Archive: Circuits

Immediately after the switch is closed, the current supplied by the battery is

(A) $V /\left(R_{1}+R_{2}\right)(B) V / R_{1}(C) V / R_{2}(D) V\left(R_{1}+R_{2}\right) / R_{1} R_{2}(E)$ zero

When the switch is closed, the circuit behaves as if the capacitor were just a wire, shorting out
the resistor on the right.
A long time after the switch has been closed, the current supplied by the battery is

(A) $V /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)(B) V / R_{1}(C) V / R_{2}(D) V\left(R_{1}+R_{2}\right) / R_{1} R_{2}(E)$ zero

When the capacitor is fully charged, the branch with the capacitor is "closed" to current, effectively removing it from the circuit for current analysis.
40 The emf of a battery is 12 volts. When the battery delivers a current of 0.5 ampere to a load, the potential difference between the terminals of the battery is 10 volts. The internal resistance of the battery is
(A) 1Ω
(B) 2Ω
(C) 4Ω
(D) 20Ω
(E) 24Ω

$$
\mathrm{V}_{\mathrm{T}}=\mathbf{E}-\mathrm{Ir}
$$

When any four resistors are connected in parallel, the \qquad each resistor is the same. (A) charge on (B) current through (C) power from (D) resistance of (\mathbf{E}) voltage across
by definition of a parallel circuit
When two identical parallel-plate capacitors are connected in series, which of the
following is true of the equivalent capacitance?
(A) It depends on the charge on each capacitor.
(B) It depends on the potential difference across both capacitors
(C) It is larger than the capacitance of each capacitor
(D) It is smaller than the capacitance of each capacitor.
(E) It is the same as the capacitance of each capacitor

In series, the equivalent capacitance is calculated using reciprocals, like resistors in parallel. This
results in an equivalent capacitance smaller than the smallest capacitor.

Two capacitors are connected in parallel as shown above. A voltage V is applied to the pair. What is the ratio of charge stored on C_{1} to the charge stored on C_{2}, when $\mathrm{C}_{1}=1.5 \mathrm{C}_{2}$?
(A) $4 / 9$
(B) $2 / 3$
(C) 1
(D) $\mathbf{3 / 2}$ (E) $9 / 4$

In parallel $\mathrm{V}_{1}=\mathrm{V}_{2} . \mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V}_{1}$ and $\mathrm{Q}_{2}=\mathrm{C}_{2} \mathrm{~V}_{2}$ so $\mathrm{Q}_{1} / \mathrm{Q}_{2}=\mathrm{C}_{1} / \mathrm{C}_{2}=1.5$
The total capacitance of several capacitors in parallel is the sum of the individual capacitances for which of the
following reasons?
(A) The charge on each capacitor depends on its capacitance, but the potential difference across each is the
same.
(B) The charge is the same on each capacitor, but the potential difference across each capacitor depends on its
capacitance.
(C) Equivalent capacitance is always greater than the largest capacitance.
(D) Capacitors in a circuit always combine like resistors in series.
(E) The parallel combination increases the effective separation of the plates

By process of elimination, A is the only possible true statement.
45
Three 6-microfarad capacitors are connected in series with a 6-volt battery.

Capacitors

46

The equivalent capacitance of the set of capacitors is
 (A) $0.5 \mu \mathrm{~F}$ (B) $2 \mu \mathrm{~F}$ (C) $3 \mu \mathrm{~F}$ (D) $9 \mu \mathrm{~F}$ (E) $18 \mu \mathrm{~F}$

In series $\frac{1}{C_{T}}=\sum \frac{1}{C}$

The energy stored in each capacitor is
 (A) $4 \mu \mathrm{~J}$ (B) $6 \mu \mathrm{~J}$ (C) $12 \mu \mathrm{~J}$ (D) $18 \mu \mathrm{~J}$ (E) $36 \mu \mathrm{~J}$.

There are several ways to do this problem. We can find the total energy stored and divide it into
the three capacitors: $\mathrm{U}_{\mathrm{C}}=1 / 2 \mathrm{CV}^{2}=1 / 2(2 \mu \mathrm{~F})(6 \mathrm{~V})^{2}=36 \mu \mathrm{~J} \div 3=12 \mu \mathrm{~J}$ each

50- Below is a system of six 2-microfarad capacitors.

Capacitors

The equivalent capacitance of the system of capacitors is

$$
\text { (A) } 2 / 3 \mu \mathrm{~F} \text { (B) } 4 / 3 \mu \mathrm{~F} \text { (C) } \mathbf{3} \mu \mathrm{F} \text { (D) } 6 \mu \mathrm{~F} \text { (E) } 12 \mu \mathrm{~F}
$$

Each branch, with two capacitors in series, has an equivalent capacitance of $2 \mu \mathrm{~F} \div 2=1$ $\mu \mathrm{F}$.
The three branches in parallel have an equivalent capacitance of $1 \mu \mathrm{~F}+1 \mu \mathrm{~F}+1 \mu \mathrm{~F}=$ $3 \mu \mathrm{~F}$

What potential difference must be applied between points X and Y so that the charge on each plate of each capacitor will have magnitude 6 microcoulombs?

(A) 1.5 V (B) 3 V (C) $6 \mathbf{V}$ (D) 9 V (E) 18 V

For each capacitor to have $6 \mu \mathrm{C}$, each branch will have $6 \mu \mathrm{C}$ since the two capacitors in series in
each branch has the same charge. The total charge for the three branches is then $18 \mu \mathrm{C} . \mathrm{Q}$ = CV
gives $18 \mu \mathrm{C}=(3 \mu \mathrm{~F}) \mathrm{V}$

Three $1 / 2 \mu \mathrm{~F}$ capacitors are connected in series as shown in the diagram
above. The capacitance of the combination is
(A) $0.1 \mu \mathrm{~F}$
(B) $1 \mu \mathrm{~F}$
(C) $2 / 3 \mu \mathrm{~F}$
(D) $1 / 2 \mu \mathrm{~F}$
(E) $1 / 6 \mu \mathrm{~F}$
In series $\frac{1}{C_{T}}=\sum \frac{1}{C}$

98

Three identical capacitors each with a capacitance of C are connected as shown in the following diagram. What
would be the total equivalent capacitance of the circuit?
(A) $0.33 C$ (B) $0.67 C$ (C) $1.0 C$ (D) $1.5 C$ (E) $3.0 C$

The capacitance of the two capacitors in parallel is 2C. Combined with a capacitor in series gives $C=\frac{C \times 2 C}{C+2 C}=\frac{2}{3} C$

