Rotational Motion

Arc Length $\quad S=\theta \mathbf{r}$
Circumference
$C=2 \pi r$
Circumference is an Arc Length

1 revolution = 1 rotation $=\mathbf{3 6 0}$ degrees $=\underline{2 \pi \text { radians }}$

Constant Acceleration	
Linear Kinematic Equations	Rotational Kinematic Equations
Units (m, m/s, m/s, s$)$	Units (rad, rad/s, rad/s $\left.{ }^{2}, \mathrm{~s}\right)$
$V=V_{0}+a t$	$\omega=\omega_{0}+\alpha t$
$X=X_{0}+V_{0} t+\frac{1}{2} a t^{2}$	$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$V^{2}=V_{0}{ }^{2}+2 a \Delta X$	$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \Delta \theta$
$\Delta X=\frac{1}{2}\left(V+V_{0}\right) t$	$\Delta \theta=\frac{1}{2}\left(\omega+\omega_{0}\right) t$

How linear (tangential) velocity relates to angular speed $\rightarrow \quad v=\omega * \boldsymbol{r}$
How linear (tangential) acceleration relates to angular acceleration $\rightarrow \quad a=\alpha * \boldsymbol{r}$

$$
\omega=\omega_{0}+\alpha t \rightarrow(\omega * r)=\left(\omega_{0} * r\right)+(\alpha * r) t \quad \rightarrow \quad v=v_{0}+a t
$$

Period is the time to complete one cycle

Type of simple harmonic oscillator	Angular frequency \& Period equations	How do we get there?
Spring-block system 	$\omega=\sqrt{\frac{k}{m}} \quad \text { and } \quad T=2 \pi \sqrt{\frac{m}{k}}$ Where m is the mass of the block in $[\mathrm{kg}]$ and k is the spring constant in $\left[\frac{\mathrm{N}}{\mathrm{m}}\right]$	$\begin{gathered} \Sigma F=m a \quad F_{\text {Spring }}=m a \quad \text { kx }=m a \\ \text { For SHM (Simple Harmonic Motion) } \mathbf{a}=\omega^{2} \boldsymbol{x} \\ \mathbf{k x}=\boldsymbol{m}\left(\omega^{2} \boldsymbol{x}\right) \\ \omega^{2}=\frac{k}{m} \quad \text { therefore } \quad \omega=\sqrt{\frac{k}{m}} \end{gathered}$
Simple Pendulum	$\omega=\sqrt{\frac{g}{L}} \quad \text { and } \quad T=2 \pi \sqrt{\frac{L}{g}}$ Where g is the gravitational acceleration at that location in $\left[\frac{\mathrm{m}}{\mathrm{s}^{2}}\right]$ and L is the length of the pendulum from the pivot point to the center of mass of the bob in $[m]$.	$\sum \tau=r \times F_{\perp}=I \alpha$ $F_{\perp}=F_{g} \sin \theta$ creating a negative (clockwise) torque $I=m L^{2}$ for a point mass a distance L away from the pivot $\alpha=-\omega^{2} \theta$ for SHM in rotation $-L m g \sin \theta=m L^{2}\left(-\omega^{2} \theta\right)$ For small angles $\sin \theta \approx \theta$, called the Small Angle Approximation, therefore: $\frac{g}{L}=\omega^{2} \text { therefore } \omega=\sqrt{\frac{g}{L}}$

$$
T=\frac{2 \pi}{\omega}=\frac{1}{f}
$$

$$
\begin{array}{cc}
\text { Period of a Spring } & \text { Period of a Pendulum } \\
T_{s}=2 \pi \sqrt{\frac{m}{k}} & T_{p}=2 \pi \sqrt{\frac{l}{g}}
\end{array}
$$

In order to change direction you have to have a Net Force (ΣF) acting on the object. Things moving in a circle must have a force directed to the center of the circle (can be that force could be caused by gravity, friction, tension, ect.

Newton's $2^{\text {nd }}$ Law \quad Rotational version of Newton's $2^{\text {nd }}$ Law
$\boldsymbol{\Sigma} \boldsymbol{F}=\boldsymbol{m} \boldsymbol{a}$

$$
\Sigma \tau=I \alpha
$$

$$
\begin{aligned}
& \tau=\text { torque, } I=\text { moment of inertia, } \alpha=\text { angular acceleration } \\
& \qquad \tau=r_{\perp} F
\end{aligned}
$$

Torque is caused when you are a distance (radius) from rotation point (center of circle) and you apply a force. Torque's units are Newton*meters.
Opening a door you push (force) on the doorknob of the door (distance from center).
Moment of inertia is like mass, it is some version of $\boldsymbol{I}=\ldots \boldsymbol{M} \boldsymbol{R}^{\mathbf{2}}$
A single mass rotating around something has a Moment of Inertia of $\boldsymbol{I}=\boldsymbol{M} \boldsymbol{R}^{\mathbf{2}}$

DO NOT NEED TO MEMORIZE they would give you this information.

The more of the mass that is located a radius away the closer to $\boldsymbol{I}=\boldsymbol{M} \boldsymbol{R}^{\mathbf{2}}$ the Moment of Inertia becomes. The closer to the center the smaller the fraction in front of $\boldsymbol{M} \boldsymbol{R}^{2}$. The bigger I, is the harder it is to start or stop rotating something is.

Momentum
$\boldsymbol{p}=\boldsymbol{m} \boldsymbol{v}$
Kinetic Energy
$K=\frac{1}{2} \boldsymbol{m} v^{2}$

Angular momentum
 $L=I \omega$
 Change of Angular Momentum
 $\Delta L=\tau \Delta t$

Rotational Kinetic Energy
$K=\frac{1}{2} I \omega^{2}$

