Circular Motion

Arc Length $\quad \mathbf{S}=\theta \mathbf{r}$
Circumference
$C=2 \pi r$
Circumference is an Arc Length

1 revolution = 1 rotation $=\mathbf{3 6 0}$ degrees $=2 \pi$ radians

$$
\frac{360 \mathrm{deg}}{2 \pi \mathrm{rad}} \text { or } \frac{2 \pi \mathrm{rad}}{360 \mathrm{deg}}
$$

What is a radian?
Anything times a radian is that thing!
Radians * meters = meters
Radians ${ }^{2}$ * meters $=$ meters

Constant Acceleration	
Linear Kinematic Equations	Rotational Kinematic Equations
Units (m, m/s, m/s$\left.{ }^{2}, \mathrm{~s}\right)$	Units (rad, rad/s, rad/s $V=V_{0}+a t$ $X=X_{0}+V_{0} t+\frac{1}{2} a t^{2}$$\quad \theta=\omega_{0}+\alpha t$
$V^{2}=V_{0}^{2}+2 a \Delta X$	$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \Delta \theta$
$\Delta X=\frac{1}{2}\left(V+V_{0}\right) t$	$\Delta \theta=\frac{1}{2}\left(\omega+\omega_{0}\right) t$

$$
\begin{gathered}
\frac{m}{s}=\frac{r a d}{s} * m \\
v=\omega * r \\
\frac{m}{s^{2}}=\frac{r a d}{s^{2}} * m \\
a=\alpha * r \\
\omega=\omega_{0}+\alpha t \rightarrow \quad \rightarrow \quad(\omega * r)=\left(\omega_{0} * r\right)+(\alpha * r) t \quad \rightarrow \quad v=v_{0}+a t
\end{gathered}
$$

$$
\begin{aligned}
\frac{r a d}{s} & =\frac{r a d}{s}+\frac{r a d}{s^{2}} * s \\
\left(\frac{r a d}{s} * r\right) & =\left(\frac{r a d}{s} * r\right)+\left(\frac{r a d}{s^{2}} * r\right) t \\
\frac{m}{s} & =\frac{m}{s}+\frac{m}{s^{2}} * s
\end{aligned}
$$

Period time to complete one cycle
(ADD THE PERIOD STUFF HERE DUMMY)

$$
\frac{m}{s}=\frac{m}{s}+\frac{m}{s^{2}} * s \quad \pi
$$

Centripetal Acceleration
(Centripetal means = CENTER SEEKING)

$$
a_{c}=\frac{v^{2}}{r}
$$

$$
\begin{gathered}
\Sigma F=m a \quad \text { becomes } \quad F_{c}=m a_{c} \\
\Sigma F_{c}=m \frac{v^{2}}{r} \\
\Sigma F_{c}=m \frac{\left(\frac{2 \pi r}{T}\right)^{2}}{r} \\
\Sigma F_{c}=m \frac{\frac{4 \pi^{2} r^{2}}{T^{2}}}{r} \\
\Sigma F_{c}=m \frac{4 \pi^{2} r}{T^{2}}
\end{gathered}
$$

