very high. This result implies that the skydiver will be very badly hurt 
at landing if the parachute does not open in time. 

6.25.  Model:  We will represent the tennis ball as a particle. The drag coefficient is 0.5. 
Visualize:  
 

 

20 cm 40 cmA = ´ .



6-16	 	 	 Chapter 6 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

The tennis ball falls straight down toward the earth’s surface. The ball is subject to a net force that is the resultant of 
the gravitational and drag force vectors acting vertically, in the downward and upward directions, respectively. Once 
the net force acting on the ball becomes zero, the terminal velocity is reached and remains constant for the rest of the 
motion. 
Solve:  The mathematical equation defining the dynamical equilibrium situation for the falling ball is 

 
Since only the vertical direction matters, one can write: 

 
When this condition is satisfied, the speed of the ball becomes the constant terminal speed  The magnitudes 
of the gravitational and drag forces acting on the ball are: 

 

The condition for dynamic equilibrium becomes: 

 

Assess:  The value of the mass of the tennis ball obtained above seems reasonable. 

6.26.  Visualize:  
 

 
 

We used the force-versus-time graph to draw the acceleration-versus-time graph. The peak acceleration was calculated 
as follows: 

 

Solve:  The acceleration is not constant, so we cannot use constant acceleration kinematics. Instead, we use the more 
general result that 

area under the acceleration curve from 0 s to t 
The object starts from rest, so  The area under the acceleration curve between  and  is 

 We’ve used the fact that the area between  and  is zero. Thus, at  

 

6.27.  Visualize:  
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The acceleration is  so the acceleration-versus-time graph has exactly the same shape as the force-versus-

time graph. The maximum acceleration is  
Solve:  The acceleration is not constant, so we cannot use constant-acceleration kinematics. Instead, we use the more 
general result that 

area under the acceleration curve from 0 s to t 
The object starts from rest, so  The area under the acceleration curve between 0 s and 4 s is a rectangle 

 plus a triangle  Thus at  

6.28.  Model:  You can model the beam as a particle in static equilibrium. 
Visualize:  
 

 

 

Solve:  Using Newton’s first law, the equilibrium equations in vector and component form are: 

 

Using the free-body diagram yields: 
 

The mathematical model is reduced to a simple algebraic system of two equations with two unknowns,  and  
Substituting  and  the simultaneous equations become 

 

You can solve this system of equations by simple substitution. The result is  and  
 

Assess:  The above approach and result seem reasonable. Intuition indicates there is more tension in the left rope than 
in the right rope. 

6.29.  Model:  The plastic ball is represented as a particle in static equilibrium. 
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Visualize:  
 

 
 

Solve:   (a)  The electric force, like the weight, is a long-range force. So the ball experiences the contact force of the 
string’s tension plus two long-range forces. The equilibrium condition is 

 

We can solve the y-equation to get 

 

Substituting this value into the x-equation, 
 

(b)  The tension in the string is  

6.30.  Model:  The piano is in static equilibrium and is to be treated as a particle. 
Visualize:  
 

 
 

Solve:  (a)  Based on the free-body diagram, Newton’s second law is 

 

Notice how the force components all appear in the second law with plus signs because we are adding forces. The 
negative signs appear only when we evaluate the various components. These are two simultaneous equations in the 
two unknowns  and  From the x-equation we find 
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(b)  Now we can use the y-equation to find 

 

6.31.  Model:  We will represent Henry as a particle. His motion is governed by constant-acceleration kinematic 
equations. 
Solve:  (a)  Henry undergoes an acceleration from 0 s to 2.0 s, constant velocity motion from 2.0 s to 10.0 s, and another 
acceleration as the elevator brakes from 10.0 s to 12.0 s. The weight is the same as the gravitational force during 
constant velocity motion, so Henry’s weight  is 750 N. His weight is less than the gravitational force on 
him during the initial acceleration, so the acceleration is in a downward direction (negative a). Thus, the elevator’s 
initial motion is down. 