11
9

For the configuration of capacitors shown, both switches are closed simultaneously. After equilibrium is established, what is the charge on the top plate of the $5 \mu \mathrm{~F}$ capacitor? (A) $100 \mu \mathrm{C}$ (B) $50 \mu \mathrm{C}$ (C) $30 \mu \mathrm{C}$ (D) $25 \mu \mathrm{C}$ (E) $10 \mu \mathrm{C}$ The total charge to be distributed is $+100 \mu \mathrm{C}-50 \mu \mathrm{C}=+50 \mu \mathrm{C}$. In parallel, the capacitors must have the same voltage so the $20 \mu \mathrm{~F}$ capacitor has four times the charge of the $5 \mu \mathrm{~F}$ capacitor. This gives $\mathrm{Q}_{20}=4 \mathrm{Q}_{5}$ and $\mathrm{Q}_{20}+\mathrm{Q}_{5}=4 \mathrm{Q}_{5}+\mathrm{Q}_{5}=5 \mathrm{Q}_{5}=50 \mu \mathrm{C}$, or Q_{5} E $=10 \mu \mathrm{C}$	Capacitors

In the circuit shown above, what is the value of the potential difference between points X and Y if the 6 -volt battery has no internal resistance?
(A) 1 V (B) $2 \mathbf{V}$ (C) 3 V (D) 4 V (E) 6 V

The total resistance of the 3Ω and 6Ω in parallel is 2Ω making the total circuit resistance 6Ω
and the total current $\mathbf{E} / \mathrm{R}=1 \mathrm{~A}$. This 1 A will divide in the ratio of $2: 1$ through the 3Ω and 6Ω
respectively so the 3Ω resistor receives $2 / 3$ A making the potential difference $\operatorname{IR}=(2 / 3$
A) (3 Ω)
$=2 \mathrm{~V}$.

In the circuit shown above, the value of r for which the current I is 0.5 ampere is
(A) 0Ω
(B) 1Ω
(C) 5Ω
(D) 10Ω
(E) 20Ω

The resistance of the two resistors in parallel is $r / 2$. The total circuit resistance is then 10 $\Omega+1 / 2$
r , which is equivalent to $\mathbf{E} / \mathrm{I}=(10 \mathrm{~V}) /(0.5 \mathrm{~A})=20 \Omega=10 \Omega+\mathrm{r} / 2$

30-
31
$R_{2}=2000 \Omega$

What is the current I_{l} ?
(A) 0.8 mA (B) 1.0 mA (C) 2.0 mA (D) $3.0 \mathbf{~ m A}$ (E) 6.0 mA

Resistance of the 2000Ω and 6000Ω in parallel $=1500 \Omega$, adding the 2500Ω in
series gives a
total circuit resistance of $4000 \Omega . I_{\text {total }}=I_{1}=\boldsymbol{E} / R$
D
total
How do the currents I_{1}, I_{2}, and I_{3} compare?
(A) $I_{1}>I_{2}>I_{3}$ (B) $I_{1}>I_{3}>I_{2}$ (C) $I_{2}>I_{1}>I_{3}$ (D) $I_{3}>I_{1}>I_{2}$ (E) $I_{3}>I_{2}>I_{1}$

I1 is the main branch current and is the largest. It will split into I2 and I3and since
12 moves
through the smaller resistor, it will be larger than I3

74-
77

Equivalent
Power
Brightness

Four identical light bulbs $\mathrm{K}, \mathrm{L}, \mathrm{M}$, and N are connected in the electrical circuit shown above.
Rank the current through the bulbs.
(A) K $>$ L $>$ M $>$ N
(B) $\mathrm{L}=\mathrm{M}>\mathrm{K}=\mathrm{N}$
(C) L $>$ M $>$ K $>$ N
(D) $\mathrm{N}>\mathrm{K}>\mathrm{L}=\mathrm{M}$
(E) $\mathrm{N}>\mathrm{L}=\mathrm{M}>\mathrm{K}$

Answer: D
N is in the main branch, with the most current. The current then divides into the two branches,
with K receiving twice the current as L and M . The L / M branch has twice the resistance of the K
branch. L and M in series have the same current.
In order of decreasing brightness (starting with the brightest), the bulbs are:
(A) $\mathrm{K}=\mathrm{L}>\mathrm{M}>\mathrm{N}$
(B) $\mathrm{K}=\mathrm{L}=\mathrm{M}>\mathrm{N}$
(C) $\mathrm{K}>\mathrm{L}=\mathrm{M}>\mathrm{N}$
(D) $\mathrm{N}>\mathrm{K}>\mathrm{L}=\mathrm{M}$
(E) $\mathrm{N}>\mathrm{K}=\mathrm{L}=\mathrm{M}$

Answer: D
See above. Current is related to brightness $\left(P=I_{2} R\right)$
Bulb K burns out. Which of the following statements is true?
(A) All the light bulbs go out.
(B) Only bulb N goes out.
(C) Bulb N becomes brighter.
(D) The brightness of bulb N remains the same.
(E) Bulb N becomes dimmer but does not go out.

Answer: E

If K burns out, the circuit becomes a series circuit with the three resistors, N, M and L all
series, reducing the current through bulb N .

Bulb M burns out. Which of the following statements is true?

(A) All the light bulbs go out.
(B) Only bulb M goes out.
(C) Bulb N goes out but at least one other bulb remains lit.
(D) The brightness of bulb N remains the same.
(E) Bulb N becomes dimmer but does not go out.

Answer: E

If M burns out, the circuit becomes a series circuit with the two resistors, N and K in series, with bulb L going out as well since it is in series with bulb M.
79 When two resistors, having resistance R_{1} and R_{2}, are connected in parallel, the equivalent resistance of the combination is 5Ω. Which of the following statements about the resistances is correct?
(A) Both R_{1} and R_{2} are greater than 5Ω.
(B) Both R_{1} and R_{2} are equal to 5Ω.
(C) Both R_{1} and R_{2} are less than 5Ω.
(D) The sum of R_{1} and R_{2} is 5Ω.
(E) One of the resistances is greater than 5Ω, one of the resistances is less than 5Ω.

Answer: A

The equivalent resistance in parallel is smaller than the smallest resistance.
Three resistors - R_{1}, R_{2}, and R_{3} - are connected in series to a battery. Suppose R_{1} carries a current of $2.0 \mathrm{~A}, R_{2}$ has a resistance of 3.0Ω, and R_{3} dissipates 6.0 W of power. What is the voltage across R_{3}
(A) 1.0 V (B) 2.0 V (C) 3.0 V (D) 6.0 V (E) 12 V

In series, they all have the same current, $2 \mathrm{~A} . \mathrm{P}_{3}=\mathrm{I}_{3} \mathrm{~V}_{3}$

Equivalent Power

Equivalent

 PowerThe circuit shown has an ideal ammeter with zero resistance and four identical resistance light bulbs which are
initially illuminated. A person removes the bulb R_{4} from its socket thereby permanently breaking the electrical
circuit at that point. Which statement is true of the circuit after removing the bulb?
(A) The voltage from $B \rightarrow C$ increases.
(B) The power supplied by the battery increases
(C) The voltage across R_{1}
(D) The ammeter reading is unchanged.
increases.
(E) The bulb R_{2} maintains the same brightness.

