\qquad \#: \qquad
Draw a picture, list your given information and unknowns for each problems

1) \& 2) Online
2) A child sits on a carousel at a distance of \qquad \mathbf{m} from the center and rotates through an arc length of _m. What is the angular displacement of the child?
Drawing Given Info Formula Set-Up with Units

Answer \qquad
5) A Ferris wheel initially at rest accelerates to a final angular speed of \qquad $\mathrm{rad} / \mathrm{s}$ and rotates through an angular displacement of \qquad rad. What is the Ferris wheel's average angular acceleration?
Drawing Given Info Formula Set-Up with Units

Answer \qquad
6) Fill in the unknown quantities in the follow table. Place the formula and Set-up on the line. Given Info Formula Set-Up with Units
a) \qquad
b)
c) \qquad
d) \qquad
7) Fill in the unknown quantities in the follow table. Place the formula and Set-up on the line. Given Info

Formula

 Set-Up with Unitsa) \qquad
b)
c) \qquad
d) \qquad
8) Fill in the unknown quantities in the follow table. Place the formula and Set-up on the line. Given Info Formula Set-Up with Units
a)
b) \qquad
c) \qquad
d) \qquad
9) The diameter of the outermost planet, Pluto, is \qquad $\mathbf{k m}$. If a space probe were to orbit Pluto near the planet's surface, what would be the arc length of the probe's displacement after it had completed \qquad
Drawing Given Info Formula

Set-Up with Units

Abstract

Answer 10) The smallest ridable tandem bicycle was built in France and had a length of less than cm. Suppose this bicycle is accelerated from rest so that the angular acceleration of the wheels is \qquad $\mathrm{rad} / \mathrm{s}^{2}$. What is the angular speed of the wheels after \qquad \mathbf{s} ? Drawing Given Info Formula Set-Up with Units

Answer

\qquad
11) The most massive car ever built was the official car of the General Secretary of the Communist Party in the former Soviet Union. The car had a mass of \qquad kg. Suppose this car is moving down a \qquad ${ }^{0}$ slope when the driver applies the brakes. The wheels stop rotating, and the car slides, decelerating at a rate of \qquad $\mathbf{m} / \mathbf{s}^{\mathbf{2}}$.
a) Calculate the force of kinetic friction acting the car as it slows.

Drawing Given Info Formula Set-Up with Units

Answer \qquad
b) Determine the value of the coefficient of kinetic friction.

Given Info Formula Set-Up with Units

Answer \qquad