(b)  Because the gravitational force on Henry is 750 N, his mass is  

(c)  The apparent weight during vertical motion is given by 

 

During the interval  the elevator’s acceleration is 

 

At  Henry’s position is 

 

and his velocity is 

 

During the interval  This means Henry travels with a constant velocity  At 
 he is at position 

 

and he has a velocity  During the interval  the elevator’s acceleration is 

 

The upward acceleration vector slows the elevator and Henry feels heavier than normal. At  Henry is at 
position 

 

Thus Henry has traveled distance  

6.32.  Model:  We’ll assume Zach is a particle moving under the effect of two forces acting in a single vertical line: 
gravity and the supporting force of the elevator. 
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Visualize:  
 

 
 

Solve:  (a)  Before the elevator starts braking, Zach is not accelerating. His weight is 

 

Zach’s weight is  
(b)  Using the definition of acceleration, 

 

 

Now Zach’s weight is  
Assess:  While the elevator is braking, it not only must support the gravitational force on Zach but must also push 
upward on him to decelerate him, so his weight is greater than the gravitational force. 

6.33.  Model:  We can assume the foot is a single particle in equilibrium under the combined effects of gravity, the 
tensions in the upper and lower sections of the traction rope, and the opposing traction force of the leg itself. We can 
also treat the hanging mass as a particle in equilibrium. Since the pulleys are frictionless, the tension is the same 
everywhere in the rope. Because all pulleys are in equilibrium, their net force is zero. So they do not contribute to T. 
Visualize:  
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Solve:  (a)  From the free-body diagram for the mass, the tension in the rope is 
 

(b)  Using Newton’s first law for the vertical direction on the pulley attached to the foot, 
 

 

 
(c)  Using Newton’s first law for the horizontal direction, 

 
  
  
Assess:  Since the tension in the upper segment of the rope must support the foot and counteract the downward pull of 
the lower segment of the rope, it makes sense that its angle is larger (a more direct upward pull). The magnitude of the 
traction force, roughly one-tenth of the gravitational force on a human body, seems reasonable. 

6.34.  Model:  We can assume the person is a particle moving in a straight line under the influence of the combined 
decelerating forces of the air bag and seat belt or, in the absence of restraints, the dashboard or windshield. 
Visualize:  
 

 

 

Solve:  (a)  In order to use Newton’s second law for the passenger, we’ll need the acceleration. Since we don’t have 
the stopping time: 

 

 
The net force is 6750 N to the left. 
(b)  Using the same approach as in part (a), 

 

The net force is 1,350,000 N to the left. 
(c)  The passenger’s weight is  The force in part (a) is 11.5 times the passenger’s 
weight. The force in part (b) is 2300 times the passenger’s weight. 
Assess:  An acceleration of 11.5g is well within the capability of the human body to withstand. A force of 2300 times 
the passenger’s weight, on the other hand, would surely be catastrophic. 

6.35.  Visualize:  All the motion is in the horizontal (i.e., ) direction. Acceleration is the second derivative of position. 
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Solve:  The first derivative is  The second derivative is  Apply 

Newton’s second law:  Plug in the two values for t. 
(a) 

 
(b) 

 
Assess:  The net force changed direction between  and  

6.36.  Visualize:  We’ll use  to find the acceleration of the balls, which will be inversely proportional 
to the mass of the balls.  and  in each case. 

Solve:  Newton’s second law relates mass, acceleration, and net force:  If we graph  vs.  then the slope 

of the straight line should be the size of the piston’s force. 
 

 
 

We see that the linear fit is very good. The slope is  this is the size of the piston’s force. 
Assess:  We are glad to see that the intercept of our line looks very small, even though we don’t have a ball the inverse 
of whose mass is zero. 

6.37.  Model:  The ball is represented as a particle that obeys constant-acceleration kinematic equations. 
Visualize: 
 

 

Solve:  This is a two-part problem. During part 1 the ball accelerates upward in the tube. During part 2 the ball 
undergoes free fall The initial velocity for part 2 is the final velocity of part 1, as the ball emerges from the 
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tube. The free-body diagram for part 1 shows two forces: the air pressure force and the gravitational force. We need 
only the y-component of Newton’s second law: 

 

We can use kinematics to find the velocity  as the ball leaves the tube: 

 

For part 2, free-fall kinematics  gives 

 

6.38.  Model:  Model the rocket as a particle. Assume the mass of the rocket is constant so the acceleration is constant. 
Assume the rocket starts from rest. Neglect air resistance. 
Visualize:  We’ll use  to find the speed of the rocket. The net force is  
Solve: 
(a)          

 

For  as a function of  we have: 

 

(b) For  

 

Assess:  This 54 m/s speed seems reasonable for a model rocket. 
Some of our assumptions would not be good approximations for large fast rockets that go very high: air resistance 
wouldn’t be negligible, and the fuel expended reduces the mass of the rocket which increases the acceleration. At very 
high altitudes (where air resistance no longer has an effect) even decreases slightly. 