Breaking the circuit in the lower branch lowers the total current in the circuit, decreasing the
voltage across R_{1}. Looking at the upper loop, this means R_{2}
now has a larger share of the battery
voltage and the voltage across AD is the same as the voltage across BC
 $\begin{array}{lllll}\text { (A) } 4 / 3 \Omega & \text { (B) } 2 \Omega & \text { (C) } 2.75 \Omega & \text { (D) } 4 \Omega & \text { (E) } 6 \Omega\end{array}$
Resistance of the 1Ω and 3Ω in series $=4 \Omega$. This, in parallel with the 2Ω resistor gives (2×4)
$(2+4)=8 / 6 \Omega$. Also notice the equivalent resistance must be less than 2Ω (the 2Ω resistor is
in parallel and the total resistance in parallel is smaller than the smallest resistor) and there is
only one choice smaller than 2Ω.
When there is a steady current in the circuit, the amount of charge passing a point per unit
of time is
(A) the same everywhere in the circuit (D) greater at point X than at point Y
(B) greater in the 1Ω resistor than in the 2Ω resistor (E) greater in the 1Ω resistor
than in the 3Ω resistor
(C) greater in the 2Ω resistor than in the 3Ω resistor
The upper branch, with twice the resistance of the lower branch, will have $1 / 2$ the current of the
lower branch.

If all of the resistors in the above simple circuit have the same resistance, which would dissipate the greatest
power?
(A) resistor A
(B) resistor B
(C) resistor C
(D) resistor \mathbf{D}
(E) they would all dissipate the same power
Resistor D is in a branch by itself while resistors A, B and C are in series, drawing less current than resistor D.
Five identical light bulbs, each with a resistance of 10 ohms, are connected in a simple electrical circuit with a
switch and a 10 volt battery as shown in the diagram below.

The steady current in the above circuit would be closest to which of the following values? (A) 0.2 amp (B) $0.37 \mathbf{~ a m p}$ (C) 0.5 amp (D) 2.0 amp (E) 5.0 amp

Resistance of bulbs $B \& C=20 \Omega$ combined with D in parallel gives 6.7Ω for the right side.
Combined with $A \& E$ in series gives a total resistance of $26.7 \Omega . \boldsymbol{E}=I R$
Which bulb (or bulbs) could burn out without causing other bulbs in the circuit to also go out?
(A) only bulb \mathbf{D} (D) only bulbs C or D
(B) only bulb E (E) bulbs B, C, or D
(C) only bulbs A or E

A and E failing in the main branch would cause the entire circuit to fail. B and C would affect each other.

In the circuit shown above, the equivalent resistance of the three resistors is
(A) 10.5Ω
(B) 15Ω
(C) 20Ω
(D) 50Ω
(E) 115Ω

The equivalent resistance of the 20Ω and the 60Ω in parallel is 15Ω, added to the 35
Ω resistor
in series gives $15 \Omega+35 \Omega=50 \Omega$
83

I. Bulb 3 is brighter than bulb 1 or 2 .
 II. Bulb 3 has more current passing through it than bulb 1 or 2
 III. Bulb 3 has a greater voltage drop across it than bulb 1 or 2 .
 (A) I only (B) II only (C) I \& II only (D) I \& III only (E) I, II, \& III

The current through bulb 3 is twice the current through 1 and 2 since the branch with bulb 3 is half the resistance of the upper branch. The potential difference is the same across each branch, but bulbs 1 and 2 must divide the potential difference between them.

In the accompanying circuit diagram, the current through the $6.0-\Omega$ resistor is 1.0 A . What is the power supply
voltage V ?
(A) 10 V (
(B) 18 V (
(C) 24 V (D) 30 V (E) 42 V

If the current in the 6Ω resistor is 1 A , then by ratios, the currents in the 2Ω and 3Ω resistor are 3 A and 2 A respectively (since they have $1 / 3$ and $1 / 2$ the resistance). This makes the total current 6 A and the potential drop across the 4Ω resistor 24 V . Now use Kirchhoff's loop rule for any branch


```
Given the simple electrical circuit above, if the current in all three resistors is equal, which
of the following
statements must be true?
(A) X, Y}\mathrm{ , and }\textrm{Z}\mathrm{ all have equal resistance
(B) }\textrm{X}\mathrm{ and Y have equal resistance
(C) X and Y added together have the same resistance as Z
(D) X and Y each have more resistance than Z
(D) none of the above must be true
```

For the currents in the branches to be equal, each branch must have the same resistance

[^0]| Equivalent
 Power | 2 |
| :--- | :--- |
| | |

Bulbs in the main branch have the most current through them and are the brightest

An ideal battery, an ideal ammeter, a switch and three resistors are connected as shown. With the switch open as
shown in the diagram the ammeter reads 2.0 amperes.
With the switch open, what would be the potential difference across the 15 ohm resistor?
(A) 30 V (B) $40 \mathrm{~V}(\mathrm{C}) 60 \mathrm{~V}$ (D) 70 V (E) 110 V
$\mathrm{V}=\mathrm{IR}$
With the switch open, what must be the voltage supplied by the battery?
(A) 30 V (B) 40 V (C) 60 V (D) 70 V (E) 110 V
$\mathbf{E}=$ IR $_{\text {total }}$ where Rtotal $=35 \Omega$
When the switch is closed, what would be the current in the circuit?
(A) 1.1 A (B) 1.7 A (C) 2.0 A (D) 2.3 A (E) 3.0 A

With the switch closed, the resistance of the 15Ω and the 30Ω in parallel is 10Ω, making the
total circuit resistance 30Ω and $\mathbf{E}=\mathrm{IR}$

6-
10
7

A 9-volt battery is connected to four resistors to form a simple circuit as shown above.
How would the current through the 2 ohm resistor compare to the current through the 4 ohm resistor?
(A) one-forth as large (D) twice as large
(B) one-half as large (E) equally as large
(C) four times as large

The equivalent resistance through path ACD is equal to the equivalent resistance through path
ABD , making the current through the two branches equal
What would be the potential at point B with respect to point C in the above circuit?
$(\mathrm{A})+7 \mathrm{~V}(\mathrm{~B})+3 \mathrm{~V}(\mathrm{C}) 0 \mathrm{~V}(\mathrm{D})-\mathbf{3} \mathbf{V}(\mathrm{E})-7 \mathrm{~V}$
The resistance in each of the two paths is 9Ω, making the current in each branch 1 A . From point A, the potential drop across the 7Ω resistor is then 7 V and across the 4Ω resistor is 4 V , making point B 3 V lower than point C

Equivalent
Ammeter
Switch

Equivalent
2

A circuit is connected as shown. All light bulbs are identical. When the switch in the circuit is closed
illuminating bulb \#4, which other bulb(s) also become brighter?
(A) Bulb \#1 only (B) Bulb \#2 only (C) Bulbs \#2 and \#3 only (D) Bulbs \#1, \#2, and \#3 (E) None of the bulbs.

