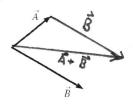
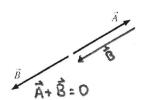

Vectors and Coordinate Systems

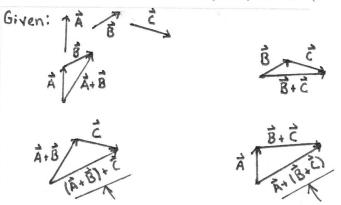
3.1 Vectors


3.2 Properties of Vectors

Exercises 1–3: Draw and label the vector sum $\vec{A} + \vec{B}$.

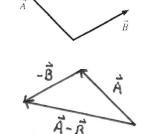

1.

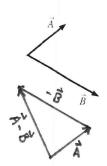
2.



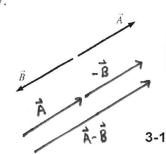
3.

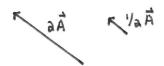
4. Use a figure and the properties of vector addition to show that vector addition is associative. That is, show that

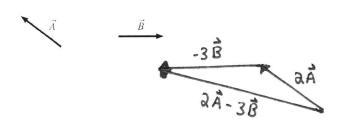

$$(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$$


The figure shows that $(\vec{A} + \vec{B}) + \vec{C}$ has the same magnitude and direction as $\vec{A} + (\vec{B} + \vec{C})$, though constructed in a different order.

Exercises 5–7: Draw and label the vector difference $\vec{A} - \vec{B}$.

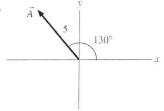

5.

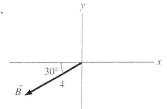

6.

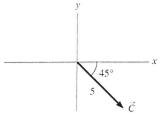

-

8. Draw and label the vector $2\vec{A}$ and the vector $\frac{1}{2}\vec{A}$.

9. Given vectors \vec{A} and \vec{B} below, find the vector $\vec{C} = 2\vec{A} - 3\vec{B}$.


3.3 Coordinate Systems and Vector Components

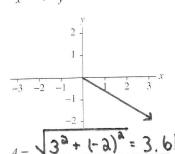

Exercises 10–12: Draw and label the x- and y-component vectors of the vector shown.


10.

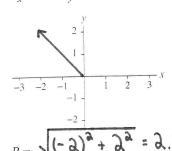
Exercises 13–15: Determine the numerical values of the x- and y-components of each vector.

13.

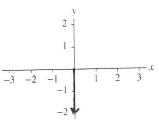
$$A_{y} = 5 \sin{(130^{\circ})} = 3.83$$


$$A_x = \frac{5\cos(130^\circ) = -3.21}{5\sin(130^\circ) = 3.83}$$
 $B_x = \frac{-4\cos(30^\circ) = -3.46}{-4\sin(30^\circ) = -2.00}$ $C_x = \frac{5\cos(45^\circ) = 3.54}{-5\sin(45^\circ) = -3.54}$

$$C_x = \frac{5\cos(45^\circ)}{3.54}$$

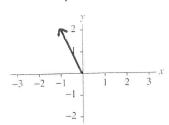

To 3 significant figures

Exercises 16–18: Draw and label the vector with these components. Then determine the magnitude of the vector.

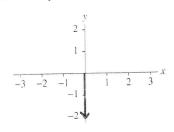

16.
$$A_x = 3$$
, $A_y = -2$

17.
$$B_v = -2$$
, $B_v = 2$

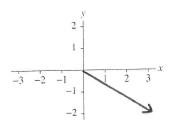
$$18. C_x = 0, C_y = -2$$



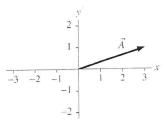
$$C = \lambda$$


3.4 Vector Algebra

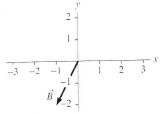
Exercises 19-21: Draw and label the vectors on the axes.


$$19. \vec{A} = -\hat{\iota} + 2\hat{\jmath}$$

$$20.\ \vec{B} = -2\hat{\jmath}$$

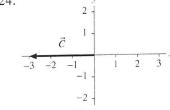


$$21. \vec{C} = 3\hat{\imath} - 2\hat{\jmath}$$



Exercises 22–24: Write the vector in component form (e.g., $3\hat{i} + 2\hat{j}$).

22.



23

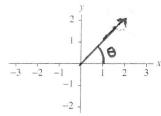
$$\vec{B} = -\hat{c} - \hat{d}\hat{s}$$

24.

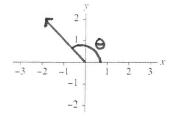
$$\vec{c} = -3\hat{1}$$

25. What is the vector sum $\vec{D} = \vec{A} + \vec{B} + \vec{C}$ of the three vectors defined in Exercises 22–24? Write your answer in *component* form.

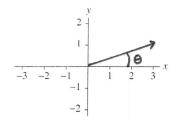
$$\vec{D} = (3-1-3)\hat{c} + (1-a+0)\hat{j} = -\hat{c} - \hat{j}$$


Exercises 26–28: For each vector:

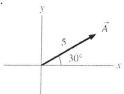
- Draw the vector on the axes provided.
- Draw and label an angle θ to describe the direction of the vector.
- Find the magnitude and the angle of the vector.


26.
$$\vec{A} = 2\hat{i} + 2\hat{j}$$

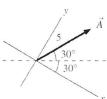
27.
$$\vec{B} = -2\hat{i} + 2\hat{j}$$


28.
$$\vec{C} = 3\hat{i} + \hat{j}$$

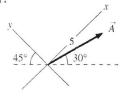
$$A = 2.83 (2.52)$$


$$B = 2.83 (2.5)$$

$$C = \frac{3.16}{9} (10)$$


Exercises 29–31: Define vector $\vec{A} = (5, 30^{\circ} \text{ above the horizontal})$. Determine the components A_x and A_y in the three coordinate systems shown below. Show your work below the figure.

29.


$$A_y = 0.50$$

 $A_y = 5\cos(30^\circ)$
 $A_y = 5\sin(30^\circ)$

30.

$$A_x = 0.30$$

 $A_y = 4.33$
 $A_x = 5\cos(30^\circ + 30^\circ)$
 $A_y = 5\sin(30^\circ + 30^\circ)$

31.

$$A_x = 4.80$$

 $A_y = -1.29$
 $A_x = 5\cos(45^\circ - 30^\circ)$
 $A_y = -5\sin(45^\circ - 30^\circ)$