6.39.  Model:  We will represent the bullet as a particle. 
Visualize:  
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Solve:  (a)  We have enough information to use kinematics to find the acceleration of the bullet as it stops. Then we 
can relate the acceleration to the force with Newton’s second law. (Note that the barrel length is not relevant to the 
problem.) The kinematic equation is 

 

Notice that a is negative, in agreement with the vector  in the motion diagram. Turning to forces, the wood exerts 
two forces on the bullet. First, an upward normal force that keeps the bullet from “falling” through the wood. Second, 
a retarding frictional force  that stops the bullet. The only horizontal force is  which points to the left and thus 
has a negative x-component. The x-component of Newton’s second law is 

 
Notice how the signs worked together to give a positive value of the magnitude of the force. 
(b)  The time to stop is found from  as follows: 

 

(c) 
 

 
 

Using the above kinematic equation, we can find the velocity as a function of t. For example at  

 

6.40.  Model:  Represent the rocket as a particle that follows Newton’s second law. 
Visualize:  
 

 

 

Solve:  (a)  The y-component of Newton’s second law is 
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(b)  At 5000 m the acceleration has increased because the rocket mass has decreased. Solving the equation of part (a) 
for m gives 

 

The mass of fuel burned is  

6.41.  Model:  Model the object as a particle. Neglect air resistance. 
Visualize:  We’ll use  to find the speed of the object. Since   

We’ll also use Newton’s second law in both directions in order to find  
 

 
 

Solve: 
(a) 

 

 

 

 

Cancel the m. 
 

Now put this back in to the equation for  

 

(b) For    we have 

 

Assess:  Sam’s mass was extra unneeded information because m cancels out of the equation for  Any skier, 
regardless of their mass, would achieve the same speed at the bottom of the same hill with the same  

6.42.  Model:  We assume that Sam is a particle moving in a straight horizontal line under the influence of two forces: 
the thrust of his jet skis and the resisting force of friction on the skis. We can use one-dimensional kinematics. 
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Visualize:  
 

 
 

Solve:  (a)  The friction force of the snow can be found from the free-body diagram and Newton’s first law, since 
there’s no acceleration in the vertical direction: 

 

Then, from Newton’s second law: 

 

From kinematics: 

 

(b)  During the acceleration, Sam travels to 

 

After the skis run out of fuel, Sam’s acceleration can again be found from Newton’s second law: 

 

Since we don’t know how much time it takes Sam to stop: 

 

The total distance traveled is  
Assess:  A top speed of 16.9 m/s (roughly 40 mph) seems quite reasonable for this acceleration, and a coasting distance 
of nearly 150 m also seems possible, starting from a high speed, given that we’re neglecting air resistance. 

6.43.  Model:  We assume Sam is a particle moving in a straight line down the slope under the influence of gravity, 
the thrust of his jet skis, and the resisting force of friction on the snow. 
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Visualize:  
 

 
 

Solve:  From the height of the slope and its angle, we can calculate its length: 

 

Since Sam is not accelerating in the y-direction, we can use Newton’s first law to calculate the normal force: 

 

One-dimensional kinematics gives us Sam’s acceleration: 

 

Then, from Newton’s second law and the equation  

 

 

Assess:  This coefficient seems a bit high for skis on snow, but not impossible. 

6.44.  Model:  We assume the suitcase is a particle accelerating horizontally under the influence of friction only. 
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Visualize:  
 

 
 

Solve:  Because the conveyor belt is already moving, friction drags your suitcase to the right. It will accelerate until it 
matches the speed of the belt. We need to know the horizontal acceleration. Since there’s no acceleration in the vertical 
direction, we can apply Newton’s first law to find the normal force: 

 
The suitcase is accelerating, so we use  to find the friction force 

 
We can find the horizontal acceleration from Newton’s second law: 

 

From one of the kinematic equations: 

 

The suitcase travels 0.68 m before catching up with the belt and riding smoothly. 
Assess:  If we imagine throwing a suitcase at a speed of 2.0 m/s onto a motionless surface, 0.68 m seems a reasonable 
distance for it to slide before stopping. 