Closing the switch reduces the total resistance of the circuit, increasing the current in the main branch containing bulb 1
11 The diagram below shows five identical resistors connected in a combination series and

Through which resistor(s) would there be the greatest current?
(A) J only (B) M only (C) N only (D) J\&N only (E) K\&L only

Resistors J and N are in the main branch and therefore receive the largest current.
Which resistor(s) have the greatest rate of energy dissipation?
(A) J only (B) M only (C) N only (D) J\&N only (E) K\&L only $\mathrm{P}=\mathrm{I}_{2} \mathrm{R}$

How many coulombs will pass through the identified resistor in 5 seconds once the circuit was closed?
(A) 1.2 (B) 12 (C) 2.4 (D) 24 (E) 6

The equivalent resistance of the two 4Ω resistors on the right is 2Ω making the total circuit
resistance 10Ω and the total current 2.4 A . The 2.4 A will divide equally between the two
branches on the right. $\mathrm{Q}=\mathrm{It}=(1.2 \mathrm{~A})(5 \mathrm{~s})=6 \mathrm{C}$

Ammeter

If the ammeter in the circuit above reads zero, what is the resistance R ?
(A) 1.5Ω
(B) 2Ω
(C) 4Ω
(D) 5Ω
(E) 6Ω

For the ammeter to read zero means the junctions at the ends of the ammeter have the same
potential. For this to be true, the potential drops across the 1Ω and the 2Ω resistor must be
equal, which means the current through the 1Ω resistor must be twice that of the 2Ω resistor.
This means the resistance of the upper branch (1Ω and 3Ω) must be $1 / 2$ that of the lower branch
(2Ω and R) giving $1 \Omega+3 \Omega=1 / 2(2 \Omega+\mathrm{R})$
82 When a single resistor is connected to a battery, a total power P is dissipated in the circuit.
How much total power is dissipated in a circuit if n identical resistors are connected in series using the same battery? Assume the internal resistance of the battery is zero.
(A) $n 2 P$ (B) $n P$ (C) P (D) P / \boldsymbol{n} (E) P / n_{2}
$\mathrm{P}=\mathbf{E}_{2} / \mathrm{R}$. Total resistance of n resistors in series is nR making the power $\mathrm{P}=\mathbf{E}_{2} / \mathrm{nR}=\mathrm{P} / \mathrm{n}$

The total equivalent resistance between points X and Y in the circuit shown above is
(A) 3Ω
(B) 4Ω
(C) 5Ω
(D) 6Ω
(E) 7Ω

The resistance of the two 2Ω resistors in parallel is 1Ω. Added to the 2Ω resistor in series with
the pair gives 3Ω
68

Equivalents

Combination
Ammeter

$\begin{aligned} & 17- \\ & 19 \end{aligned}$	The above circuit diagram shows a battery with an internal resistance of 4.0 ohms connected to a $16-\mathrm{ohm}$ and a 20 -ohm resistor in series. The current in the 20 -ohm resistor is 0.3 amperes What is the emf of the battery? (A) 1.2 V (B) 6.0 V (C) 10.8 V (D) $\mathbf{1 2 . 0} \mathbf{V}$ (E) 13.2 V Total circuit resistance (including internal resistance) $=40 \Omega$; total current $=0.3 \mathrm{~A}$. $\boldsymbol{E}=$ IR What is the potential difference across the terminals X and Y of the battery? (A) 1.2 V (B) 6.0 V (C) $\mathbf{1 0 . 8} \mathbf{V}$ (D) 12.0 V (E) 13.2 V $\mathrm{VXY}_{\mathrm{XY}}=\mathbf{E}$ - Ir where r is the internal resistance What power is dissipated by the 4 ohm internal resistance of the battery? (A) 0.36 W (B) 1.2 W (C) 3.2 W (D) 3.6 W (E) 4.8 W $\mathrm{P}=\mathrm{I}^{2} \mathrm{r}$	Internal Resistance	2
35	A $12-$ volt storage battery, with an internal resistance of 2Ω, is being charged by a current of 2 amperes as shown in the diagram above. Under these circumstances, a voltmeter connected across the terminals of the battery will read (A) 4 V (B) $8 \mathrm{~V}(\mathrm{C}) 10 \mathrm{~V}(\mathrm{D}) 12 \mathrm{~V}(\mathrm{E}) 16 \mathrm{~V}$ Summing the potential differences from left to right gives $\mathrm{V}_{\mathrm{T}}=-12 \mathrm{~V}-(2 \mathrm{~A})(2 \Omega)=-16$ V. It is possible for $\mathrm{V}_{\mathrm{T}}>\mathbf{E}$.	Internal resistance voltmeter	2
41	In the circuit shown above, the emf's of the batteries are given, as well as the currents in the outside branches and the resistance in the middle branch. What is the magnitude of the potential difference between X and Y ? (A) 4 V (B) 8 V (C) 10 V (D) $12 \mathbf{~ V}$ (E) 16 V Kirchhoff's junction rule applied at point X gives $2 A=I+1 A$, so the current in the	Kichoff's	

middle wire
is 1 A . Summing the potential differences through the middle wire from X to Y gives -10
V-
$(1 \mathrm{~A})(2 \Omega)=-12 \mathrm{~V}$
24 A certain coffeepot draws 4.0 A of current when it is operated on 120 V household lines. If electrical energy
costs 10 cents per kilowatt-hour, how much does it cost to operate the coffeepot for 2 hours?
(A) 2.4 cents (B) 4.8 cents (C) 8.0 cents (D) 9.6 cents (E) 16 cents.

Power $=\mathrm{IV}=480 \mathrm{~W}=0.48 \mathrm{~kW}$. Energy $=\mathrm{Pt}=(0.48 \mathrm{~kW})(2$ hours $)=0.96 \mathrm{~kW}-\mathrm{h}$
99 An electric heater draws 13 amperes of current when connected to 120 volts. If the price of electricity is
$\$ 0.10 / \mathrm{kWh}$, what would be the approximate cost of running the heater for 8 hours?
(A) $\$ 0.19$ (B) $\$ 0.29$ (C) $\$ 0.75$ (D) $\$ 1.25$ (E) $\$ 1.55$
$\mathrm{P}=\mathrm{IV}=1.56 \mathrm{~kW}$. Energy $=\mathrm{Pt}=1.56 \mathrm{~kW} \times 8 \mathrm{~h}=12.48 \mathrm{~kW}-\mathrm{h}$

What is the current through the 6.0Ω resistor shown in the accompanying circuit diagram? Assume all batteries
have negligible resistance.
(A) 0 (B) 0.40 A (C)
(C) 0.50 A (D) 1.3 A
(E) 1.5 A

If you perform Kirchhoff's loop rule for the highlighted loop, you get a current of 0 A through
the 6Ω resistor
14 Kirchhoff's loop rule for circuit analysis is an expression of which of the following?
(A) Conservation of charge (B) Conservation of energy (C) Ampere's law
(D) Faraday's law (E) Ohm's law

The loop rule involves the potential and energy supplied by the battery and it's use around a
circuit loop.

