Draw a picture. list your given information and unknowns for each problems 1) A test car moves at a constant speed ofm's around a circular track. If the distance from car to the center of the track ism, what is the centripetal acceleration of the car? Drawing Given Info Formula Set-Up with Units 2) Find the tangential acceleration of a person standingm from the center of a spinning amusement-park ride that has an angular acceleration ofrad/s ² . Drawing Given Info Formula Set-Up with Units 3) Ankg bicyclist is riding at a linear speed ofm/s around a circular track v radius ofm. Find the magnitude of the force that maintains the bike's circular more rad/s ² . 3) Ankg bicyclist is riding at a linear speed ofm/s around a circular track v radius ofm. Find the magnitude of the force that maintains the bike's circular more rad/s ² . 4) Akg person standsm from akg person sitting on a bench nearby. What is the magnitude of the gravitational force between them? Drawing Given Info Formula Set-Up with Units	Honors	Physics Chapt	ter 7 Part 2 St	udy Sheet	Name	#:
1) A test car moves at a constant speed ofm/s around a circular track. If the distance from car to the center of the track ism, what is the centripetal acceleration of the car? Drawing Given Info Formula Set-Up with Units 2) Find the tangential acceleration of a person standingm from the center of a spinning amusement-park ride that has an angular acceleration ofrad/s ² . Image: model of the center of a spinning amusement-park ride that has an angular acceleration ofrad/s ² . 3) Ankg bicyclist is riding at a linear speed ofm/s around a circular track v radius ofm. Find the magnitude of the force that maintains the bike's circular no prawing Given Info 3) Ankg bicyclist is riding at a linear speed ofm/s around a circular track v radius ofm. Find the magnitude of the force that maintains the bike's circular no prawing Given Info 4) Akg person standsm from akg person sitting on a bench nearby. What is the magnitude of the gravitational force between them? Drawing Given Info Formula Set-Up with Units 4) Akg person standsm from akg person sitting on a bench nearby. What is the magnitude of the gravitational force between them? Drawing Given Info Formula Set-Up with Units Given Info Formula Set-Up with Units Given Info Formula Set-Up with units Given Info Formula <th></th> <th><u>Draw a picture</u></th> <th>e<mark>, list your given i</mark></th> <th>nformation and u</th> <th>nknowns for each pro</th> <th><u>blems</u></th>		<u>Draw a picture</u>	e <mark>, list your given i</mark>	nformation and u	nknowns for each pro	<u>blems</u>
Answer	1) A test of car to Drawing	car moves at a cons the center of the tra Given Info	tant speed of ck is Formula	m/s around m, what is the cent Set-Up wit	l a circular track. If the c tripetal acceleration of t h Units	listance from the he car?
Answer	2) Find t spinni Drawing	the tangential ac ing amusement-pa Given Info	celeration of a peark ride that has a Formula	rson standing in angular acceler Set-Up wit l	Answer m from the ation of rad h Units	center of a /s² .
Answer	3) An radius Drawing	kg bicyclist s of m . I Given Info	is riding at a linea F ind the magnitu Formula	ar speed of Ide of the force th Set-Up with	Answer m/s around a circ hat maintains the bike h Units	ular track with a 's circular motion.
 5) A coin with a diameter of cm is dropped onto a horizontal surface. The coin starts out with initial angular speed of rad/s and rolls in a straight line without slipping. If the rotation 	4) A nearby Drawing	kg person st y. What is the m Given Info	ands agnitude of the g Formula	m from a ravitational force Set-Up with	Answer kg person sitting of e between them? h Units	on a bench
with an angular acceleration of magnitude rad/s ² , how far does the coin roll before comin rest?	5) A coin initial with an rest ?	with a diameter of angular speed of n angular acceleratio	 cm is dr rad/s ar on of magnitude	opped onto a horizo: id rolls in a straight rad/s², how	Answer ntal surface. The coin sta line without slipping. If a far does the coin roll b	arts out with an the rotation slows efore coming to

Answer _____

	<u>revolutions</u>	in	min before reaching a final angular speed. What is the
angular speed of the mass after _			min?
Drawing	Given Info	Formula	Set-Up with Units
			Answer
part is Drawing	cm. Suppose m/s. What is Given Info	an egg of this s s the magnitud Formula	size rolls down a slope so that the tangential speed of its widest e of the centripetal acceleration acting at those points? Set-Up with Units
			Answer
8) Mata Jagd Jagdamba the hair bi Drawing	amba of India had conducts experir g . She then a reaks when the ta Given Info	d the longest ha nents with her h attaches a small angential speed Formula	ir—in 1994, it was measured to be m long . Suppose hair. First, she determines that one hair can support a mass of ler mass to the same hair and swings it in the horizontal plane. If l of the mass reaches m/s, how large is the mass? Set-Up with Units

				Answer		
9) Deimos, a	satellite of Mars, h	as an average	radius of	km and	a mass of	kg.
Calculate	the gravitational	force applied	to a rock with a ma	ss of	kg that lies on the	surface of Deimos.
Drawing	Given Info	Formula	Set-Up	with U	nits	

Answer _____