6.45.  Model:  The box of shingles is a particle subject to Newton’s laws and kinematics. 
Visualize:  
 

 
 



Dynamics I: Motion Along a Line	 	 	 6-29 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Solve:  Newton’s laws can be used in the coordinate system in which the direction of motion of the box of shingles 
defines the +x-axis. The angle that  makes with the -y-axis is 25°. 

 
 

We have used the observation that the shingles do not leap off the roof, so the acceleration in the y-direction is zero. 
Combining these equations with  and  yields 

 

 

where the minus sign indicates the acceleration is directed up the incline. The required initial speed to have the box 
come to rest after 5.0 m is found from kinematics. 

 
Assess:  To give the shingles an initial speed of 2.7 m/s requires a strong, determined push, but is not beyond 
reasonable. 

6.46.  Model:  We will model the box as a particle, and use the models of kinetic and static friction. 
Visualize:  
 

 

 

The pushing force is along the +x-axis, but the force of friction acts along the -x-axis. A component of the gravitational 
force on the box acts along the -x-axis as well. The box will move up if the pushing force is at least equal to the sum 
of the friction force and the component of the gravitational force in the x-direction. 
Solve:  Let’s determine how much pushing force you would need to keep the box moving up the ramp at steady speed. 
Newton’s second law for the box in dynamic equilibrium is 

 

 
The x-component equation and the model of kinetic friction yield: 

 
Let us obtain n from the y-component equation as  and substitute it in the above equation to get 

 

The force is less than your maximum pushing force of 1000 N. That is, once in motion, the box could be kept moving 
up the ramp. However, if you stop on the ramp and want to start the box from rest, the model of static friction applies. 
The analysis is the same except that the coefficient of static friction is used and we use the maximum value of the force 
of static friction. Therefore, we have 
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Since you can push with a force of only 1000 N, you can’t get the box started. The big static friction force and the 
weight are too much to overcome. 

6.47.  Model:  We assume that the plane is a particle accelerating in a straight line under the influence of two forces: 
the thrust of its engines and the rolling friction of the wheels on the runway. We can use one-dimensional kinematics. 
Visualize:  
 

 

 

Solve:  We can use the definition of acceleration to find a, and then apply Newton’s second law. We obtain: 

 

 

For rubber rolling on concrete,  (Table 6.1), and since the runway is horizontal,  Thus: 

 

Assess:  It’s hard to evaluate such an enormous thrust, but comparison with the plane’s mass suggests that 190,000 N 
is enough to produce the required acceleration. 

6.48.  Model:  We will represent the wood block as a particle, and use the model of kinetic friction and kinematics. 
Assume w sin  so it does not hang up at the top. 
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Visualize:  
 

 

 

The block ends where it starts, so  We expect to be negative, because the block will be moving in the 
-x-direction, so we’ll want to take  as the final speed. Because of friction, we expect to find  

Solve:  (a)  The friction force is opposite to  so  points down the slope during the first half of the motion and up 
the slope during the second half. and  are the only other forces. Newton’s second law for the upward motion is 

 

The friction model is  First solve the y-equation to give  Use this in the friction model to get
 Now substitute this result for  into the x-equation: 

 

Kinematics now gives 

 

The block’s height is then  

(b)  For the return trip, points up the slope, so the x-component of the second law is 

 

Note the sign change. The y-equation and the friction model are unchanged, so we have 
 

The kinematics for the return trip are 

 
Notice that we used the negative square root because  is a velocity with the vector pointing in the –x-direction. 
The final speed is  
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6.49.  Model:  We will model the sled and friend as a particle, and use the model of kinetic friction because the sled is 
in motion. 
Visualize:  
 

 

 

The net force on the sled is zero (note the constant speed of the sled). That means the component of the pulling force 
along the +x-direction is equal to the magnitude of the kinetic force of friction in the -x-direction. Also note that 

 since the sled is not moving along the y-axis. 
Solve:  Newton’s second law is 

 
 

The x-component equation using the kinetic friction model  reduces to 

 

The y-component equation gives 

 

We see that the normal force is smaller than the gravitational force because  has a component in a direction 

opposite to the direction of the gravitational force. In other words, is partly lifting the sled. From the  

x-component equation, can now be obtained as 

 

Assess:  A quick glance at the various  values in Table 6.1 suggests that a value of 0.12 for  is reasonable. 