In the circuit above, the emf's and the resistances have the values shown. The current I in the circuit is 2 amperes.
The resistance R is
(A) 1Ω
(B) 2Ω
(C) 3Ω
(D) 4Ω
(E) 6Ω

Utilizing Kirchhoff's loop rule starting at the upper left and moving clockwise: - (2 A) (0.3
$\Omega)+$
$12 V-6 V-(2 A)(0.2 \Omega)-(2 A)(R)-(2 A)(1.5 \Omega)=0$

Kilowatt hours

The potential difference between points X and Y is
(A) 1.2 V (B) 6.0 V (C) 8.4 V (D) 10.8 V (E) 12.2 V

Summing the potential differences: $-6 \mathrm{~V}-(2 \mathrm{~A})(0.2 \Omega)-(2 \mathrm{~A})(1 \Omega)=-8.4 \mathrm{~V}$
How much energy is dissipated by the $1.5-$ ohm resistor in 60 seconds?
(A) 6 J (B) 180 J (C) $\mathbf{3 6 0} \mathbf{J}$ (D) 720 J (E) 1,440 J

Energy $=P t=I_{2} R t$

In the circuit shown above, what is the resistance R ?
(A) 3Ω
(B) 4Ω
(C) 6Ω
(D) 12Ω
(E) 18Ω

The current through R is found using the junction rule at the top junction, where $1 \mathrm{~A}+2 \mathrm{~A}$ enter
giving I = 3 A. Now utilize Kirchhoff's loop rule through the left or right loops: (left side) $+16$
$\mathrm{V}-(1 \mathrm{~A})(4 \Omega)-(3 \mathrm{~A}) \mathrm{R}=0$ giving $\mathrm{R}=4 \Omega$

The voltmeter in the accompanying circuit diagram has internal resistance $10.0 \mathrm{k} \Omega$ and the ammeter has internal
resistance 25.0Ω. The ammeter reading is 1.00 mA . The voltmeter reading is most nearly:
(A) 1.0 V (B) 2.0 V
(C) 3.0 V
(D) 4.0 V (E) 5.0 V

Using Kirchhoff's loop rule around the circuit going through either V or R since they are in
parallel and will have the same potential drop gives: $-\mathrm{V}-(1.00 \mathrm{~mA})(25 \Omega)+5.00 \mathrm{~V}-$ (1.00
$\mathrm{mA})(975 \Omega)=0$

Kirchhoff's Voltmeter Ammeters

In the circuit shown above, the current in each battery is 0.04 ampere. What is the potential difference between
the points x and y ?
(A) 8 V (B) 2 V (C) 6 V (D) $0 \mathbf{V}$
(E) 4 V

Utilizing Kirchhoff's loop rile with any loop including the lower branch gives 0 V since the
resistance next to each battery drops the 2 V of each battery leaving the lower branch with no
current. You can also think of the junction rule where there is 0.04 A going into each junction
and 0.04 A leaving to the other battery, with no current for the lower branch.

11
8

For the circuit shown, a shorting wire of negligible resistance is added to the circuit
between points A and B .
When this shorting wire is added, bulb \#3 goes out. Which bulbs (all identical) in the circuit brighten?
(A) Only Bulb 2 (B) Only Bulb 4 (C) Only Bulbs 1 and 4 (D) Only Bulbs 2 and 4 (E)

Bulbs 1, 2 and 4
Shorting bulb 3 decreases the resistance in the right branch, increasing the current through bulb 4 and decreasing the total circuit resistance. This increases the total current in the main branch containing bulb 1 .

36-

Questions 36-38

Ohm's
 Shorting

Ohm's
1
Equivalent Power
36. In which circuit is the current furnished by the battery the greatest?
(A)A (B)B (C)C (D)D (E) E

Current is greatest where resistance is least. The resistances are, in order, $1 \Omega, 2 \Omega, 4 \Omega$
, 2Ω and 6Ω.
37. In which circuit is the equivalent resistance connected to the battery the greatest?
(A)A (B)B (C)C (D)D (E) E

See Above

38. Which circuit dissipates the least power?
(A)A (B)B (C)C (D)D (E) E

11

5

Ohm's
1
Voltmeter
Internal
resistance

In the circuit above the voltmeter V draws negligible current and the internal resistance of the battery is 1.0
ohm. The reading of the voltmeter is
(A) 10.5 V (B) 12.0 V (C) $\mathbf{1 0 . 8} \mathbf{~ V}$ (D) 13.0 V (E) 11.6 V

With a total resistance of 10Ω, the total current is 1.2 A . The terminal voltage $\mathrm{V}_{\mathrm{T}}=\mathbf{E}-\mathrm{Ir}$

57

A $30-$ ohm resistor and a $60-\mathrm{ohm}$ resistor are connected as shown above to a battery of emf 20 volts and internal resistance r. The current in the circuit is 0.8 ampere. What is the value of r ?
(A) 0.22Ω
(B) 4.5Ω
(C) 5Ω
(D) 16Ω
(E) 70Ω

Total resistance $=\mathbf{E} / \mathrm{I}=25 \Omega$. Resistance of the 30Ω and 60Ω resistors in parallel $=20$ Ω adding the internal resistance in series with the external circuit gives $\mathrm{R}_{\text {total }}=20 \Omega+\mathrm{r}=$ 25Ω
93 Three different resistors R_{1}, R_{2} and R_{3} are connected in parallel to a battery. Suppose R_{1} has 2 V across it, $R_{2}=4 \Omega$, and R_{3} dissipates 6 W . What is the current in R_{3} ?
(A) 0.33 A
(B) $0.5 \mathrm{~A}(\mathrm{C}) 2 \mathrm{~A}$
(D) $3 \mathbf{A}$ (E) 12 A

In parallel, all the resistors have the same voltage $(2 \mathrm{~V}) . \mathrm{P}_{3}=\mathrm{I}_{3} \mathrm{~V}_{3}$
13 Which of the following will cause the electrical resistance of certain materials known as superconductors to suddenly decrease to essentially zero?
(A) Increasing the voltage applied to the material beyond a certain threshold voltage
(B) Increasing the pressure applied to the material beyond a certain threshold pressure
(C) Cooling the material below a certain threshold temperature
(D) Stretching the material to a wire of sufficiently small diameter
(E) Placing the material in a sufficiently large magnetic field

Resistance varies directly with temperature. Superconductors have a resistance that quickly goes
to zero once the temperature lowers beyond a certain threshold.
29 The operating efficiency of a $0.5 \mathrm{~A}, 120 \mathrm{~V}$ electric motor that lifts a 9 kg mass against gravity at an average velocity of $0.5 \mathrm{~m} / \mathrm{s}$ is most nearly

