Rotational Motion

Arc Length	$S = \theta r$	
Circumference	$C = 2\pi r$	Circumference is an <u>Arc Length</u>

1 revolution = 1 rotation = 360 degrees = 2π radians

Constant Acceleration				
Linear Kinematic Equations	Rotational Kinematic Equations			
Units (m, m/s, m/s ² , s)	Units (rad, rad/s, rad/s², s)			
$V = V_0 + at$	$\omega = \omega_0 + \alpha t$			
$X = X_0 + V_0 t + \frac{1}{2}at^2$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$			
$V^2 = V_0^2 + 2a\Delta X$	$\omega^2 = \omega_0^2 + 2\alpha \Delta \theta$			
$\Delta X = \frac{1}{2} (V + V_0) t$	$\Delta \boldsymbol{\theta} = \frac{1}{2} (\boldsymbol{\omega} + \boldsymbol{\omega}_0) \boldsymbol{t}$			

How linear (tangential) velocity relates to angular speed \rightarrow $v = \omega * r$

How linear (tangential) acceleration relates to angular acceleration $\rightarrow a = \alpha * r$

$$\boldsymbol{\omega} = \boldsymbol{\omega}_0 + \alpha t \quad \rightarrow \qquad (\boldsymbol{\omega} * r) = (\boldsymbol{\omega}_0 * r) + (\alpha * r)t \quad \rightarrow \qquad \boldsymbol{\nu} = \boldsymbol{\nu}_0 + \alpha t$$

Period is the time to complete one cycle

Type of simple harmonic oscillator	Angular frequency & Period equations	How do we get there?
Spring-block system (1)	$\omega = \sqrt{\frac{k}{m}} \text{and} T = 2\pi \sqrt{\frac{m}{k}}$ Where <i>m</i> is the mass of the block in [<i>kg</i>] and <i>k</i> is the spring constant in $\left[\frac{N}{m}\right]$	$\Sigma F = ma \qquad F_{Spring} = ma \qquad kx = ma$ For SHM (Simple Harmonic Motion) $a = \omega^2 x$ $kx = m(\omega^2 x)$ $\omega^2 = \frac{k}{m}$ therefore $\omega = \sqrt{\frac{k}{m}}$
Simple Pendulum	$\omega = \sqrt{\frac{g}{L}}$ and $T = 2\pi \sqrt{\frac{L}{g}}$ Where g is the gravitational acceleration at that location in $\left[\frac{m}{s^2}\right]$ and L is the length of the pendulum from the pivot point to the center of mass of the bob in $[m]$.	$\sum_{\substack{T = r \times F_{\perp} = I\alpha \\ F_{\perp} = F_g sin\theta \text{ creating a negative (clockwise) torque} \\ I = mL^2 \text{ for a point mass a distance } L \text{ away from the pivot} \\ \alpha = -\omega^2 \theta \text{ for SHM in rotation} \\ -Lmgsin\theta = mL^2(-\omega^2 \theta) \\ \text{For small angles } sin\theta \approx \theta, \text{ called the Small Angle Approximation,} \\ \text{therefore:} \\ \frac{g}{L} = \omega^2 \text{ therefore } \omega = \sqrt{\frac{g}{L}} \\ \end{array}$

$$T=\frac{2\pi}{\omega}=\frac{1}{f}$$

Period of a Spring Period of a Pendulum

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$
 $T_p = 2\pi \sqrt{\frac{l}{g}}$

In order to change direction you have to have a Net Force (Σ F) acting on the object. Things moving in a circle must have a force directed to the center of the circle (can be that force could be caused by gravity, friction, tension, ect.

Newton's 2^{nd} LawRotational version of Newton's 2^{nd} Law $\Sigma F = ma$ $\Sigma \tau = I \alpha$

$au = torque, I = moment of inertia, lpha = angular acceleration \ au = r_{\perp}F$

Torque is caused when you are a distance (radius) from rotation point (center of circle) and you apply a force. Torque's units are Newton*meters.

Opening a door you push (force) on the doorknob of the door (distance from center).

Moment of inertia is like mass, it is some version of $I = __M R^2$

A single mass rotating around something has a Moment of Inertia of $I = MR^2$

DO NOT NEED TO MEMORIZE they would give you this information.

The more of the mass that is located a radius away the closer to $I = MR^2$ the Moment of Inertia becomes. The closer to the center the smaller the fraction in front of MR^2 . The bigger *I*, is the harder it is to start or stop rotating something is.

Momentum $p = mv$	Angular momentum $L = I\omega$	Change of Angular Momentum $\Delta L = \tau \Delta t$
Kinetic Energy $K = \frac{1}{2}mv^2$	Rotational Kinetic Ene $K = \frac{1}{2}I\omega^2$	ergy