6.50.  Model:  Model the small box as a particle and use the model of static friction. The acceleration of the small box 
must be the same as the acceleration of the large box in order for it not to slip. 
Visualize:  First use Newton’s second law in both directions on the small box. The force that is responsible for the 
small box’s acceleration is the static friction force. We use this to determine  Then we use Newton’s second law 
on the the two-box system. 
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Solve: 
(a) 

 
 

 
 

Now consider the two-box system. 
 

Put these together to arrive at 
 

(b) Insert the known values for M and m, and look up  for wood on wood in the table. 

 
Assess:  Check the reasonableness of our answer by examining the dependence of  on  if the small box were 
glued to the large box  then one could pull on the rope with any tension desired; if the friction between the 
two boxes were zero then one could not pull at all without causing the small box to slip. We expect a similar dependence 
on g. 

6.51.  Model:  Model the steel cabinet as a particle. It touches the truck’s bed, so only the steel bed can exert contact 
forces on the cabinet. As long as the cabinet does not slide, the acceleration a of the cabinet is equal to the acceleration 
of the truck. 
Visualize:  First use Newton’s second law in both directions on the cabinet. The force that is responsible for the small 
box’s acceleration is the static friction force. We use this to determine a. 
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Solve: 
(a) 

 
 

 
 

Now use the kinematic equation  where  and  

 

(b) Insert the known value for  and look up  for steel on steel in the table. 

 

Assess:  Check the reasonableness of our answer by examining the dependence of  on  if the cabinet were 
glued to the truck  then one could stop in an arbitrarily small distance without the cabinet slipping; if the 
friction between the cabinet and truck were zero then  and there is no minimum stopping distance without 
causing the cabinet to slip. 

6.52.  Model:  Model the block as a particle. 
Visualize:  First use Newton’s second law in both directions on the block. The force that is responsible for the small 
box’s acceleration is the kinetic friction force. We use this to determine  
 

 

sx xF f maå = =2

sxa gµ= -
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Solve: 
 

 

 

 

Now use the kinematic equation  where  and  is the sliding distance. 

 

This says that a graph of  vs.  would be a straight line with a slope of  
 

 
 

We see that the linear fit is very good and that the slope is  

 

Assess:  Our answer for wood on smooth metal is higher than we expected because the table gives  for wood on 
wood as 0.20. We expected the intercept of our graph to be small; in fact, we included (0,0) in the data table. The mass 
of the block canceled out and so was unnecessary information. 

6.53.  Model:  The antiques  in the back of your pickup  will be treated as a particle. The 
antiques touch the truck’s steel bed, so only the steel bed can exert contact forces on the antiques. The pickup-antiques 
system will also be treated as a particle, and the contact force on this particle will be due to the road. 
Visualize:  
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Solve:  (a)  We will find the smallest coefficient of friction that allows the truck to stop in 55 m, then compare that to 
the known coefficients for rubber on concrete. For the pickup-antiques system, with mass  Newton’s second 
law is 

 
 

The model of static friction is  where  is the coefficient of friction between the tires and the road. These 

equations can be combined to yield  Since constant-acceleration kinematics gives  we 
find 

 

The truck cannot stop if  is smaller than this. But both the static and kinetic coefficients of friction, 1.00 and 0.80 
respectively (see Table 6.1), are larger. So the truck can stop. 
(b)  The analysis of the pickup-antiques system applies to the antiques, and it gives the same value of 0.58 for  
This value is smaller than the given coefficient of static friction  between the antiques and the truck bed. 
Therefore, the antiques will not slide as the truck is stopped over a distance of 55 m. 
Assess:  The analysis of parts (a) and (b) are the same because mass cancels out of the calculations. According to the 
California Highway Patrol Web site, the stopping distance (with zero reaction time) for a passenger vehicle traveling 
at 25 m/s or 82 ft/s is approximately 43 m. This is smaller than the 55 m over which you are asked to stop the truck. 

6.54.  Model:  The box will be treated as a particle. Because the box slides down a vertical wood wall, we will also 
use the model of kinetic friction. 