Ohm's Law

Equivalent

Ohm's Law

Other Superconductors

Other

Efficiency
(A) 7% (B) 13% (C) 25% (D) 53% (E) 75%

The motor uses $\mathrm{P}=\mathrm{IV}=60 \mathrm{~W}$ of power but only delivers $\mathrm{P}=\mathrm{Fv}=\mathrm{mgv}=45 \mathrm{~W}$ of power. The
efficiency is "what you get" \div "what you are paying for" $=45 / 60$

A lamp, a voltmeter V, an ammeter A, and a battery with zero internal resistance are connected as shown above.
Connecting another lamp in parallel with the first lamp as shown by the dashed lines would
(A) increase the ammeter reading (B) decrease the ammeter reading
(C) increase the voltmeter reading (D) decrease the voltmeter reading
(E) produce no change in either meter reading

Adding resistors in parallel decreases the total circuit resistance, this increasing the total current in the circuit

Which of the following statements is NOT true concerning the simple circuit shown where resistors R_{1}, R_{2} and R_{3} all have equal resistances?
(A) the largest current will pass through R_{1}
(B) the voltage across R_{2} is 5 volts
(C) the power dissipated in R_{3} could be 10 watts
(D) if R_{2} were to burn out, current would still flow through both R_{1} and R_{3}
(E) the net resistance of the circuit is less than R_{\mid}

Answer: A

If the resistances are equal, they will all draw the same current

The circuit shown above left is made up of a variable resistor and a battery with negligible internal resistance. A
graph of the power P dissipated in the resistor as a function of the current I supplied by the battery is given

Parallel

Parallel

Power

Variable Resistor

	above right. What is the emf of the battery? (A) 0.025 V (B) 0.67 V (C) 2.5 V (D) 6.25 V (E) 40 V $\mathrm{P}=\mathrm{IE}$		
9	An immersion heater of resistance R converts electrical energy into thermal energy that is transferred to the liquid in which the heater is immersed. If the current in the heater is I, the thermal energy transferred to the liquid in time t is (A) IRt (B) I $\mathbf{I}^{\mathbf{2}} \mathbf{R t}$ (C) $\operatorname{IR}^{2} t(D) \operatorname{IRt}^{2}$ (E) IR/t $\mathrm{W}=\mathrm{Pt}=\mathrm{I}^{2} \mathrm{Rt}$	Power Thermal	
47	The power dissipated in a wire carrying a constant electric current I may be written as a function of the length l of the wire, the diameter d of the wire, and the resistance ρ of the material in the wire. In this expression, the power dissipated is directly proportional to which of the following? (A) l only (B) d only (C) l and ρ only (D) d and ρ only (E) l, d, and ρ $\mathrm{P}=\mathrm{I}_{2} \mathrm{R} \text { and } \mathrm{R}=\rho \mathrm{L} / \mathrm{A} \text { giving } \mathrm{P} \propto \rho \mathrm{~L} / \mathrm{d}_{2}$	Power Resistance	
58	A variable resistor is connected across a constant voltage source. Which of the following graphs represents the power P dissipated by the resistor as a function of its resistance R ? (A) (C) (E) (B) (D) Answer: A $P=V_{2} / R$ and if V is constant $P \propto 1 / R$	Power Graphs	
67	A hair dryer is rated as $1200 \mathrm{~W}, 120 \mathrm{~V}$. Its effective internal resistance is (A) 0.1Ω (B) 10Ω (C) 12Ω (D) 120 (E) 1440 $\mathrm{P}=\mathrm{V}_{2} / \mathrm{R}$	Power Ohm's Internal resistance	
32	When lighted, a 100 -watt light bulb operating on a 110 -volt household circuit has a resistance closest to (A) $10-2 \Omega$ (B) $10-1 \Omega$ (C) 1Ω (D) 10Ω (E) 100Ω $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$	Power	1
86	A heating coil is rated 1200 watts and 120 volts. What is the maximum value of the current under these	Power	1

	conditions? (A) 10.0 A (B) $12.0 \mathrm{~A}(\mathrm{C}) 14.1 \mathrm{~A}$ (D) $0.100 \mathrm{~A}(\mathrm{E}) 0.141 \mathrm{~A}$ $\mathrm{P}=\mathrm{IV}$		
89	What is the resistance of a 60 watt light bulb designed to operate at 120 volts? (A) 0.5Ω (B) 2Ω (C) 60Ω (D) 240Ω (E) 7200Ω $\mathrm{P}=\mathrm{V}_{2} / \mathrm{R}$	Power	1
$\begin{aligned} & 10 \\ & 5 \end{aligned}$	How much current flows through a 4 ohm resistor that is dissipating 36 watts of power? (A) 2.25 amps (B) 3.0 amps (C) 4.24 amps (D) 9.0 amps (E) 144 amps $\mathrm{P}=\mathrm{I}_{2} \mathrm{R}$	Power	1
$\begin{aligned} & 11 \\ & 7 \end{aligned}$	A household iron used to press clothes is marked " 120 volt, 600 watt." In normal use, the current in it is (A) 0.2 A (B) 2 A (C) 4 A (D) 5 A (E) 7.2 A $\mathrm{P}=\mathrm{IV}$	Power	1
20	Series Connection Parallel Connection In the diagrams above, resistors R_{1} and R_{2} are shown in two different connections to the same source of emf ε that has no internal resistance. How does the power dissipated by the resistors in these two cases compare? (A) It is greater for the series connection. (B) It is greater for the parallel connection. (C) It is the same for both connections. (D) It is different for each connection, but one must know the values of R_{1} and R_{2} to know which is greater. (E) It is different for each connection, but one must know the value of ε to know which is greater. With more current drawn from the battery for the parallel connection, more power is dissipated in this connection. While the resistors in series share the voltage of the battery, the resistors in parallel have the full potential difference of the battery across them.	Power Internal resistance emf	2
48	A wire of resistance R dissipates power P when a current I passes through it. The wire is replaced by another wire with resistance $3 R$. The power dissipated by the new wire when the same current passes through it is (A) $\mathrm{P} / 9$ (B) $\mathrm{P} / 3$ (C) P (D) 3P (E) 6P $\mathrm{P}=\mathrm{I}_{2} \mathrm{R}$	Power	2

The circuit in the figure above contains two identical lightbulbs in series with a battery. At first both bulbs glow with equal brightness. When switch S is closed, which of the following occurs to the bulbs?

Bulb I Bulb 2

(A) Goes out
(B) Gets brighter
(C) Gets brighter
(D) Gets slightly dimmer

Gets brighter
Goes out
Gets slightly dimmer
Gets brighter
Goes out

Answer: B

Closing the switch short circuits Bulb 2 causing no current to flow to it. Since the bulbs were
originally in series, this decreases the total resistance and increases the total current, making bulb
1 brighter.