Dynamics I: Motion Along a Line	 	 	 6-37 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Visualize:  
 

 
 

Solve:  The normal force due to the wall, which is perpendicular to the wall, is here to the right. The box slides down 
the wall at constant speed, so  and the box is in dynamic equilibrium. Thus,  Newton’s second law for 
this equilibrium situation is 

 
 

The friction force is  Using the x-equation to get an expression for n, we see that  

Substituting this into the y-equation and using Table 6.1 to find  gives, 

 

 

6.55.  Model:  Use the particle model for the block and the model of static friction. 
Visualize:  
 

 
 

Solve:  The block is initially at rest, so initially the friction force is static friction. If the 12 N push is too strong, the 
box will begin to move up the wall. If it is too weak, the box will begin to slide down the wall. And if the pushing force 
is within the proper range, the box will remain stuck in place. First, let’s evaluate the sum of all the forces except 
friction: 

 

 

In the first equation we utilized the fact that any motion is parallel to the wall, so  These three forces add 

up to  This means the static friction force will be able to prevent the box from moving if  Using 
the x-equation and the friction model we get 
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where we used  for wood on wood. The static friction force  needed to keep the box from moving is less 
than  Thus the box will stay at rest. 

6.56.  Visualize:  The book is in static equilibrium so the net force is zero. The maximum static frictional force the 
person can exert will determine the heaviest book he can hold. 
Solve:  Consider the free-body diagram below. The force of the fingers on the book is the reaction force to the normal 
force of the book on the fingers, so is exactly equal and opposite the normal force on the fingers. 
 

 
 

The maximal static friction force will be equal to  The frictional force is exerted 
on both sides of the book. Considering the forces in the y-direction, we have that the weight supported by the maximal 
frictional force is 

 
Assess:  Note that the force on both sides of the book are exactly equal also because the book is in equilibrium. 

6.57.  Model:  We will model the skier along with the wooden skis as a particle of mass m. The snow exerts a contact 
force and the wind exerts a drag force on the skier. We will therefore use the models of kinetic friction and drag. 
Assume the skier is a cylinder end-forward so that  
Visualize:  
 

 

 

We choose a coordinate system such that the skier’s motion is along the +x-direction. While the forces of kinetic 
friction  and drag  act along the -x-direction opposing the motion of the skier, the gravitational force on the skier 
has a component in the +x-direction. At the terminal speed, the net force on the skier is zero as the forces along the +x-
direction cancel out the forces along the -x-direction. 
Solve:  Newton’s second law and the models of kinetic friction and drag are 
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These three equations can be combined together as follows: 
 

 

Using  and  we find 

 

Assess:  A terminal speed of 37 m/s corresponds to a speed of  This speed is reasonable but high due to the 
steep slope angle of 40° and a small coefficient of friction. 

6.58.  Model:  The ball is a particle experiencing a drag force and traveling at twice its terminal velocity. 
Visualize:  
 

 
 

Solve:  (a)  An object falling at greater than its terminal velocity will slow down to its terminal velocity. Thus the drag 
force is greater than the force of gravity, as shown in the free-body diagrams. When the ball is shot straight up, 

 

Thus  where the minus sign indicates the downward direction. We have used Equations 6.16 for the drag 
force and 6.19 for the terminal velocity. 
(b)  When the ball is shot straight down, 

 

Thus  this time directed upward. 
(c)  
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The ball will slow down to its terminal velocity, slowing quickly at first, and more slowly as it gets closer to the terminal 
velocity because the drag force decreases as the ball slows. 

6.59.  Model:  We will model the sculpture as a particle of mass m. The ropes that support the sculpture will be assumed 
to have zero mass. 
Visualize:  
 

 
 

Solve:  Newton’s first law in component form is 

 
 

Using the x-component equation to obtain an expression for  and substituting into the y-component equation yields: 

 

Substituting this value of  back into the x-component equation, 

 

We will now find a rope size for a tension force of 433 lbs, that is, the diameter of a rope with a safety rating of  
433 lbs. Since the cross-sectional area of the rope is  we have 

 

Any diameter larger than 0.371 inch will ensure a safety rating of at least 433 lbs. The rope size corresponding to a 
diameter of 3/8 of an inch will therefore be appropriate. 
Assess:  If only a single rope were used to hang the sculpture, the rope would have to support a gravitational force of 
500 lbs. The diameter of the rope for a safety rating of 500 lbs is 0.399 inches, and the rope size jumps from a diameter 
of 3/8 to 4/8 of an inch. Also note that the gravitational force on the sculpture is distributed in the two ropes. It is the 
sum of the y-components of the tensions in the ropes that will equal the gravitational force on the sculpture. 

6.60.  Model:  We will model the skier as a particle, and use the model of kinetic friction. 



Dynamics I: Motion Along a Line	 	 	 6-41 

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Visualize:  
 

 

 

Solve:  Your best strategy, if it’s possible, is to travel at a very slow constant speed  Alternatively, 
you want the smallest positive A negative  would cause you to slow and stop. Let’s find the value of  that 
gives  
Newton’s second law for the skier and the model of kinetic friction are 

 
 

 
The x- and y-component equations are 

 

From the model of kinetic friction,  

 

Yellow wax with  is perfect. 

6.61.  Model:  The astronaut is a particle oscillating on a spring. 

Solve:  (a)  The position versus time function x(t) can be used to find the velocity versus time function  We 

have 

 

This can then be used to find the acceleration  

 

Newton’s second law yields a general expression for the force on the astronaut. 
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Evaluating this at  gives  since  
(b)  Evaluating at  

 

Assess:  The force of 220 N is only one-third of the astronaut’s weight on earth, so is easy for her to withstand. 

6.62.  Solve:  Using  we express Newton’s second law as a differential equation, which we then use to solve 

for  

 

Integrating from the initial to final conditions for each variable of integration, 

 

Thus  

6.63.  Model:  Model the object as a particle. The acceleration is not constant so we can’t use the kinematic equations. 
All the motion is in the x-direction. 
Visualize:  Divide F by m to get a and then integrate twice. The constants of integration are both zero because of the 
initial conditions. 
Solve: 

 

(a) 

 

 

(b) 

 

 

Assess:  It seems reasonable that the velocity after time T would increase with T and that the position at time T would 
increase with  

6.64.  Model:  Model the object as a particle. The acceleration is not constant so we can’t use the kinematic equations. 
All the motion is in the x-direction. 
Visualize: Divide F by m to get a and then integrate twice. The constants of integration are both zero because of the 
initial conditions. 
Solve: 
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(a) 

 

The constant of integration is not zero.  

 

 

 

 

(b) After a very long time the decaying exponential term is close to zero so  

Assess:  It seems reasonable that the velocity after time T would increase with T and that the position at time T would 
increase with  

6.65.  Model:  Use the linear model of drag. Assume the microorganisms are swimming in water at  
Visualize:  The viscosity of water is  at  
Solve: 
(a) 

 
For a paramecium 

 
For an E. coli bacterium 

 
(b) 

 

For a paramecium 

 

For an E. coli bacterium 

 

Assess:  The two accelerations are within a factor of two of each other. 
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6.66.  Model:  Use the linear model of drag. 
Visualize:  The viscosity of air is  at  The density of dust is  
Solve: 
(a) At terminal speed the net force is zero. 

 

 

(b) 

 

 

 

Assess:  27 min sounds like a long time, but isn’t too surprising for dust 300 m in the air. 

6.67.  Solve:  (a)  A 1.0 kg block is pulled across a level surface by a string, starting from rest. The string has a tension 
of 20 N, and the block’s coefficient of kinetic friction is 0.50. How long does it take the block to move  
1.0 m? 
(b)  Newton’s second law for the block is 

 

where we have incorporated the friction model into the first equation. The second equation gives  Sub-stituting 
this into the first equation gives 

 

Constant acceleration kinematics gives 

 

6.68.  Solve:  (a)  A 15,000 N truck starts from rest and moves down a 15° hill with the engine providing a 12,000 N 
force in the direction of the motion. Assume the frictional force between the truck and the road is very small. If the hill 
is 50 m long, what will be the speed of the truck at the bottom of the hill? 
(b)  Newton’s second law is 

 
 

 

where we have calculated the mass of the truck from the gravitational force on it. Using the constant-acceleration 
kinematic equation  

 

6.69.  Solve:  (a)  A driver traveling at 40 m/s in her 1500 kg auto slams on the brakes and skids to rest. How far does 
the auto slide before coming to rest? 
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(b)  
 

 

 

(c)  Newton’s second law is 
 

The y-component equation gives  Substituting this into the x-component equation yields 

 

Using the constant-acceleration kinematic equation we find 

 

6.70.  Solve:  (a)  A 20.0 kg wooden crate is being pulled up a 20° wooden incline by a rope that is connected to an 
electric motor. The crate’s acceleration is measured to be  The coefficient of kinetic friction between the 
crate and the incline is 0.20. Find the tension T in the rope. 
(b)  
 

 

 

(c)  Newton’s second law for this problem in the component form is 
 

 
Solving the y-component equation, Substituting this value for n in the x-component equation yields 