Suppose you are given a constant voltage source V_{0} and three resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} with $R_{1}>R_{2}>R_{3}$. If
you wish to heat water in a pail which of the following combinations of resistors will give the most rapid
heating?

(B) $-\mathrm{M}_{3}^{\mathrm{R}_{3}}$
(C)

(E)

Answer: E

Most rapid heating requires the largest power dissipation. This occurs with the resistors in parallel.

61
Which of the following combinations of 4Ω resistors would dissipate 24 W when connected to a 12 Volt battery?
(A)

(B)

(C)

(D)

(E)

To dissipate 24 W means $\mathrm{R}=\mathrm{V}_{2} / \mathrm{P}=6 \Omega$. The resistances, in order, are: $8 \Omega, 4 / 3 \Omega, 8 / 3$ $\Omega, 12 \Omega$ and 6Ω
A narrow beam of protons produces a current of $1.6 \times 10^{-3} \mathrm{~A}$. There are 10^{9} protons in each meter along the beam. Of the following, which is the best estimate of the average speed of the protons in the beam?
(A) $10^{-15} \mathrm{~m} / \mathrm{s}$
(B) $10^{-12} \mathrm{~m} / \mathrm{s}$
(C) $10^{-7} \mathrm{~m} / \mathrm{s}$
(D) $10^{7} \mathrm{~m} / \mathrm{s}$
(E) $10^{12} \mathrm{~m} / \mathrm{s}$

Answer:D

Dimensional analysis: $1.6 \times 10^{-3} \mathrm{~A}=1.6 \times 10^{-3} \mathrm{C} / \mathrm{s} \div 1.6 \times 10^{-19} \mathrm{C} /$ proton $=10^{16}$ protons $/ \mathrm{sec} \div$ 10^{9} protons $/$ meter $=10^{7} \mathrm{~m} / \mathrm{s}$

In the circuit diagrammed above, the $3.00-\mu \mathrm{F}$ capacitor is fully charged at $18.0 \mu \mathrm{C}$.
What is the value of the
power supply voltage V ?
(A) 4.40 V
(B) 6.00 V (C) 8.00 V
(D) 10.4 V (E) 11.0 V

The voltage across the capacitor is $6 \mathrm{~V}(\mathrm{Q}=\mathrm{CV})$ and since the capacitor is in parallel with the
300Ω resistor, the voltage across the 300Ω resistor is also 6 V . The 200Ω resistor is not
considered since the capacitor is charged and no current flows through that branch. The 100Ω
resistor in series with the 300Ω resistor has $1 / 3$ the voltage $(2 \mathrm{~V})$ since it is $1 / 3$ the resistance.
Kirchhoff's loop rule for the left loop gives $\mathbf{E}=8 \mathrm{~V}$.

See the accompanying figure. What is the current through the 300Ω resistor when the capacitor is fully
charged?
(A) zero (B) 0.020 A
(C) 0.025 A
(D) $0.033 \mathrm{~A}(\mathrm{E}) 0.100 \mathrm{~A}$

When the capacitor is fully charged, the branch on the right has no current, effectively making
the circuit a series circuit with the 100Ω and 300Ω resistors. Rtotal $=400 \Omega, \mathbf{E}=10 \mathrm{~V}=$ IR

[^1]
Power

3
Equivalent

Random

RC Cicruits

R-C circuit
capacitors C, all of
equal capacitance. A battery that can be used to complete any of the circuits is available.
(A)

(B)

(C)

(D)

(E)

6. Into which circuit should the battery be connected to obtain the greatest steady power dissipation?
(A) A (B) B (C) C (D) D (E) E

For steady power dissipation, the circuit must allow current to slow indefinitely. For the greatest
power, the total resistance should be the smallest value. These criteria are met with the resistors
in parallel.
7. Which circuit will retain stored energy if the battery is connected to it and then disconnected?
(A) A (B) B (C) C
(D) D (E) E

To retain energy, there must be a capacitor that will not discharge through a resistor. Capacitors
in circuits C and E will discharge through the resistors in parallel with them.

15-

The equivalent capacitance for this network is most nearly
(A) $10 / 7 \mu \mathrm{~F}$ (B) $3 / 2 \mu \mathrm{~F}$ (C) $7 / 3 \mu \mathrm{~F}$ (D) $7 \mu \mathrm{~F}$ (E) $14 \mu \mathrm{~F}$

The capacitance of the $4 \mu F$ and $2 \mu F$ in parallel is $6 \mu F$. Combined with the $3 \mu F$ in series gives 2
μF for the right branch. Added to the $5 \mu F$ in parallel gives a total of $7 \mu F$
The charge stored in the 5-microfarad capacitor is most nearly
(A) $360 \mu \mathrm{C}$ (B) $500 \mu \mathrm{C}$ (C) $710 \mu \mathrm{C}$ (D) $1,100 \mu \mathrm{C}$ (E) $1,800 \mu \mathrm{C}$

Since the $5 \mu \mathrm{~F}$ capacitor is in parallel with the battery, the potential difference across it is 100 V .
$\mathrm{Q}=\mathrm{CV}$
(A) $V_{0}+Q C-I^{2} R=0$
(B) $V_{0}-Q / C-\mathbb{R}=0$
(C) $\mathrm{V}_{0}{ }^{2}-Q^{2} / 2 C-I^{2} R=0$
(D) $\mathrm{V}_{0}-\mathrm{CI}-\mathrm{I}^{2} \mathrm{R}=0$
(E) $\mathrm{Q} / \mathrm{C}-\mathbb{R}=0$

Answer: B
Kirchhoff's loop rule ($\mathrm{V}=\mathrm{Q} / \mathrm{C}$ for a capacitor)

Three identical capacitors, each of capacitance $3.0 \mu \mathrm{~F}$, are connected in a circuit with a 12 V battery as shown
above.
The equivalent capacitance between points X and Z is
(A) $1.0 \mu \mathrm{~F}$ (B) $2.0 \mu \mathrm{~F}$ (C) $4.5 \mu \mathrm{~F}$ (D) $6.0 \mu \mathrm{~F}$ (E) $9.0 \mu \mathrm{~F}$

The equivalent capacitance of the two $3 \mu F$ capacitors in parallel is $6 \mu F$, combined with the $3 \mu F$ in series gives $C_{\text {total }}=2 \mu F$

The potential difference between points Y and Z is
(A) zero (B) 3 V (C) 4 V (D) $8 \mathbf{V}$ (E) 9 V

The equivalent capacitance between X and Y is twice the capacitance between Y and Z.
This
means the voltage between X and Y is $1 / 2$ the voltage between Y and Z. For a total of 12 V , this
gives $4 V$ between X and Y and $8 V$ between Y and Z.
11 The five resistors shown below have the lengths and cross-sectional areas indicated and
are made of material
with the same resistance. Which resistor has the least resistance?