 

6.71.  Solve:  (a)  You wish to pull a 20 kg wooden crate across a wood floor  by pulling on a rope attached 
to the crate. Your pull is 100 N at an angle of  above the horizontal. What will be the acceleration of the crate? 
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(b)  
 

 

 

(c)  Newton’s equations and the model of kinetic friction are 

 

From the y-component equation, From the x-component equation and using the model of kinetic friction 
with  

 

6.72.  Model:  The acceleration of the block is not constant before it gets to L; it increases until L and is then constant 
(with increasing ). 
Visualize:  Since the coefficient of friction is a function of the roughness of the two surfaces, it is understandable that 
it could be a function of  and not  
Solve: 
(a) Use the chain rule. 

 

(b) 

 

 

Now examine the result in part (a). 
 

 

 

The constant of integration  is zero because  at  
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Assess:  Check dependencies; we expect  to increase with L and decrease with increasing m,  and g. 

6.73.  Model:  We will model the shuttle as a particle and assume the elastic cord to be massless. We will also use the 
model of kinetic friction for the motion of the shuttle along the square steel rail. 
Visualize:  
 

 
 

Solve:  The upward tension component  is larger than the gravitational force on the shuttle. 
Consequently, the elastic cord pulls the shuttle up against the rail and the rail’s normal force pushes downward. 
Newton’s second law in component form is 

 
 

The model of kinetic friction is  We use the y-component equation to get an expression for n and hence  
Substituting into the x-component equation and using the value of  in Table 6.1 gives us 

 

Assess:  The x-component of the tension force is 14.1 N. On the other hand, the net force on the shuttle in the  
x-direction is  This value for ma is reasonable since a part of the 14.1 N tension 
force is used up to overcome the force of kinetic friction. 

6.74.  Model:  Assume the ball is a particle on a slope, and that the slope increases as the x-displacement increases. 
Assume that there is no friction and that the ball is being accelerated to the right so that it remains at rest on the slope. 
Visualize:  Although the ball is on a slope, it is accelerating to the right. Thus we’ll use a coordinate system with 
horizontal and vertical axes. 
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Solve:  Newton’s second law is 
 

Combining the two equations, we get 

 

The curve is described by  Its slope a position x is tanq, which is also the derivative of the curve. Hence, 

 

(b)  The acceleration at  is  

6.75.  Visualize: 
 

 

 

Solve:  (a)  The horizontal velocity as a function of time is determined by the horizontal net force. Newton’s second 
law as the x-direction gives 

 

Note that  points opposite to  so the angle  with the x-axis is the same for both vectors, and the x components 
of both vectors have the same  term. As the particle changes direction as it falls, the evolution of the horizontal 
motion depends only on the horizontal component of the velocity. 
Thus 
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Separating and integrating,  

 

Solving, 

 

(b)  The time to reach  is found by solving for the time when 

 

Hence 

 

With   and  we get  

Assess:  The magnitude of the acceleration is  This is a small fraction of the velocity, 

so a time of about one minute to slow to half the initial speed is reasonable. 

6.76.  Visualize:  
 

 
 

Solve:  (a)  Using the chain rule,  

(b)  The horizontal motion is determined by using Newton’s second law in the horizontal direction. Using the free-
body diagram at a later time t, 

 

Note that since  points opposite to  the angle  with the x-axis is the same for both vectors, and the  
x-components of both vectors have the same cosq  term. Thus 
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Solving with  

 

(c)  The marble stops after traveling a distance d when  

Hence  

 

Using  and using  

 

Assess:  The equation for d indicates that a marble with a faster initial velocity travels a farther distance. 

6.77.  Model:  We will model the object as a particle, and use the model of drag. 
Visualize:  
 

 
 

Solve:  (a)  We cannot use the constant-acceleration kinematic equations since the drag force causes the acceleration to 
change with time. Instead, we must use  and integrate to find  Newton’s second law for the object is 

 

This can be written 

 

We can integrate this from the start  to the end  
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Solving for  gives 

 

(b)  Using  and  we get 

 

where t is in seconds. We can now obtain the time t for  

 

When  then  
(c)  If the only force acting on the object was kinetic friction with, say,  that force would be (0.05) 

(1500 kg)  The drag force at an average speed of 10 m/s is  We 

conclude that it is not reasonable to neglect the kinetic friction force. 



 

 

 