(B)

(C)

(D)

(E)

Answer: E
$\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$. Least resistance is the widest, shortest resistor

Two concentric circular loops of radii b and $2 b$, made of the same type of wire, lie in the plane of the page, as shown above. The total resistance of the wire loop of radius b is R. What is the resistance of the wire loop of radius $2 b$?
(A) $R / 4$ (B) $R / 2$ (C) $R(D) 2 \boldsymbol{R}(\mathrm{E}) 4 R$

The larger loop, with twice the radius, has twice the circumference (length) and R $=\rho \mathrm{L} / \mathrm{A}$
28 A wire of length L and radius r has a resistance R. What is the resistance of a second wire made from the same material that has a length $L / 2$ and a radius $r / 2$?
(A) $4 R(B) 2 R(C) R(D) R / 2(E) R / 4$
$\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$. If $\mathrm{L} \div 2, \mathrm{R} \div 2$ and is $\mathrm{r} \div 2$ then $\mathrm{A} \div 4$ and $\mathrm{R} \times 4$ making the net effect $\mathrm{R} \div 2 \times$ 4

Resistance

2

Two resistors of the same length, both made of the same material, are connected in a series to a battery as
shown above. Resistor II has a greater cross. sectional area than resistor I. Which of the following quantities
has the same value for each resistor?
(A) Potential difference between the two ends
(B) Electric field strength within the resistor
(C) Resistance
(D) Current per unit area

(E) Current

Since these resistors are in series, they must have the same current
69 Two conducting cylindrical wires are made out of the same material. Wire X has twice the length and twice the diameter of wire Y. What is the ratio R_{x} / R_{y}

$$
\text { (A) } 1 / 4 \text { (B) } 1 / 2(\mathrm{C}) 1 \text { (D) } 2 \text { (E) } 4
$$

$$
R=\rho L / A \propto L / d^{2} \text { where } d \text { is the diameter. } R_{x} / R_{y}=L_{x} / d_{x}{ }^{2} \div L_{y} / d_{y}^{2}=\left(2 L_{y}\right) d_{y}^{2} /\left[L_{y}\left(2 d_{y}\right)^{2}\right]=1 / 2
$$

85 Wire I and wire II are made of the same material. Wire II has twice the diameter and twice

If wire I has resistance R, wire II has resistance
(A) $R / 8$ (B) $R / 4$ (C) $R / 2$ (D) R (E) $2 R$
$\mathrm{R}=\rho \mathrm{L} / \mathrm{A} \propto \mathrm{L} / \mathrm{d}^{2}$ where d is the diameter. $\mathrm{R}_{\mathrm{II}} / \mathrm{R}_{\mathrm{I}}=\mathrm{L}_{\text {II }} / \mathrm{d}_{\text {II }}{ }^{2} \div \mathrm{L}_{\mathrm{I}} / \mathrm{d}_{\mathrm{I}}^{2}=\left(2 \mathrm{~L}_{\mathrm{I}}\right) \mathrm{d}_{\mathrm{I}}{ }^{2} /\left[\mathrm{L}_{\mathrm{I}}\left(2 \mathrm{~d}_{\mathrm{I}}\right)^{2}\right]=1 / 2$
91 Wire Y is made of the same material but has twice the diameter and half the length of wire X . If wire X has a
resistance of R then wire Y would have a resistance of
(A) $R / 8$ (B) $R / 2$ (C) $R(D) 2 R(E) 8 R$
$\mathrm{R} \propto \mathrm{L} / \mathrm{A}=\mathrm{L} / \mathrm{d} 2$. If $\mathrm{d} \times 2, \mathrm{R} \div 4$ and if $\mathrm{L} \div 2, \mathrm{R} \div 2$ making the net effect $\mathrm{R} \div 8$
10 A cylindrical resistor has length L and radius r. This piece of material is then drawn so that
8 it is a cylinder with
new length $2 L$. What happens to the resistance of this material because of this process?
(A) the resistance is quartered.
(B) the resistance is halved.
(C) the resistance is unchanged.
(D) the resistance is doubled.
(E) the resistance is quadrupled.

Since the volume of material drawn into a new shape in unchanged, when the length is doubled,
the area is halved. $\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$
11 A cylindrical graphite resistor has length L and cross-sectional area A. It is to be placed
0 into a circuit, but it
first must be cut in half so that the new length is $1 / 2 \mathrm{~L}$. What is the ratio of the new resistance to the old resistance of the cylindrical resistor?
(A) 4 (B) 2 (C) 1 (D) $1 / 2$ (E) $1 / 4$

Resistance is dependent on the material. Not to be confused with resistance
4 The five resistors shown below have the lengths and cross-sectional areas indicated and are made of material
with the same resistance. Which has the greatest resistance?
(A)

(B)

(C)

(D)

(E)

Answer: B

$\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$. Greatest resistance is the longest, narrowest resistor.

The following diagram represents an electrical circuit containing two uniform resistance wires connected to a
single flashlight cell. Both wires have the same length, but the thickness of wire X is twice that of wire Y.
Which of the following would best represent the dependence of electric potential on position along the length of the two wires?

Answer: E
Even though the wires have different resistances and currents, the potential drop across each is
1.56 V and will vary by the same gradient, dropping all 1.56 V along the same length.

11 A current through the thin filament wire of a light bulb causes the filament to become Resistance 3
4 white hot, while the
larger wires connected to the light bulb remain much cooler. This happens because
(A) the larger connecting wires have more resistance than the filament.
(B) the thin filament has more resistance than the larger connecting wires.
(C) the filament wire is not insulated.
(D) the current in the filament is greater than that through the connecting wires.
(E) the current in the filament is less than that through the connecting wires.

In series circuits, larger resistors develop more power
97 Each member of a family of six owns a computer rated at 500 watts in a 120 V circuit. If all computers are
plugged into a single circuit protected by a 20 ampere fuse, what is the maximum number of the computers can be operating at the same time?
(A) 1 (B) 2 (C) 3 (D) 4 (E) 5 or more

Each computer draws $\mathrm{I}=\mathrm{P} / \mathrm{V}=4.17 \mathrm{~A} .4$ computers will draw 16.7 A , while 5 will draw over 20
A.

21 The product (2 amperes $\times 2$ volts $\times 2$ seconds) is equal to (A) 8 coulombs (B) 8 newtons (C) 8 joules (D) 8 calories (E) 8 newton-amperes

Amperes $=\mathrm{I}$ (current); Volts $=\mathrm{V}$ (potential difference); Seconds $=\mathrm{t}$ (time): $\mathrm{IVt}=$ energy

[^0]: The diagram above represents a simple electric circuit composed of 5 identical light bulbs and 2 flashlight cells.
 Which bulb (or bulbs) would you expect to be the brightest?
 (A) V only
 (B) V and W only
 (C) V and Z only
 (D) V, W and Z only
 (E) all five bulbs are the same brightnes

[^1]: The five incomplete circuits below are composed of resistors R , all of equal resistance, and

